
TOPICS IN AUTOMORPHIC FORMS

EDGAR ASSING

Abstract. Does the space of cusp forms Sk(N,χ) feature a basis of theta
series? We will work through Eichlers solution to this question for k ≥ 2 and
N square free. This will involve studying orders in quaternion algebras, theta
series and traces of Hecke operators.

1. Introduction

Historically, the main motivation for studying modular forms came from their
connnection to representation numbers of quadratic forms. Let us make this a
little more precise. Given a positive definite quadratic form in 2k variables and
integer coefficients. One is interested in understanding the numbers

a(n;Q) = ]{x ∈ Z2k |n = Q(x)}.
These can be studied by forming the series1

θ(z;Q) =
∞∑
n=0

a(n;Q)e(nz).

It can be shown, that there is N = N(Q) ∈ N and a character χ = χ(Q) such that
θ(·;Q) ∈Mk(N,χ) is a modular form of weight k, level N and nebentypus ε. The
upshot is, that the space Mk(N,χ) is finite dimensional and one can choose a clever
basis in terms of Eisenstein series and cusp forms. Expanding θ(·;Q) in this basis
and comparing coefficients of the Fourier expanisons leads interesting asymptotic
and sometimes explicit formulae for the numbers a(n;Q). (See Exercise 1 for an
explicit example.) On the level of Dirichlet series this can be seen as decomposing
L(s;Q) =

∑
n∈N a(n;Q)n−s into a sum of eulerian Dirichlet series.

It is well known that the graded algebra
⊕

k≥4Mk(1, Id) is generated by the
Eisenstein series E4 and E6. Here

Ek(z) = 1 +
(2π)k

ikζ(k)Γ(k)

∞∑
n=1

σk−1(n)e(nz).

Furthermore the dimensions of the spaces Mk(1, Id) as well as Sk(1, Id) are in
general well understood. To illustrate this let us just recall the probably most

Date: 1st April 2020.
1We use the common notation e(x) = e2πix.
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famous example S12(1, Id) = C∆ for

∆(z) =
E4(z)3 − E6(z)2

1728
=
∑
n>0

τ(n)e(nz) = e(z)− 24e(2z) + 252e(3z) + . . . .

On the other hand Hecke [4, Satz 46] showed that there is a harmonic polynomial
P8 of degree 8, such that

θ(z;P8, Q8) = ∆(z). (1)

Here

Q8 =
1

2

8∑
r=1

x2
r +

1

2

(
8∑
r=1

xr

)2

− x1x2 − x2x8

and θ(z;P8, Q8) is a generalised theta series associated to Q8 with weights P8. We
will discuss such theta series in more details in Section 3 below.

This still begs the question if any other modular form of given weight, level and
nebentypus can be decomposed into theta series and if so, which class of theta
series needs to be considered. More precisely one can ask which spaces Sk(N,χ)
have a basis of generalised theta series and how such a basis can be parametrised.
If Sk(N,χ) does not feature a basis in terms of theta series, one can further ask
which parts of the space fail to be spanned by theta series and how they can be
broken down into pieces that are better understood.

This circle of ideas is sometimes referred to as the basis problem and can be
viewed as a predecessor of the Jacquet-Langlands correspondence. Our objective in
this course is to reproduce Eichler’s solution to the basis problem in case of square
free level. Let us conclude this introduction by giving a brief historic overview.

• In [4] Hecke made the following 2 conjectures, which can be viewed as the
beginning of the basis saga.
(1) There is an explicit basis for S2(p, Id) obtained from theta series. More

precisely quaternionic theta series attached to a maximal order in the
quaternion algebra with discriminant p.

(2) The action of the Hecke-operators Tn for (n, p) = 1 on the space of
theta series is given by a matrix which can be arithmetically defined
given the maximal order.

• In [1] Brandt constructs certain matrices, the so called Brandt matrices,
associated to maximal orders in quaternion algebras. It will turn out that
these are the matrices foreseen by Hecke in the second point above.
• In [2] Eichler proves the (slightly modified) first part of Hecke’s conjecture.
• In [3] Eichler used generalised theta series and Brandt matrices associated

to so called Eichler orders (these are not necessarily maximal) to solve
the basis problem for Sk(N, Id) where N is square-free. (Note that Hecke
already used these generalised theta series to represent ∆ as described
above. Further Hecke tested his conjecture for Sk(p) with p+ 1 | 24.)
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• For non square-free level or non-trivial nebentypus the story becomes more
complicated. A complete solution to the basis problem in full generality
has been achieved in [5].

Remark 1.1. The fact that a space of modular forms can be spanned by theta
functions is a nice insight but not the core of the matter. It is the second part
of Hecke’s conjecture that is essential. This is because it provides a way of con-
structing Hecke eigenfunctions on the level of quadratic forms. Exercise 2 should
illustrate this.

Exercise 1. Let Q(x) = x2
1 + x2

2 + x2
3 + x2

4 and set σs(n) =
∑

d|n d
s. Show the

identity

a(n;Q) = 8
(
σ1(n)− δ4|n4σ1

(n
4

))
,

originally due to Jacobi, and deduce a(n;Q) ≥ 1 for all n ≥ 1, which is La-
grange’s celebrated four square theorem. Here one can use θ(·;Q) ∈M2(4, Id) and
M2(4, Id) = 〈P − 4P (4 ·), P − 2P (2 ·)〉C, for

P (z) = 1− 24
∑
n≥1

σ1(n)e(nz).

Proof. Set P2 = P − 2P (2 ·) and P4 = P − 4P (4 ·). It is easy to compute the
following table:

n a(n;Q) aP2(n) aP4(n)

0 1 −1 −3
1 8 −24 −24

Next we make the ansatz θ(z;Q) = aP2 + bP4, getting the two linear equations

a+ b = −1

3
and a+ 3b = −1.

The solution is a = 0, b = −1
3
, so that

∞∑
n=0

a(n;Q)e(nz) = θ(z;Q) = −1

3
P4 = 1 + 8

∞∑
n=1

[σ1(n)− 4δ4|nσ1(
n

4
)]e(nz).

Comparing coefficients completes this exercise. �

Remark 1.2. Let Q be the sum of four squares. Then the result in the previous
exercise implies

L(s;Q) =
∑
n∈N

a(n;Q)n−s = 8
∑
n∈N

[σ1(n)− 4δ4|nσ1(
n

4
)]n−s

= 8(1− 41−s)ζ(s)ζ(1− s).

Exercise 2. Show that the spaceM4l(1, Id) can be spanned by theta series θ(· , QA)
for positive definite quadratic forms QA in 8l variables such that det(A) = 1.
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Proof. We start by noting that, for two quadratic forms Q1 and Q2, we have

θ(z;Q1)θ(z;Q2) = θ(z;Q1 ⊕Q2).

The upshot is that it is enough to represent the generators of the algebra
⋃
l>1M4l(1, Id)

by theta series. In the case at hand this implies that we need to generate E4 and
∆.

Let Q8 be as above. Then

0 6= θ(z;Q8) ∈M4(1, Id) = CE4.

In particular E4 = C4θ(z;Q8).2

Now note that the first Fourier coefficient of E12(z) is not an integer. Thus, we
must have

θ(z;Q8 ⊕Q8 ⊕Q8) = C12E12(z) + C∆∆ with C∆ 6= 0.

It is now a theorem due to Siegel, thatE12(z) = θgen(Q8⊕Q8⊕Q8)(z), where θgen(Q8⊕Q8⊕Q8)(z)
is the genus theta series, which itself is a linear combination of theta series. In
particular, we can write

∆ =
θ(z;Q8 ⊕Q8 ⊕Q8)− C12θgen(Q8⊕Q8⊕Q8)(z)

C∆

and we are done. �

2Even more, up to equivalence there is only one positive definite quadratic form with deter-
minant 1 in 8 variables and one can show that a(n;Q8) = 240 · σ3(n). In 16 variables there
is more than one equivalence class of positive definite quadratic forms of determinant 1. How-
ever, the space of modular forms of weight 8 and level 1 is still one dimensional. In particular
θ(z;Q8 ⊕Q8) = C8E8, more precisely a(n;Q8 ⊕Q8) = 480 · σ7(n).
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2. A crash course in modular forms

2.1. Some basic hyperbolic geometry. The group GL2(R) acts on C ∪ {∞}
via Möbius transformations

g · z =
az + b

cz + d
for z ∈ C and g · ∞ =

a

c
.

Here g =

(
a b
c d

)
∈ GL2(R). One checks, that Im(g ·z) = det(g) Im(z)

|cz+d|2 . In particular,

we observe that SL2(R) and more generally GL+
2 (R) preserve the upper half plane

H = {z = x+ iy ∈ C | y > 0}

and its closure H = H ∪ R ∪ {∞}. Given f : H→ C we define

[f |kα](z) = det(α)k−1(cz + d)−kf(αz).

We distinguish four types of matrices in PSL2(R). These are

• The identity 1.
• Parabolic matrices u. These are matrices with |tr(u)| = 2 and u 6= 1.

They are distinguished by having exactly one fixed point on R ∪ {∞}.
Furthermore, they can be conjugated to a matrix acting by z 7→ z + c for
some c ∈ R.
• Elliptic matrices k. These are matrices satisfying |tr(k)| < 2. They have

exactly one fixed point in H and can be conjugated to an element in SO2.
• Hyperbolic matrices a. These are matrices satisfying |tr a| > 2. They

have exactly two fixed points on R ∪ {∞} and are conjugate to a matrix
acting by z 7→ cz for some c ∈ R>0 \ {1}.

These types are preserved under conjugation, so that we use the same classification
for conjugacy classes.

We say a subgroup Γ ⊂ SL2(R) acts discretely on H, if

]{γ ∈ Γ | γ(A) ∩B 6= ∅} <∞

for all compact sets A,B ⊂ H.
A fundamental domain F ⊂ H for Γ is a set such that ΓF = H and for z1, z2 ∈ F◦

we have Γz1 ∩ Γz2 = ∅. The fundamental domains we encounter can and will be
chosen such that they are connected, simply connected and measurable.

A fixed point a ∈ R ∪ {∞} of a parabolic element γ ∈ Γ. Is called a cusp of Γ.
Two cusps are considered to be equivalent if they lie in the same Γ-orbit. Often
two equivalent cusps are not further distinguished. (Convention: If we speak about
α ∈ R ∪ {∞} being a cusp of Γ we mean exactly the point α. However when we
use a to denote a cusp of Γ we are talking about a full equivalence class of cusps.)
A scaling matrix σ ∈ SL2(R) for a cusp x is a matrix satisfying σx =∞.
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Important examples for such subgroups are

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣N | c} .
These are finite index subgroups of SL2(Z). Indeed the index is given by

[SL2(Z) : Γ0(N)] = N
∏
p|N

(1 +
1

p
).

Furthermore a set of inequivalent cusps is given by

C(N) =

{
u

v
: v | N, (u, v) = 1, u mod (v,

N

v
)

}
.

Given a cusp x and a corresponding scaling matrix σ ∈ SL2(Z) there is h = h(x) ∈
N, called the width of the cusp x, such that

σΓ0(N)xσ
−1 =

{
±
(

1 hn
0 1

)
: n ∈ Z

}
.

Note that the width h depends only on the equivalence class of x and is independent
of the choice of the scaling matrix. One can check that for x = u

v
∈ C(N) one has

h = N
(v2,N)

. In particular, if N is square-free we have h = N
v

.

Further, let F1 = {z ∈ H : |z| > 1, |Re(z)| < 1
2
} be the standard fundamental

domain of SL2(Z). We can choose a fundamental domain FN for Γ0(N) by taking
a union of N

∏
p|N(1 + 1

p
) suitably chosen translates of F1.

We equip H with the measure dµ(z) = dxdy
y2 , which is SL2(R) invariant. Note

that
Vol(F1, µ) =

π

3
.

So far we have introduced the hyperbolic plane via the upper half plane model.
However, sometimes it is useful to work in the Poincare disc. We set D = {w =
x+ iy ∈ C : |w| < 1}. We have a conformal equivalence given by H→ D, z 7→ ρ.z,
for

ρ =

(
1 −i
1 i

)
.

The hyperbolic volume on D is given by dν(w) = 4dxdy
(1+|w|2)2 and the automorphism

group of D is given by SU(1, 1)/{±1} = ρ SL2(R)/{±1}ρ−1.

2.2. Fast track to Modular forms. A Dirichlet character χ modulo N can be

extended to a character of Γ0(N) via χ(γ) = χ(d), for γ =

(
a b
Nc d

)
∈ Γ0(N).

A function f : H→ C is called a modular form of weight k, level N and neben-
typus χ, if f is holomorphic on H∗ = H ∪ {cusps of Γ0(N)} and satisfies

f(γz) = χ(γ)(cz + d)kf(z) for all γ =

(
a b
c d

)
∈ Γ0(N).
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We write Mk(N,χ) for the set of all modular forms of weight k, level N and
nebentypus χ. If f further vanishes at all cusps, then we call f a cusp form. We
write Sk(N,χ) for the set of all cusp forms of weight k, level N and nebentypus χ.

Since Γ0(N) contains the subgroup

N(Z) =

{
n(x) =

(
1 x
0 1

)
: x ∈ Z

}
,

we have f(z + 1) = f(z). Therefore, we can expand f ∈ Mk(N,χ) in a Fourier
expansion at ∞:

f(z) =
∑
n≥0

af (n)e(nz).

Note that, if f ∈ Sk(N,χ) then af (0) = 0. Similarly, f has Fourier expansions at
any other cusp of Γ0(N) and f ∈ Sk(N,χ) if and only if the 0th Fourier coefficient
vanishes at every cusp.

There is an important family of commuting operators on the space Sk(N,χ).
These are the Hecke operators, which we define in an ad-hoc manner by

[Tnf ](z) =
1

n

∑
ad=n,

(a,N)=1

χ(a)ak
∑

b mod d

f

(
az + b

d

)
.

As mentioned above these operators commute and satisfy the interesting relation

TmTn =
∑

d|(m,n),
(d,N)=1

χ(d)dk−1Tnm
d2
.

Furthermore, for (n,N) = 1, these operators are essentially self adjoint (with
respect to the Petersson inner product). More precisely,

〈Tnf, g〉 = χ(n)〈f, Tng〉.
Thus we can find a basis of Sk(N) consisting of joint eigenfunctions of all Hecke-
operators Tn with (n,N) = 1. Such a basis will be called Hecke eigenbasis and its
elements are referred to as Hecke eigenforms. We deonte the n-th Hecke eigenvalue
of a Hecke eigenform f by λf (n).

We define the unramified Hecke-algebra T(N) = Tχ(N) to be the Z algebra
generated by {Tp : (p,N) = 1}. For χ = 1 we can view this as a subring of operators
acting on (holomorphic) functions Γ0(N)\H → C. We can similarly consider the
Q-algebra T(N)⊗ZQ. So far we have seen that T(N) is a commutative semisimple
algebra and Sk(N,χ) is a finite dimensional T(N)-module.

We now wish to enlarge the algebra T(N) by the ramified Hecke operators Tp
for p | N . To get a satisfying theory for this larger algebra we need to take care of
some technical issues. Define the space of oldforms by

S[k(N,χ) = 〈{z 7→ f(dz) : f ∈ Sk(N ′, χ) for Q | N ′ | N,N ′ 6= N and d | N
N ′
}〉,
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where Q is the conductor of χ. In particular we can view χ as a Dirichet character
modulo N ′ as long as Q | N ′. Further we define S]k(N,χ) = (S[k(N,χ))⊥. We call
elements of the latter space newforms. It is easy to check, that the Hecke-operators
respect the just defined spaces. Thus, we can choose a Hecke eigenbasis for the
space of newforms. Elements of this basis will be called Hecke newforms in all
what follows. These Hecke newforms have some remarkable properties which more
than justifies the construction made above.

Each Hecke newform satisfies af (1) 6= 0, so that we usually normalise them

by requiring af (1) = 1. Further, if two Hecke newforms f, g ∈ S]k(N,χ) satisfy
λf (n) = λg(n) for all (but finitely many) (n,N) = 1, then f = g. Thus, in
particular a Hecke newform f is automatically an eigenfunction of all the Hecke
operators. Including those with (n,N) 6= 1. Even more, we have

f(z) =
∑
n∈N

λf (n)e(nz).

Example 2.1. Let us have a look at the space Sk(37, Id). Note that, since

S2(1, Id) = {0} and 37 is a prime number we have Sk(37, Id) = S]k(37, Id). With the
help of the LMFDB we can have a closer look. We find that dimC Sk(37, Id) = 2.
The normalised newforms are given by

f37.2.a.a(z) = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 + . . . ,

f37.2.a.b(z) = q + q3 − 2q4 − q7 − 2q9 + 3q11 + . . . ,

where we use the standard notation q = e(z). Furthermore there is exactly one
(up to normalisation) Eisenstein series of level 37, weight 2 and trivial nebentypus.
Thus one has dimCM2(37, Id) = 3.

Exercise 3. Compute the Fourier coefficients (at∞) of the (suitably normalised)
Eisenstein series in M2(37, Id).

Proof. We start by observing that the function

P (z) = 1− 24
∑
n∈N

σ1(n)e(nz) (2)

is well defined for z ∈ H and the sum converges nicely. This resembles the Fourier-
expansion of the weight k Eisenstein series. However in the weight 2 case the
standard argument that produces modularity does not work since the sum

1

2

∑
c,d∈Z,
(c,d)=1

(cz + d)−2

is not absolutely convergent. By arguing carefully one can still show that

[P |2γ](z) = P (z)− 6i

π
· c

cz + d
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for all γ =

(
a b
c d

)
∈ SL2(Z). Thus it does not define a modular form for the full

modular group. However, a simple computation shows that

P37(z) = P (z)− 37 · P (37z) ∈M2(37, Id).

It is known that dimCM2(37, Id) = 3 and the example above shows two linearly
independent cusp forms. Thus, P37 must be the missing element. It is an Eisenstein
series because it obviously has non-vanishing constant term at ∞. The Fourier
coefficients are given by

P37(z) = −36− 24
∑
n∈N

[
σ1(n)− 37δ37|nσ1

( n
37

)]
e(nz).

�
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3. Theta series reloaded

The goal of this section is to proof the modularity of certain generalised theta
series. The content is fairly standard. We mainly follow the exposition in [6] and
skip over several details.

Let

SP2k = {A ∈ Mat2k×2k(Z) |A > 0, symmetric

and the diagonal entries of A are even}.

Given A ∈ SP2k we can write A = StS for a real matrix S. Note that one always
has (−1)k det(A) ≡ 0, 1 mod 4. Furthermore, there is a minimal NA ∈ N such
that NAA

−1 ∈ SP2k. This integer is called the level of A. To A ∈ SP2k we can
associate the quadratic form

QA(x) =
1

2
xtAx.

Let Pl(x) = P (x1, . . . , x2k) be a homogeneous polynomial of degree l. We call
Pl harmonic, if

∆Pl = 0.

To z ∈ H and a solution r of the congruence

Ar ≡ 0 mod NA

we associate the (generalised) theta series

θPl,QA(z, r) =
∑
n∈Z2k

Pl
(
S(n+N−1r)

)
e

(
1

2
(n+N−1r)tA(n+N−1r)z

)
.

We are now going to study the transformation behaviour under the action of Γ0(1)
on z. Note, that this group is generated by

T =

(
1 1
0 1

)
and S ′ =

(
0 1
−1 0

)
.

Lemma 3.1.

(θPl,QA(·, r)|[T ]k+l) (z) = e

(
1

2N2
rtAr

)
θPl,QA(z, r).

Proof. This follows directly form the definition of θPl,QA and the observation

(θPl,QA(·, r)|[T ]k+l) (z) = θPl,QA(z + 1, r).

�

We now prove a kind of functional equation which is crucial for our further
analysis.
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Lemma 3.2.∑
m∈Z2k

Pl(S(m + x))e

(
1

2
(m + x)tA(m + x)z

)

=
ikz−k−l√
|det(A)|

∑
m∈Z2k

Pl(S
−tm)e

(
−mtA−1m

2z
+ mtx

)
For l = 0 the proof is a straight forward application of Poisson summation and

the direct evaluation of the Gaussian integral. In most modern expositions one
deduces the general case by applying suitable integral operators. However, we will
follow the exposition of [3] here.

Proof. We set

f(x) =
∑

m∈Z2k

Pl(S(m + x))e

(
1

2
(m + x)tA(m + x)z

)
.

Since the sum converges absolute and uniformly (for fixed z ∈ H) f determines a
continuous function with period 1 in each argument. Thus we obtain the Fourier
expansion

f(x) =
∑

m∈Z2k

cme(m
tx) (3)

with coefficients

cm =

∫ 1

0

. . .

∫ 1

0

f(x)e(−mtx)dx1 . . . dx2k

=
∑

m∈Z2k

∫ 1

0

. . .

∫ 1

0

Pl(S(m + x))e

(
1

2
(m + x)tA(m + x)z −mtx

)
dx1 . . . dx2k

=

∫
R
. . .

∫
R
Pl(Sx)e

(
1

2
xtAxz −mtx

)
dx1 . . . dx2k.

Since the integrand is holomorphic we can make the change of variables x −
z−1A−1m 7→ x and shift the contour back to the real line. Thus we obtain

cm = e(−1

2
mtA−1mz−1)

∫
R
. . .

∫
R
Pl(Sx + z−1S−tm)e

(
1

2
xtAxz

)
dx1 . . . dx2k.

By holomorphicity in z it is enough to compute the integral for z = iy with y > 0.
We make the change of variables

√
ySx 7→ x, which yields

cm =
e(−1

2
mtA−1mz−1)

yk+l det(S)

∫
R
. . .

∫
R
Pl(
√
yx− iS−tm)e

(
i

2
xtx

)
dx1 . . . dx2k.

Using the spectral theory of the Laplacian on the unit sphere we can expand

Pl(
√
yx− iS−tm) = (−i)lPl(S−tm) +

∑
deg(Q)>0

bQQ(x)
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in harmonic polynomials Q, which are orthogonal with respect to integration over
the unit sphere. We now switch to polar coordinates. Note that by orthogonality
we have ∫

S2k

Q(x)dx = 0

for all Q with deg(Q) > 0. We arrive at

cm = Vol(S2k)
ikz−k−l

det(S)
e(−1

2
mtA−1mz−1)Pl(S

−tm)

∫ ∞
0

e−πr
2

r2k−1dr.

Inserting this formula for the Fourier coefficients in (3) completes the proof. �

Corollary 3.3. We have

θPl,QA(−z−1, r) =
ik(−z)k+l√
|det(A)|

∑
Al≡0 mod NA

ψ(r, l)θPl,QA(z, l),

for ψ(r, l) = e
(

ltAr
N2
A

)
.

Proof. There is a one to one correspondence between m ∈ Z2k and n ∈ Z2k such
that An ≡ 0 mod NA, which is explicitely given by n = NAA

−1m. We find

θPl,QA(−z−1, r) =
ik(−z)k+l√
|detA|

∑
An≡0 mod NA

Pl(SnN−1
A )e

(
ntAn

2N2
A

z +
ntAr

N2
A

)
.

The result follows directly from rearranging te n-sum. �

Remark 3.4. The functions l 7→ ψ(l, r) are actually characters of the finite abelian
group

{l mod NA : Al ≡ 0 mod NA}.
This group has order det(A), so that we have the important identity∑

l mod NA,
Al≡0 mod NA

ψ(1, r) = δr≡0 det(A).

With this sort of functional equation at hand the modularity proof succeeds as
usual. For completeness we recall the details.

Let d be odd and (c, d) = 1. Then we define

G(c, d) =
∑

x mod d

e

(
c
xtAx

d

)
.

We will need the following lemma, which we recall without providing a proof.

Lemma 3.5. Let
(
c
d

)
be the Jacobi-Symbol and put

εd =

(
−1

d

) 1
2

=

{
1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4.
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Then, if A ∈ SPn, we have

G(c, d) =

(
det(A)

d

)[
εd

( c
d

)√
d
]n
.

Lemma 3.6. Let τ =

(
a b
c d

)
∈ SL2(Z) with d ≡ 1 mod 2, d > 0 and c ≡ 0

mod NA. Then

θPl,QA(τz; r) =

(
(−1)k det(A)

d

)
e

(
abrtAr

2N2
A

)
(cz + d)k+lθPl,QA(z; ar).

Proof. We set γ = τw and see

d · γz = b− 1

dz − c
.

For γ we can compute

θPl,QA(γz; r) =
∑

g mod dNA,
g≡r mod NA

e

(
bgtAg

2dN2
A

) ∑
n≡g mod dNA

Pl(N
−1Sn)e

(
dntAn

2d2N2
A

· −1

dz − c

)
︸ ︷︷ ︸

=dlθPl,QdA (− 1
dz−c ;g)

=
ik(−dz + c)k+ldl√
|det(dA)|

∑
g mod dNA,
g≡r mod NA

e

(
bgtAg

2dN2
A

) ∑
dAl≡0 mod dNA

ψ(g, l)θPl,QdA(dz − c, l)

=
ik(−dz + c)k+ldl√
|det(dA)|

∑
dAl≡0 mod dNA

θPl,QdA(dz, l)
∑

g mod dNA,
g≡r mod NA

e

(
bgtAg + 2gtAl− cltAl

2dN2
A

)
.

Here we applied the previously proven functional equation as well as the observa-
tion that cntAn ≡ cltAl mod 2dN2

A as c ≡ 0 mod NA. Some elementary manipu-
lations show that∑

g mod dNA,
g≡r mod NA

e

(
bgtAg + 2gtAl− cltAl

2dN2
A

)
= e

(
artAl

N2
A

) ∑
g mod dNA,
g≡r mod NA

e

(
bgtAg

2dN2
A

)
. (4)

In particular, this sum only depends on l mod NA. Thus, we obtain

θPl,QA(τz; r) =
ik(dz−1 + c)k+l

dk
√
|det(A)|

∑
Al≡0 mod NA

θPl,QA(
−1

z
, l)

·
∑

g mod dNA,
g≡r mod NA

e

(
bgtAg + 2gtAl− cltAl

2dN2
A

)
.
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Applying the functional equation again we find

θPl,QA(τz; r) =
(−1)l(cz + d)k+l

dk|det(A)|
∑

Ah≡0 mod NA

θPl,QA(z,h)

·
∑

Al≡0 mod NA

∑
g mod dNA,
g≡r mod NA

e

(
bgtAg + 2gtAl− 2ltAh + cltAl

2dN2
A

)
.

The l-sum can be evaluated using (4) and contributes |det(A)|δh≡−ar mod NA . Thus
we have

θPl,QA(τz; r) =
(−1)l(cz + d)k+l

dk
θPl,QA(z, ar) ·

∑
g mod dNA,
g≡r mod NA

e

(
bgtAg

2dN2
A

)
.

The evaluation of the g-sum can be reduced to Lemma 3.5. �

Given c ≡ 0, 1 mod 4 we define a completely multiplicative character χc as
follows. For positive, odd d we set χc(d) =

(
c
d

)
. Further put χc(−1) = sgn(c) and

χc(2) =


1 if c ≡ 1 mod 8,

−1 if c ≡ 5 mod 8,

0 if (c, 2) > 1.

Proposition 3.7. We have θPl,QA(· , 0) ∈ Mk+l(NA, χ(−1)k det(A)). If l > 0, then
θPl,QA(· , 0) is cuspidal.

Proof. It is an easy exercise to check the required transformation behaviour of
θPl,QA(· , 0) is easily deduced from Lemma 3.6. In order to check holomorphicity
and vanishing at the cusps it is enough to consider the functions θPl,QA(· , r) at∞.
We leave the details to the reader. �

Exercise 4. Find the harmonic polynomial P8 such that (1) holds.

Proof. For now take P to be some harmonic polynomial. If deg(P ) = 0, in other
words P = c, then

θ(z;P ;Q8) = cE4(z) (5)

On the other hand if deg(P ) > 0, then θ(z;P ;Q8) is cuspidal. In particular,
if 0 < deg(P ) < 8, then θ(z;P ;Q8) = 0 since there are no cusp forms of the
corresponding weight and level. Furthermore, if deg(P ) = 8 then θ(z;P ;Q8) ∈
C∆. Thus it suffices to find P for which θ(z;P ;Q8) 6= 0.

Next let us note the following triviality

θ(z;P,Q8) =
∑
n≥0

BP (n)e(nz) for Bp(n) =
∑
x∈Z8,

Q8(x)=n

P (x).
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This of course implies

θ(z;P + P̃ , Q8) = θ(z;P ;Q8) + θ(z; P̃ ;Q8)

On the other hand, our discussion above implies

Bp(n) =

{
240 · c · σ3(n) if P = c,

0 if 1 ≤ deg(P ) < 8.

We make the ansatz

P8(x) = P̃8(u)[Q8(α) ·Q8(x)]4 for u =
xtAQ8α

2
√
Q8(x)Q8(α)

and some α ∈ Z8 to be specified soon. Here P̃8 is a certain even Polynomial of
degree 8. We can write

P̃8(u) = u8 +
7∑
ρ=1

cρHρ(u)− w8,

for Legendre-like-Polynomials Hρ of degree ρ.3 Since P8 is orthogonal to the con-
stant function one determines w8 = 2−7.

Using our remarks above we compute

BP8(n) = (Q8(α) · n)4
∑

Q8(x)=n

(u8 − w8)

= 2−8
∑

Q8(x)=n

[xtAQ8α]8 − 2−7 · 240 · σ3(n)(Q8(α) · n)8.

To see that our generalised theta function does not vanish we only need to look at
the first Fourier coefficient. We now choose α such that Q8(α) = 1. Thus we get

28B8(1) =
∑

Q8(x)=1

[
xtAQ8α

]8
︸ ︷︷ ︸

≥2·(2Q8(α))8

−25 · 15 ≥ 29 − 25 · 15 = 25(16− 15) = 25 > 0.

In the first step we used that the x sum includes x = α,−α and we drop all the rest
by positivity. Thus we have seen that B8(1) ≥ 1

8
which implies non-vanishing.4 �

3If we were working in 3 variables these would really be just Legendre polynomials. However,
in our case they are determined (up to constant) by their property of being polynomials of degree
ρ and by the differential equation

(1− u2)H ′′ρ − 7uH ′ρ + ρ(6 + ρ)Hρ = 0.

4Working more precisely one can get B8(1) = 9
16 on the nose.
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4. The Eichler trace formula

In order to establish a ready to use Eichler trace formula of quite some gener-
ality we follow the master’s thesis of Fabian Völz, who in turn follows [8]. For
background on the Bergman kernel and complex analysis in multiple variables we
refer to the book [7]. Throughout this section k ≥ 2 is a fixed even integer. At
some point we will further assume k > 2 to avoid complications.

4.1. A quick tour through reproducing kernel Hilbert spaces. Let X be a
set and (H, 〈·, ·〉) be a Hilbert space of complex valued functions on X.

Definition 4.1. A function K : X×X → C is called a reproducing kernel of H
if K(·, x) ∈ H for all x ∈ X and f(x) = 〈f,K(·, x)〉 for all x ∈ X and all f ∈ H. If
H admits a reproducing kernel it is called a reproducing kernel Hilbert space.

Example 4.1. A toy example of a reproducing kernel Hilbert space is as follows.
Let X = {1, . . . , n} and H = {f : X → C} = Cn with the standard inner product

〈f, g〉 =
1

n

∫
X

f(x)g(x)dx =
1

n

n∑
i=1

f(i)g(i).

A reproducing kernel for H is given by

K(i, j) = nδj(i) with δj(i) =

{
1 if i = j,

0 else.

Indeed K(·, j) = nδj ∈ H and 〈f,K(·, j)〉 = n〈f, δj〉 = f(j).

Lemma 4.2. Let H be a reproducing kernel Hilbert space. Then the reproducing
kernel K is unique and satisfies

K(x, y) = K(y, x).

Furthermore K(x, x) = 0 if and only if f(x) = 0 for all f ∈ H.

Proof. The first claim follows since

K(x, y) = 〈K(·, y), K(·, x)〉 = 〈K(·, x), K(·, y)〉 = K(y, x).

The second claim follows from the inequality

K(x, x) = 〈K(·, x), K(·, x)〉 ≥ |〈f,K(·, x)〉|2

‖f‖2
=
|f(x)|2

‖f‖2
> 0,

which holds for every f ∈ H. �

Proposition 4.3. H is a reproducing kernel Hilbert space if and only if Ex : H →
C, f 7→ f(x) is continuous for all x ∈ X.
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Proof. Suppose H is a reproducing kernel Hilbert space. Then

|Ex(f)| = |〈f,K(·, x)〉| ≤ ‖K(·, x)‖‖f‖ =
√
K(x, x)‖f‖.

On the other hand, if Ex is continuous, by the Riesz representation theorem there
is gx ∈ H such that Ex = 〈·, gx〉. The reproducing kernel is now obviously given
by K(y, x) = gx(y). �

Proposition 4.4. Let H be a reproducing kernel Hilbert space. If BH is an or-
thonormal basis of H, then

K(x, y) =
∑
φ∈BH

φ(x)φ(y)

is the reproducing kernel of H. If H ⊂ J , where J is a larger Hilbert space. Then

πK : J → H, (πKf)(x) = 〈f,K(·, x)〉

is a well defined projection operator.

Proof. We first expand

K(·, y) =
∑
φ∈BH

〈K(·, y), φ〉φ, (6)

where the convergence is understood with respect to the norm of H. Recall that
the evaluation maps Ex are continuous, so that

K(x, y) =
∑
φ∈BH

〈φ,K(·, y)〉φ(x) =
∑
φ∈BH

φ(y)φ(x).

The fact that πK is well defined is obvious. Further, from (6) we see that the
image of πK is indeed H. However, by the reproducing property we have

[π2
Kf ](x)〈〈f,K(·, ∗)〉, K(∗, x)〉 = 〈f,K(·, x)〉 = [πKf ](x).

Thus πK is an idempotent and we are done. �

We now continue our discussion on reproducing kernels but restrict ourselves to
a very specific case connected to modular forms. For integrable f, g : H → C we
define

〈f, g〉k =

∫
H
f(z)g(z) Im(z)kdµ(z).

Further we define the Hilbert space

L2
k(H) = {f : H→ C : 〈f, f〉k <∞}/ ∼ .

This space contains the subspace of H2
k(H) of holomorphic functions.

Proposition 4.5. The space H2
k(H) is a reproducing kernel Hilbert space.
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Proof. We start by proving the following inequality:

sup
z∈Bε(z0)

|f(z)| ≤ Cz0‖f · 1B3ε(z0)‖2,k. (7)

Indeed this follows from the Taylor expansion f(z) =
∑∞

n=0 bn(z − z0)n around z0

as follows. Observe that∫
Bε(z1)

f(z) Im(z)2dµ(z) =

∫ 2π

0

∫ ε

0

∞∑
n=0

bnr
n+1einθdrdθ = πε2b0 = πε2f(z1).

With this at hand we are almost done. Indeed

|f(z1)| ≤ 1

πε2

∫
B3ε(z0)

|f(z) Im(z)2|dµ(z)

≤
supz∈B3ε(z0)|Im(z)

k
2
−2|

πε2

∫
B3ε(z0)

|f(z) Im(z)
k
2 |dµ(z)

≤
supz∈B3ε(z0)|Im(z)

k
2
−2|

πε2

(∫
B3ε(z0)

1dµ(z)

) 1
2

‖f · 1B3ε(z0)‖2,k.

This implies the continuity of the evaluations Ex. Thus, if H2
k(H) is a Hilbert

space, then it is automatically reproducing. We are left with showing completeness
of H2

k(H). To do so we take a Cauchy sequence (fn)n∈N. Since L2
k(H) is complete,

this converges to some f ∈ L2
k(H). However, due to our inequality above, this

convergence is uniform on compacta, so that f is holomorphic. (This follows from
Morera’s theorem and some analytic contiuation argument.) �

Remark 4.6. In a similar way we can introduce the spaces Hp
k ⊂ Lpk(H). It turns

out these are Banach spaces for 1 ≤ p ≤ ∞.

We denote the reproducing kernel of H2
k(H) by Kk. Our next goal is to compute

Kk explicitly. We do so in several steps.

Lemma 4.7. For f ∈ H2
k(H) and α ∈ GL2(R)+ we have

‖f |kα‖2,k = det(α)
k
2
−1‖f‖2,k.

In particular, f |kα ∈ H2
k(H).

Proof. This follows from the simple computation

‖f |kα‖2
2,k =

∫
H
|[f |kα](z)|2 Im(z)kdµ(z) =

∫
H
|f(αz)|det(α)2k−2 Im(z)k

|cz + d|2k
dµ(z)

= det(α)k−2

∫
H
|f(αz)| Im(αz)kdµ(z) = det(α)k−2‖f‖2

2,k.

�
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Lemma 4.8. For α ∈ GL2(R)+ we have

Kk(αz, αw) = det(α)−kj(α, z)kj(α,w)
k
Kk(z, w).

Proof. We define

K
(α)
k (z, w) = det(α)kj(α, z)−kj(α,w)

−k
Kk(αz, αw).

The idea is to check, that K
(α)
k is a reproducing kernel for H2

k(H), since then the
claimed equality follows by uniqueness.

Thus we compute:

〈f,K(α)
k (·, w)〉 = det(α)k−1j(α,w)−k〈f |kα−1, Kk(·, αw)〉

= det(α)k−1j(α,w)−k[f |kα−1](αw) = f(w).

Here we simply used the definition of the inner product (as integral) and the
reproducing property of Kk (justified by the previous lemma). Observing that, due

to the previous lemma, K
(α)
k (·, w) is an element of H2

k(H) finishes the proof. �

Proposition 4.9. There is a constant Ck such that

Kk(z, w) = Ck

(
z − w

2i

)−k
.

Proof. We define

Ω = {(z, w) ∈ C2 : z ∈ H, z − w ∈ H} = {(z, w) ∈ C2 : Im(w) > Im(y)}
and set

h : Ω→ C, (z, w) 7→ Kk(z, z − w).

Note that h is holomorphic in w, since we can write it as h(z, w) = Kk(z − w, z)
and Kk is holomorphic in the first argument. We now argue that h is holomorphic
in z. To do so we look at H(z1, z2) = Kk(z1, z2 − w). It is clear that H is
holomorphic in each variable (thus weakly holomorphic as a function H : C2 → C).
Thus (by Hartog’s theorem) H : C2 → C is holomorphic (in any definition one
likes). By composing H with z 7→ (z, z) we see that h(·, w) is holomorphic for
each admissible w. To summarise, we have seen that h is holomorphic in both
arguments.

Our next goal is to show that h(z, w) = h(z′, w) for all (z, w), (z′, w) ∈ Ω. To
do so we consider

Φ(τ) = h(z + τ, w)− h(z, w),

for fixed (z, w) and τ with Im(τ) < Im(w) − Im(z). Note that by the previous

lemma applied with α =

(
1 b
0 1

)
we have Φ(b) = 0 for b ∈ R. Furthermore, Φ

is holomorphic in a neighbourhood of the real line. We conclude that Φ is the
constant zero function (where it is defined), so that h(·, w) is also constant.
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Thus we can define

l(w) = h(zw, w) = Kk(zw, zw − w)

for any zw ∈ H such that (zw, w) ∈ Ω. Note that l is holomorphic and l(z − w) =

K(z, w). Using the previous lemma with α =

(
a 0
0 1

)
we find

l(2aw) = l(aw − a(−w)) = K(aw, a(−w)) = a−kKk(w,−w) = a−kl(2w),

for a ∈ R+. Thus, by taking w = i
2

we find

l(iy) = y−kl(i).

Thus, l agrees on the imaginary axis, and thus everywhere, with the function z
i
.

This concludes the proof with the constant Ck = 2−kl(i). �

Theorem 4.10. We have

Kk(z, w) =
k − 1

4π

(
z − w

2i

)−k
,

for k ≥ 2.

Proof. We do so by explicitly computing 〈f0, Kk(·, w)〉, for f0(z) = (z + i)−k.
However, we first have to show that f0 ∈ H2

k(H) for k ≥ 2. We compute

‖f0‖2,k =

∫
R

∫
R+

|x+ i(y + 1)|−2kyk−2dydx

=

∫
R

∫ ∞
1

(x2 + y2)−k(y − 1)k−2dydx

≤
∫
R

∫ ∞
1

(x2 + y2)−kyk−2dydx

≤
∫ π

0

∫ ∞
1

r1−k(r sin(θ))k−2drdθ

=

∫ π

0

sin(θ)k−2dθ

∫ ∞
1

r−k−1dr <∞.

Now we have

(2i)−k = f0(i) = 〈f0, Kk(·, i)〉k = Ck(2i)
k

∫
H

(z + i)−k(i− z)−k Im(z)kdµ(z)
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One computes that (z + i)(i− z) = −(x2 + (1 + y)2) and finds

C−1
k = 4k

∫
R

∫
R+

(x2 + (y + 1)2)−kyk−2dydx

= 4k
∫
R+

yk−2

(y + 1)2k

∫
R

((
x

y + 1

)2

+ 1

)−k
dxdy

= 4k
∫
R+

yk−2

(y + 1)2k−1
dy

∫
R
(s2 + 1)−kds.

Looking up the Beta-function reveals∫
R+

yk−2

(y + 1)2k−1
dy = B(k − 1, k) =

Γ(k − 1)Γ(k)

Γ(2k − 1)
.

Furthermore, one can see (in many different ways) that∫
R
(s2 + 1)−kds = 4π

Γ(2k − 1)

4kΓ(k)2
(8)

Combining these evaluations we get

C−1
k = 4π(k − 1)−1

and we are done. �

Lemma 4.11. Let k > 2, then Kk(·, w) ∈ Hp
k(H) for each p ∈ [1,∞].

Proof. With our explicit formula for Kk(·, w) the L1-norm can be computed to be

‖Kk(·, w)‖1,k =
2k(k − 1)

4π
Im(w)−

k
2B(

k

2
− 1,

k

2
)

∫ π

0

sin(θ)k−2dθ.

This is a nice exercise in integration. (Note that B(0, x) = Γ(0) =∞, which makes
the assumption k > 2 necessary.)

Furthermore, ‖Kk(·, w)‖∞,k = k−1
4π

Im(w)−
k
2 . The rest follows by interpolation.

�

Now, for k > 2, we can use the Hölder inequality to make sense of the operator

πk : Lpk(H)→ Lpk(H), f 7→ [w 7→ 〈f,Kk(·, w)〉] .
With a little more work one obtains the following theorem which we state without
a proof.

Theorem 4.12. For k > 2 and any p ∈ [1,∞] the operator πk : Lpk(H) → Hp
k(H)

is a well defined projection.

After having established the necessary theory for globally symmetric space H we
have to move on to situations closer to the real world. We adjust our definitions
slightly. Let Γ ⊂ SL2(R) be a discrete subgroup. We define

Lpk(Γ\H) = {f : H→ C : f |kγ = f ∀γ ∈ Γ and ‖f‖p,k <∞},
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for

‖f‖pp,k =

∫
Γ\H
|f(z) Im(z)

k
2 |pdµ(z)

with the usual modification for p = ∞. Note that this is well defined by the
transformation behaviour of f and we can replace Γ\H by any fundamental domain
F . Further note that for p = 2 the norm is defined by the Petersson inner product.
As before we let Hp

k(Γ\H) ⊂ Lpk(Γ\H) be the subspace of holomorphic functions.

Lemma 4.13. The spaces Hp
k(Γ\H) are Banach spaces for p ∈ [1,∞] and Hs

k(Γ\H)
is a reproducing kernel Hilbert space.

The proof is very similar to the one showing that H2
k(H) is a reproducing kernel

Hilbert space. The only technical difference being that one has to argue using a
suitably chosen fundamental domain. We leave the details as an exercise.

Theorem 4.14. We have Sk(N) = H∞k (Γ0(N)\H) = H2
k(Γ0(N)\H).

Proof. The inclusions Sk(Γ0(N)\H) ⊂ H∞k (Γ0(N)\H) ⊂ H2
k(Γ0(N)\H) are ob-

vious since Γ0(N) has finite co-volume and it is an easy exercise to show that

y
k
2 f(x+ iy) is bounded on H for f ∈ Sk(N). Thus it remains to show the inclusion
H2
k(Γ0(N)\H) ⊂ Sk(N). This is done using the Laurent expansion at infinity,

which exists for each f ∈ H2
k(Γ0(N)\H). Suppose f(z) =

∑∞
−∞ ane(nz). Then we

compute, for l large enough

∞ ≥ ‖f‖2,k ≥
∫∫

0≤Re(z)≤1,
l≤Im(z)<∞

|f(z) Im(z)
k
2 |2dµ(z)

=

∫ ∞
l

∫ 1

0

∑
m,n∈Z

amane
−2πiy(m−n)e((m− n)x)yk−2dxdy

≥ |an|2
∫ ∞
l

e−4πynyk−2dy.

However, if k ≥ 2, then the final integral diverges for all n ≤ 0. Thus the Laurent
expansion at ∞ reads f(z) =

∑
n∈N ane(nz). The same exercise can be repeated

for all the other cusps and we are done. �

Finally we will construct the reproducing kernel Kk,N for Sk(N) explicitly. From
now on we take k > 2 once and for all. Indeed we set

Kk,N(z, w) =
1

2

∑
γ∈Γ0(N)

[Kk(·, w)|kγ](z).

Lemma 4.15. For k > 2 the series defining Kk,N is uniformly convergent on any
compact subset of H×H.

Note that for k = 2 one has to be careful. Similar issues occur for the Eisenstein
series E2.
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Proof. Let gw ∈ SL2(R) be such that w = gwi. Then we have

|Kk(z, w)| Im(z)
k
2 = |Kk(g

−1
w z, i)| Im(g−1

w z)
k
2 Im(w)−

k
2 .

With this at hand we can continue by a standard computation involving the un-
folding trick.

1

2

∫
FN

∑
γ∈Γ0(N)

|Kk(γz, w)| Im(γz)
k
2 dµ(z)

=
1

2

∑
γ∈Γ0(N)

∫
γFN
|Kk(z, w)| Im(z)

k
2 dµ(z)

=

∫
H
|Kk(z, w)| Im(z)

k
2 dµ(z) = ‖Kk(·, i)‖1,k Im(w)−

k
2 .

Interchanging sums is justified by the monotone convergence theorem. We con-
clude that

‖Kk,N(·, w)‖1,k ≤ ‖Kk(·, i)‖1,k Im(w)−
k
2 .

In particular we have seen absolute convergence for fixed w. One can further show
that this convergence is locally uniform, so that Kk,N(·, w) is holomorph for fixed
w. We skip the details here.

For fixed z0 ∈ H we observe, compare to (7), that

sup
z∈Bε(z0)

|Kk,N(z, w)| ≤ Cz0‖Kk,N(·, w)‖1,k.

We combine this with our estimate above to establish

sup
z∈Bε(z0),
w∈Bδ(w0)

|Kk,N(z, w)| ≤ Cz0 sup
w∈Bδ(w0)

[Im(w)−
k
2 ]‖Kk(·, i)‖1,k,

for ε, δ > 0 small enough and z0, w0 ∈ H fixed. Thus the sum is locally uniformly
convergent and the statement follows from a standard covering argument. �

Theorem 4.16. For k > 2 the reproducing kernel of Sk(N) is given by Kk,N .

Proof. The first step of the proof is to show Kk,N(·, w) ∈ Sk(N) for all w ∈ H. To
do so it is enough to show Kk,N(·, w) ∈ L∞k (H). this is because we already know
that Kk,N(·, w) ∈ H1

k(Γ0(N)\H). By somehow enumerating Γ0(N) we can express
Kk,N(·, w) = limn→∞ fn for partial sums fn of length n. Since Kk(·, w) ∈ L∞k (H)
we have fn ∈ L∞k (H).

We now identify L∞k (H) = (L1
k(H))′ as usual. Now (fn)n∈N corresponds to a

sequence of functionals (xn)n∈N defined by

xn(g) = 〈fn, g〉k.
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Our next goal is to show that the sequence xn is weak-?-convergent. To do so we
fix g ∈ L1

k(H) and compute

xn(g) = 〈fn, g〉k =

∫
H

(
1

2

n∑
i=1

[Kk(·, w)|kγi](z)

)
g(z) Im(z)kdµ(z)

=
1

2

n∑
i=1

∫
H

[Kk(·, w)|kγi](z)g(z) Im(z)kdµ(z)

=
1

2

n∑
i=1

j(γ−1
i , w)

−k
〈Kk(·, γ−1

i w), g〉k.

We now recall the statement of Theorem 4.12, so that we can write

lim
n→∞

xn(g) =
1

2

∑
γ∈Γ0(N)

[(πkg)|kγ](w).

Note that the right hand side is nicely behaved for all w. This follows from a
thorough treatment of Poincare-treatment series which we omit. Now the Banach-
Steinhaus-Theorem tells us that there is x ∈ (L1

k(H))′ with limn→∞ xn(g) = x
for all g ∈ L1

k(H). Using our identification backwards we find f ∈ L∞k (H) with
x(g) = 〈f, g〉k for all g ∈ L1

k(H).
If we show that f = Kk,N(·, w) almost everywhere in H, then Kk,N(·, w) ∈

L∞k (H) and the first step is complete. Let us assume the contrary. Then there is
a compact set K ⊂ H such that

N = {z ∈ K : f(z) 6= Kk,N(z, w)}

satisfies 0 < µ(N) ≤ µ(K) < ∞. Recall that the partial sums fn are continuous,
thus measurable, and converge pointwise to Kk,N(·, w). According to Egorov’s
theorem there is a closed set A such that µ(N \A) ≥ µ(N)/2 and the convergence
of fn is uniform on A. We conclude that for g ∈ L1

k(H) with support in A we have

〈f, g〉k = 〈Kk,N(·, w), g〉k.

We define

G(z) = sgn(f(z)−Kk,N(z, w))1A(z).

With this choice we find∫
A

|f(z)−Kk,N(z, w)| Im(z)kdµ(z) = 〈f −Kk,N(·, w), G〉k = 0.

In particular f = Kk,N(·, w) almost everywhere in A. This is a contradiction to
µ(A) ≥ µ(N)/2 > 0 and A ⊂ N . This completes the first step.
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For f ∈ Sk(N) we compute, skipping some of the by now familiar details,

〈f,Kk,N(·, w)〉 =

∫
FN

f(z)Kk,N(w, z) Im(z)kdµ(z)

=
1

2

∫
FN

∑
γ∈Γ0(N)

f(z)Kk(γw, z)j(γ, w)−k Im(z)kdµ(z)

=

∫
H
f(z)Kk(z, w) Im(z)kdµ(z)

= 〈f,Kk(·, w)〉 = (πkf)(w).

Since f ∈ Sk(N) we have πk(f) = f , so that we have shown

〈f,Kk,N(·, w)〉 = f(w).

This completes the proof up to the minor point that we still have to justify the
exchange of limit and integral above. This follows easily from∑

γ∈Γ0(N)

∫
FN
|f(z)Kk(γw, z)j(γ, w)−k Im(z)k|dµ(z)

≤ sup
z1∈H
|f(z1) Im(z1)

k
2 |

∑
γ∈Γ0(N)

∫
FN
|Kk(γ

−1z2, w) Im(γ−1z2)
k
2 |dµ(z2)

=
1

2
‖f‖∞‖Kk(·, w)‖1 <∞.

�

4.2. A rough expansion of traces of Hecke-operators. Let us now consider
the Hecke-operator Tn : Sk(N) → Sk(N). Our ultimate goal is to find a useful
expression ot its trace. Recall that since Sk(N) is a finite dimensional inner product
space we can fix an orthonormal basis (fj)j=1,...,m. We can further assume that the
functions fj are joint eigenfunctions of all Hecke-operators. Note that this requires
newform theory if we want to include (n,N) > 1. Now we can expand the trace
as follows

Tr(Tn) =
m∑
j=1

λfj(n) =
m∑
j=1

〈Tnfj, fj〉.

From this we deduce the following result.

Proposition 4.17. Let n ∈ N and k ≥ 3. Then

Tr(Tn) =
nk−1

2

∫
Γ0(N)\H

∑
α∈∆n,N

Kk(αz, z)j(α, z)−k Im(z)kdµ(z),

for

∆n,N = {γ ∈ Mat2(Z) : N | c, (a,N) = 1, det(γ) = n}.
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Proof. Write

∆n,N =
⋃
ad=n,

(a,N)=1,
b mod d

Γ0(N)

(
a b
0 d

)
=

d⋃
i=1

Γ0(N)gi.

Thus

[Tnfj](z) =
d∑
i=1

det(gi)
k−1j(gj, z)

−kf(giz).

We can expand

Tr(Tn) =
m∑
j=1

∫
FN

(
d∑
i=1

det(gi)
k−1j(gj, z)

−kf(giz)

)
fj(z) Im(z)kdµ(z)

= nk−1

∫
FN

d∑
i=1

(
m∑
j=1

f(giz)fj(z)

)
j(gj, z)

−k Im(z)kdµ(z)

= nk−1

∫
FN

d∑
i=1

Kk,N(gjz, z)j(gj, z)
−k Im(z)kdµ(z).

The statement follows by using the geometric definition of Kk(N). �

This is not yet a useful expression and needs to be refined. Note that with
respect to γ−1αγ = α the integrand satisfies

Kk(γ
−1αγz, z)j(γ−1αγ, z)−k Im(z)k

= K(αγz, γz)j(γ, γ−1αγz)−kj(γ, z)
−k
j(γ−1αγ, z)−k Im(z)k

= K(αγz, γz)j(α, γz)−k Im(γz)k
(

j(α, γz)j(γ, z)

j(γ, γ−1αγz)j(γ−1αγ, z)

)k
= K(αγz, γz)j(α, γz)−k Im(γz)k.

Therefore it seems natural to organise the sum y conjugacy classes and arrange the
integrals accordingly. However, we first have to overcome some convergence issues
that arise when interchanging summation and integration. This is the content of
the following section.

Exercise 5. Find an element α ∈ ∆n,N such that the obvious orbital integral∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kdµ(z).

diverges.
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4.3. Interchanging summation and integration. Let g1, . . . , gl ∈ SL2(Z) be
such that

FN =
l⋃

j=1

gjF1.

Further given a cusp p
q
∈ Q ∪ {∞} we define ∆ p

q
= {γ ∈ ∆n,N : γ p

q
= p

q
}. We

fix some neighbourhood U∞ = {z ∈ H : Im(z) > δ} of ∞ for some δ > 1. This
neighbourhood can be transformed into a neighbourhood of an arbitrary cusp via
U p
q

= σ p
q
U∞, for a suitable integer matrix σ p

q
∞ = p

q
. Set

F p
q

= FN ∩ U p
q

and F ◦ = FN \
⋃
p
q

F p
q
.

The following lemma lays the groundwork for exchanging the sum and integral
in the neighbourhood of a cusp.

Lemma 4.18. Let p
q

be a cusp of Γ0(N), then∫
F p
q

∑
α∈∆n,N\∆ p

q

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

=
∑

α∈∆n,N\∆ p
q

∫
F p
q

Kk(αz, z)j(α, z)−k Im(z)kdµ(z).

Proof. We will proof this for p
q

=∞ using the following two facts:∑
α∈Γ∞\(∆n,N\∆∞)/Γ∞,

α=

∗ ∗
c ∗


|c|−k <∞, for k > 2; (9)

∑
n∈Z

([a+ n]2 + b)−l �l |b|−2l(1 + |b|), for l >
1

2
. (10)

The case p
q
6=∞ follows by translating the integrand and adjusting the fundamen-

tal domain.
We set

S(z) =
∑

α∈∆n,N\∆∞

|Kk(αz, z)j(α, z)−k Im(z)k|.

We need to show that S(z) converges for all z ∈ F∞ and that S is integrable on
F∞.
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We write ∆n,N =
⊔
α∈A Γ∞α and ∆n,N \ ∆∞ =

⊔
α∈A0

Γ∞α. We can arrange
these sets such that A0 = A \∆∞. We observe that

S(z) = 2 Im(z)k
∑
α∈A0

|j(α, z)|−k
∑
m∈Z

|Kk(αz +m, z)|.

By inserting the explicit expression for Kk we find that the inner sum is∑
m∈Z

|Kk(αz +m, z)| = k − 1

4π
2k
∑
m∈Z

|αz +m− z|−k �k |Im(αz − z)|−k(1+|Im(αz − z)|),

where we expanded the absolute value and used (10). We use the trivial estimate
Im(αz − z) = Im(αz) + Im(z) ≥ Im(z) to find

S(z)�k (1 + Im(z))
∑
α∈A0

|j(α, z)|−k

We now find a subset A′0 ⊂ A0 such that ∆n,N \∆∞ =
⊔
α∈A′0

Γ∞αΓ∞. With this

at hand we can use (10) again to estimate∑
α∈A0

|j(α, z)|−k ≤
∑
α∈A′0

∑
γ∈Γ∞

|j(αγ, z)|−k

= 2
∑
α∈A′0,

α=

∗ ∗
c d



∑
γ∈Γ∞

|c(z +m) + d|−k

�k Im(z)−k(1 + Im(z))
∑
α∈A′0,

α=

∗ ∗
c ∗


|c|−k.

Thus, according to (9) we find

S(z)�k Im(z)−k(1 + Im(z))2.

This estimate implies convergence and integrability, so that the proof is complete.
�

Next we deal with the ∆ p
q
-part of the inner sum, which we excluded above.

Lemma 4.19. For σ p
q
∞ = p

q
we have∫

F p
q

∑
α∈∆ p

q

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

= lim
s→0

∑
α∈∆ p

q

∫
F p
q

Kk(αz, z)j(α, z)−k Im(z)k−s|j(σ−1
p
q
, z)|2sdµ(z).
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Proof. For convenience we focus on p
q

=∞. The general case follows by standard

reduction arguments.
Fix A0 such that ∆∞ =

⊔
α∈A0

Γ∞α. Note that one can arrange that A0 =

A ∩ ∆∞ with A as in the previous proof. Further A0 is finite and all its entries
have vanishing lower left entry. Following the proof of the last lemma yields

Ss(z) = Kk(αz, z)j(α, z)−k Im(z)k−s

�k (Im(z) + 1) Im(z)−s
∑
α∈A0

|j(α, z)|−k �k,n,N (Im(z) + 1) Im(z)−s.

Thus, Ss(z) converges for z ∈ F∞ and for s > 0 it is integrable on F∞. This yields
to∫

F∞

∑
α∈∆∞

Kk(αz, z)j(α, z)−k Im(z)k−sdµ(z)

=
∑
α∈∆∞

∫
F∞

Kk(αz, z)j(α, z)−k Im(z)k−sdµ(z).

The statement, for p
q

=∞, follows by taking s→ 0 through a monotone decreasing

sequence and applying the monotone convergence theorem. �

Remark 4.20. In the following we always understand the limit s→ 0 through some
monotone decreasing sequence sn → 0 as n→∞.

Finally, we treat the bulk.

Lemma 4.21. We have∫
F ◦

∑
α∈∆n,N

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

=
∑

α∈∆n,N

∫
F ◦
Kk(αz, z)j(α, z)−k Im(z)kdµ(z).

Proof. This follows easily from the fact that F ◦ is compact and the convergence
properties of Kk,N . �

Now we want to combine the three pieces again. To do so we put

∆2 =
⋃
p
q

∆ p
q
\ Z and ∆1 = ∆n,N \∆2.

Lemma 4.22. The sets ∆1, ∆2 are stable under conjugation by Γ0(N).

Proof. This follows after observing that for γ ∈ Γ0(N) we have γ−1zγ = z for all
z ∈ Z and

∆γ−1 p
q

= γ−1∆ p
q
γ.

We leave the details as an exercise. �
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In particular the sets conjΓ0(N)(∆i) of Γ0(N)-conjugacy classes make sense. Re-
call the groups

Z(α) = {β ∈ GL+
2 (Q) : αβ = βα} and Γ(α) = {γ ∈ Γ0(N) : γ−1αγ = α}.

With these notions at hand we can formulate the trace formula in its coarse form.

Proposition 4.23. In the notation as above we have

Tr(Tn) =
nk−1

2

∑
α∈conjΓ0(N)(∆1)

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

+
nk−1

2
lim
s→0

∑
α∈conjΓ0(N)(∆2)

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kfs(z, α)dµ(z),

for

fs(z, α) =

{
Im(z)−s|j(σ p

q
, z)|2s if z ∈ U p

q
and αp

q
= p

q
for some cusp p

q
,

1 else.

Proof. We first observe that F p
q

= ∅ for all but finitely many cusps. Thus, we can

write FN = F ◦ t
⊔l
j=1 F pj

qj

. Splitting the integral and the sum in Proposition 4.17

and applying Lemma 4.18,4.19 and 4.21 yields

Tr(Tn) =
nk−1

2
lim
s→0

∑
α∈∆n,N

∫
FN

Kk(αz, z)j(α, z)−k Im(z)kfs(z, α)dµ(z).

Next we split the α-sum in a sum over α ∈ ∆1 and a sum over α ∈ ∆2. One
checks, that it is save to take the limit inside the ∆1-sum and inside the integral.
Thus, we arrive at

Tr(Tn) =
nk−1

2

∑
α∈∆1

∫
FN

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

+
nk−1

2
lim
s→0

∑
α∈∆2

∫
FN

Kk(αz, z)j(α, z)−k Im(z)kfs(z, α)dµ(z),

It remains to arrange the sums in conjugacy classes. We start by writing

∆1 =
⊔

α∈conjΓ0(N)(∆1)

⊔
γ∈Γ(α)\Γ0(N)

{γ−1αγ}.
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Now we can compute∑
α∈∆1

∫
FN

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

=
∑

α∈conjΓ0(N)(∆1)

∑
γ∈Γ(α)\Γ0(N)

∫
γFN

Kk(αz, z)j(α, z)−k Im(z)kdµ(z).

Note that the integrand is Γ(α)-invariant, so that we have∑
γ∈Γ(α)\Γ0(N)

∫
γFN

Kk(αz, z)j(α, z)−k Im(z)kdµ(z) =

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

as desired. Running a similar argument for the ∆2-sum completes the proof. �

The next step is to consider different conjugacy classes of elements separately
and compute their contribution explicitly. We distinguish the following sets

∆
(e)
n,N = {α ∈ ∆n,N : elliptic}, ∆

(p)
n,N = {α ∈ ∆n,N : parabolic},

∆
(h1)
n,N = {α ∈ ∆n,N : hyperbolic with fixed points in R \Q} and

∆
(h2)
n,N = {α ∈ ∆n,N : hyperbolic with fixed points in Q ∪ {∞}}.

Note that ∆1 = (Z ∩∆n,N) ∪∆
(e)
n,N ∪∆

(h1)
n,N and ∆2 = ∆

(h)
n,N ∪∆

(h2)
n,N .

4.4. The scalar term. Note that α = diag(z, z) ∈ ∆n,N if and only if n = m2

and z = ±m. Given the explicit form of the Bergman-kernel the computation is
almost trivial and we obtain the following result.

Lemma 4.24. The contribution of the centre to the trace formula is given by

nk−1

2

∑
α∈Z∩∆n,N

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kdµ(z) = δn=�n
k
2
−1k − 1

12
Nψ(N),

for ψ(N) =
∏

p|N(1 + p−1).

4.5. The elliptic contribution. Suppose α ∈ ∆
(e)
n,N is elliptic. Thus there is a

unique fixed point z0 ∈ H and α fixes also the conjugate z0. Furthermore α is

diagonalisable with eigenvalues λ, λ. More precisely, for σ =

(
1 −z0

1 −z0

)
we have

α = σ−1

(
λ 0
0 λ

)
σ =

1

z0 − z0

(
λz0 − λz0 |z0|2(λ− λ)
λ− λ λz0 − λz0

)
.

Lemma 4.25. Let α, σ and λ be as above and put w = σz. Then we have

Kk(αz, z)j(α, z)−k Im(z)k = n−k
k − 1

4π
λk

(
1− |w|2

1− λ
λ
|w|2

)k

. (11)
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Proof. We start by noting that

βa− βb =
det(β)(a− b)
j(β, a)j(β, b)

.

Put w′ = σz and note that w′ = w
|w|2 and λλ = det(α). Using (11) we compute

w − w′
λ
λ
w − w′

=
σz − σz
σαz − σz

=
(z − z0)(αz − z0)

(αz − z)(z − z0)
(12)

Furthermore,

(αz − z0)j(α, z) = (αz − z0)j(σ−1, diag(λ, λ)σz)j(diag(λ, λ)σ, z) = λ(z − z0).

With these preliminaries sorted we can check

Kk(αz, z)j(α, z)−k Im(z)k =
k − 1

4π
(2i Im z)k[(αz − z)j(α, z)]−k

=
k − 1

4π

[
z − z
αz − z

· αz − z0

λ(z − z0)

]k
=
k − 1

4π
λ
−k
[
w − w′
λ
λ
w − w′

]k
.

This finishes the proof. �

Next note that Γ(α) = Γ0(N)z0 . Furthermore, the stabiliser Γ0(N)z0 in Γ0(N)
is a finite group and almost every Γ0(N)z0-orbit in H as exactly ]Γ0(N)z0/{±1}
elements. Thus we find∫

Γ(α)\H
Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

= n−k
k − 1

4π
λk

1

]Γ0(N)z0/{±1}

∫
H

(
1− |σz|2

1− λ
λ
|σz|2

)k

dµ(z).

The remaining integral can be changed by a change ov variables. Note that the
transformation σ identifies the upper half plane model of the hyperbolic plane with
the Poincare disc model. In other words, σH = D. Thus we compute∫

H

(
1− |σz|2

1− λ
λ
|σz|2

)k

dµ(z) = 4

∫
D

(1− |w|2)k−2

(1− λ
λ
|w|2)k

dν(w)

= 8π

∫ 1

0

(1− r2)k−2

(1− λ
λ
r2)k

rdr

=
4π

k − 1

λ

λ− λ
.

We have thus sketched the proof of the following Lemma.



TOPICS IN AUTOMORPHIC FORMS 33

Lemma 4.26. In the notation as above we have

nk−1

2

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kdµ(z) =
1

]Γ0(N)z0
· λ

k−1

λ− λ
.

Proposition 4.27. The elliptic contribution is given by

nk−1

2

∑
α∈conjΓ0(N)∆

(e)
n,N

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

= −1

2

∑
t∈Z,

t2−4n<0

λn(t)k−1 − λt(n)
k−1

λn(t)− λt(n)
Bn(t),

where λt(n) and λt(n) are the two solutions of the polynomial X2 − tX + n and

Bn(t) =
∑

α∈conjΓ0(N)∆
(e)
n,N ,

Tr(α)=t

1

]Γ(α)
.

Proof. First, let α be an elliptic element. Then α′ = a(−1)−1αa(−1) is also an
elliptic element in ∆n,N . Note that they are conjugate with respect to GL2(Z) but
not Γ0(N). Thus they represent two different conjugacy classes but have the same
trace (and determinant). By grouping all such α and α′ together Lemma 4.26
yields

nk−1

2

∑
α∈conjΓ0(N)∆

(e)
n,N

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

=
1

2

∑
α∈conjΓ0(N)∆

(e)
n,N

1

]Γ(α)

λk−1
α − λα

k−1

λα − λα
.

The statement now follows by arranging conjugacy classes according to their
trace. �

Now we make some more algebraic definitions. Given an integer d ≡ 0, 1 mod 4
with d < 0, there is a unique order Sd of discriminant d in the imaginary quadratic
field Q(

√
d). Let h(d) = h(Sd) denote the (narrow) class number of Sd. We also

modify the Kronecker-symbol as follows. Given a fundamental discriminant5 d and

5A fundamental discriminant are exactly those integers that appear as discriminants of qua-
dratic fields. In other words, d is either square-free and d ≡ 1 mod 4 or d

4 is square free and

satisfies d
4 ≡ 2, 3 mod 4.
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an integer m we define {
dm2

p

}
=

{
1 if p | m,(
d
p

)
else.

(13)

Lemma 4.28. Suppose N is square-free and (n,N) = 1, then

Bn(t) =
∑

f2|t2−4n

h
(
t2−4n
f2

)
](S×d /{±1})

·
∏
p|N

(
1 +

{
(t2 − 4n)/f 2

p

})
,

for all t with t2 − 4n < 0.

Proof. We start by some more general considerations. Let R = R(N) be the ring
of all integer 2 × 2-matrices with lower left entry divisible by N . In particular,
∆n,N ⊂ R. Given any α ∈ R we consider the full GL2(Q)-orbit

C(α) = {δαδ−1 : δ ∈ GL2(Q)}.

One checks that for α ∈ R we have ∆
(e)
n,N ∩ C(α) = ∆n,N ∩ C(α).

If α, β ∈ ∆
(e)
n,N have the same trace, then they are conjugate by an element in

GL2(Q) (not necessarily by an element of GL2(Z)). Thus given any α ∈ M2(Q)
with determinant n and trace t we can write

Bn(t) =
∑

β∈conjΓ0(N)[∆n,N∩C(α)]

1

]Γ(β)
.

Sine α is elliptic we have that Q[α] ∼= Q[X]/(f(X)), for f(X) = X2− tX+n, is

an imaginary quadratic field of discriminant Dt,n = t2−4n
m2 , where m2 is essentially

the square-part of t2 − 4n. In particular Dt,n ≡ 0, 1 mod 4 and Dt,n < 0. In
other words, we have Q[α] ∼= Q(

√
Dt,n). For each f ∈ N there is a unique order

rf ⊂ Q[α] of discriminant Dt,nf
2. We decompose

C(α) =
⊔
f∈N

C(α, f), for C(α, f) = {δαδ−1 : Q[α] ∩ δ−1Rδ = rf}.

We claim that for β ∈ C(α, f) one has ]Γ(β) = ]r×f and leave the proof as an

exercise.6 Further, if ∆n,N ∩ C(α, f) 6= ∅, then rf ⊃ Z[α].7 In other words, f | m
and in particular f 2 | [t2 − 4n]. Thus, we can write

Bn(t) =
∑

f2|t2−4n

1

]r×f
]conjΓ0(N)[∆n,N ∩ C(α, f)].

6This follows by observing that

Γ(β) = {γ ∈ Γ0(N) : γβ = βγ} = Q[β] ∩R× = δ(Q[α] ∩ δ−1R×δ)δ−1 = δr×f δ
−1.

7This follows since α ∈ δ−1Rδ ∩Q[α] = rf for δ such that β = δαδ−1 ∈ ∆n,N ∩ C(α, rf ).
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We now have to take a leap of faith and believe that the numbers

]conjΓ0(N)(∆n,N ∩ C(α, f))

can be computed precisely. This can be achieved using a local to global principle,
but going into details would take us to far afield. Furthermore, we will encounter
(essentially) the same problem later on when we are dealing with quaternion alge-
bras and we will say more then. Indeed one can show that

]conjΓ0(N)[∆n,N ∩ C(α, f)]

= 2h(rf )
∏
p|N

]conjO×p {δ
−1αδ ∈ Op : Qp[α] ∩ δ−1Rpδ = [rf ]p},

where [rf ]p and Rp are the localisations of R and rf and

Op =

{
γ =

(
a b
c d

)
∈M2(Zp) : c ∈ NZp, a ∈ Z×p , det(γ) 6= 0)

}
The cardinality of the local sets can be computed yields precisely the numbers
claimed in the lemma. �

Exercise 6. Find two (elliptic) matrices α, β ∈ SL2(Z), which are conjugate in
GL2(Q) but not in SL2(Z).

4.6. The hyperbolic contribution. Let α be a hyperbolic element with distinct
fixed points x1, x2 ∈ R ∪ {∞}. Without loss of generality we assume x2 > x1. We
put

σ = (x1 − x2)−
1
2

(
1 −x1

1 −x2

)
∈ SL2(R).

Similar to the elliptic case we find

α = σ−1

(
λ1 0
0 λ2

)
σ =

1

x2 − x1

(
λ2x2 − λ− 1x1 x1x2(λ1 − λ2)
λ− 2− λ1 λ− 1x2 − λ2x1

)
,

for the two distinct (real) eigenvalues λ1, λ2 of α.
We put w = σz and w′ = σz = w. One finds (compare Lemma 4.25)

Kk(αz, z)j(α, z)−k Im(z)k =
k − 1

4π
λ−k2

(
w − w
λ1

λ2
w − w

)k

.

From here we have to distinguish two cases.

4.6.1. Hyperbolic conujugacy classes of type one. As the title suggests we now
assume α to be of type one. In other words x1, x2 ∈ R \Q. In this case

Γ(α) = Γ0(N)x1 ∩ Γ0(N)x2 .

Lemma 4.29. There is u > 1 such that

{±1} · (σΓ(α)σ−1) =

{
±
(
um 0
0 u−m

)
: m ∈ Z

}
.
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Proof. If Γ(α) 6⊂ Z, then the statement follows at once since σΓ(α)σ−1 stabilises
∞ and 0. It remains to exclude Γ(α) 6⊂ Z. However, if that would be true then
Γ(α)\H = H. But using elementary computations one can show that

∫
Γ(α)\H

|Kk(αz, z)j(α, z)−k Im(z)k|dµ(z) =
k − 1

4π
λ−k2

∫ ∞
0

1

r
dr

∫ π

0

1

sin(ϕ)2

∣∣∣∣∣ eiϕ − e−iϕλ1

λ2
eiϕ − e−iϕ

∣∣∣∣∣
k

dϕ,

which is a contradiction since the right hand side does not converge. �

As a fundamental domain of σΓ(α)σ−1\H we can choose {w ∈ H : 1 ≤ |w| < u2}.
Turning to the orbital integral we find:∫

Γ(α)\H
Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

=
k − 1

4π
λ−k2

∫ u2

1

1

r
dr

∫ π

0

1

sin(ϕ)2

(
eiϕ − e−iϕ
λ1

λ2
eiϕ − e−iϕ

)k

dϕ

= −2 ln(u)
k − 1

π
λ−k2

∫ π

0

(eiϕ − e−iϕ)k−2

(λ1

λ2
eiϕ − e−iϕ)k

dϕ.

Lemma 4.30. For 1 6= λ1/λ1 > 0 we have∫ π

0

(eiϕ − e−iϕ)k−2

(λ1

λ2
eiϕ − e−iϕ)k

dϕ = 0.

In particular hyperbolic elements of type one do not contribute to the trace formula.

Proof. We set λ = λ1

λ2
and denote the integrand by fλ(ϕ). Note that λ 6= 0, 1, since

λ1 6= λ2. Since k is even fλ(ϕ+ π) = fλ(ϕ). Thus we have∫ π

0

fλ(ϕ)dϕ =
1

2

∫ 2π

0

fλ(ϕ)dϕ = − i
2

∫
S1

(z2 − 1)k−2

(λz2 − 1)k
zdz.

If λ < 1, then the integrand of the latter contour integral is holomorphic in a
neighbourhood of B1(0). Thus the integral vanishes.

In the case λ > 1 we compute the integral via the residual theorem. This yields∫ π

0

fλ(ϕ)dϕ = π
∑
±

res
z=±λ−

1
2

[
(z2 − 1)k−2

(λz2 − 1)k
z

]
=

π

(k − 1)!
λ−

k
2

∑
±

dk−1

dzk−1
g±(±λ−

1
2 ),

for g±(z) = z (z2−1)k−2

(
√
λz∓1)

. Since g±(−z) = g∓(z) and k− 1 is odd we see that the two

residues cancel each other out. �
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4.6.2. Hyperbolic conjugacy classes of type two. Now α is hyperbolic of type two.
In other words x1, x2 ∈ Q∪{∞}. In this case Γ(α) = {±1} and Γ(α)\H = H. We
now have to compute the integral∫

Γ(α)\H
Kk(αz, z)j(α, z)−k Im(z)kfs(z, α)dµ(z),

for

fs(z, α) =

{
Im(z)−s|j(σ p

q
, z)|2s if z ∈ U p

q
and αp

q
= p

q
for some cusp p

q
,

1 else.

Take σi such that σi∞ = x1 for i = 1, 2. Further define Ui = σiU∞.

Lemma 4.31. For i = 1, 2 we have∫
Ui

Kk(αz, z)j(α, z)−k Im(z)k Im(z)−s|j(σ−1
i , z)|2sdµ(z) = 0.

Proof. Let us treat the case i = 1. Note that σσ1∞ =∞, so that σσ1 =

(
a ∗
0 a−1

)
.

In particular |j((σσ1)−1, w)| = |a| and

σU1 = (σσ1)U∞ = {z ∈ H : Im(z) > a2δ}.

We compute∫
U1

Kk(αz, z)j(α, z)−k Im(z)k Im(z)−s|j(σ−1
1 , z)|2sdµ(z)

=
k − 1

4π
λ−k2

∫
σU1

Im(w)−s

(
w − w
λ1

λ2
w − w

)k

|j((σσ1)−1, w)|2sdµ(w)

= −k − 1

π
λ−k2 |a|2s

∫ π

0

(eiϕ − e−iϕ)k−2

(λ1

λ2
eiϕ − e−iϕ)k

sin(ϕ)−s
∫ ∞

a2δ
sin(ϕ)

r−s−1drdϕ

= −k − 1

sπ
λ−k2 δ−s

∫ π

0

(eiϕ − e−iϕ)k−2

(λ1

λ2
eiϕ − e−iϕ)k

dϕ.

Note that we have seen that the remaining ϕ-integral vanishes.
For i = 2 the situation is similar. The difference being that σσ2∞ = 0, so that

σσ2 is of the form

(
0 b
b−1 ∗

)
. we leave the details to the reader. �

It remains to compute the integral over the bulk H ′ = H \ (U1 ∪U2). Note that

σH ′ = {reiϕ :
b2 sin(ϕ)

δ
≤ r ≤ a2δ

sin(ϕ)
}.
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The usual steps lead to∫
H′
Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

= −k − 1

π
λ−k2

∫ π

0

(eiϕ − e−iϕ)k−2

(λ1

λ2
eiϕ − e−iϕ)k

∫ a2δ
sin(ϕ)

b2 sin(ϕ)
δ

r−1drdϕ

= −2
k − 1

π
λ−k2

∫ π

0

(eiϕ − e−iϕ)k−2

(λ1

λ2
eiϕ − e−iϕ)k

[
ln(

aδ

b
)− ln(sin(ϕ))

]
dϕ

= 2
k − 1

π
λ−k2

∫ π

0

(eiϕ − e−iϕ)k−2

(λ1

λ2
eiϕ − e−iϕ)k

ln(sin(ϕ))dϕ.

Note that the remaining integral is independent of a, b and δ as well as s.

Lemma 4.32. We have

I =

∫ π

0

(eiϕ − e−iϕ)k−2

(λ1

λ2
eiϕ − e−iϕ)k

ln(sin(ϕ))dϕ =
π

2(k − 1)
·

{
λ2

λ1−λ2
for |λ1| > |λ2|,

−λk2λ
1−k
1

λ1−λ2
for |λ1| < |λ2|.

Proof. As before we put λ = λ1/λ2 6= 0. Since λ1λ2 = det(α) > 0 we conclude
that λ > 0, as λ1 and λ2 must have the same sign. First one computes that

(eiϕ − e−iϕ)k−2

(λeiϕ − e−iϕ)k
=

1

2i(k − 1)(λ− 1)

d

dϕ

[(
eiϕ − e−iϕ

λeiϕ − e−iϕ

)k−1
]
.

Integration by parts yields

I = − (2i)k−2

(k − 1)(λ− 1)

∫ π

0

(λeiϕ − e−iϕ)1−k sin(ϕ)k−2 cos(ϕ)dϕ

=
i

4(k − 1)(λ− 1)

∫
S1

(z2 − 1)k−2(z2 + 1)

(λz2 − 1)k−1z
dz.

This can now be evaluated using the residual theorem once again. If λ < 1, then
the only pole in the unite disc is at z = 0. In this case one simply gets

I =
π

2(k − 1)(λ− 1)
.

To deal with the remaining case we can avoid computing the extra residues by
making same elementary manipulations in the beginning to switch λ 1

λ
. �

We summarise the our findings in the following proposition.
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Proposition 4.33. The hyperbolic contribution of second type is given by

nk−1

2
lim
s→0

∑
α∈conjΓ0(N)(∆2)(h2)

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kfs(z, α)dµ(z)

= −1

2

∑
t∈Z,

t2−4n>0

min(|λ+
n (t)|, |λ−n (t)|)k−1

|λ+
n (t)− λ−n (t)|

Cn(t),

where λ+
t (n) and λ−t (n) are the two solutions of the polynomial X2 − tX + n and

Cn(t) =
∑

α∈conjΓ0(N)∆
(h2)
n,N ,

Tr(α)=t

1.

Proof. The statement follows from the considerations above and arranging conju-
gacy classes according to their trace. �

Lemma 4.34. Suppose N is squarefree and (n,N) = 1,

Cn(t) = δt2−4n=�2ω(N)
∑

f2|t2−4n

φ(f)

for all t with t2−4n > 0. Here φ(f) = f
∏

p|f (1−p−1) is the Euler totient function

and ω(N) = ]{p | N}.

Proof. We start by arguing as in Lemma 4.28. In particular for any α ∈ R with
determinant n and trace t we have

Cn(t) = ]conjΓ0(N)(C(α) ∩∆n,N).

The difference is, that since α is hyperbolic of type 2 we have Q[α] ≡ Q×Q. We
want to follow the same strategy as in the elliptic case and arrange the elements
we are counting by orders. Let us collect some facts to do so. The unique maximal
order in Q × Q is r1 = Z × Z. Again, given f ∈ N we have one order rf with
index [r1 : r1] = f . further, note that since α must have fixed points in Q ∪ {∞},
the characteristic polynomial must have a square discriminant. Thus we conclude
that t2 − 4n = m2 > 0. Further we conclude that [r1 : Z[α]] = m.

Borrowing notation (and the argument with the necessary modifications) from
the elliptic case we arrive at

Cn(t) =
∑
f |m

]conjΓ0(N)(∆n,N ∩ C(α, rf )).

This reduces to the local problem (compare to the elliptic case)

Cn(t) =
∑
f |m

φ(f)
∏
p|N

]conjO×p {δ
−1αδ ∈ Op : Qp[α] ∩ δ−1Rpδ = [rf ]p}.
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Note that in this case the class number is replaced by the Euler totient function,
which appears strange but is completely natural from an adelic point of view.
Again giving all the details goes beyond the scope of this lecture.

Computing the cardinality of the remaining sets is a completely local task and
completing it produces the statement of the lemma. �

4.7. The parabolic contribution. Let α ∈ ∆n,N be parabolic and let x ∈ Q ∪
{∞} be its unique fixed point. We write a for the equivalence class of cusps x
belongs to. Note that there is σ ∈ SL2(Z) such that σ∞ = x Necessarily we find

σ−1ασ =

(
λ B
0 λ

)
,

for some B ∈ Q× and λ ∈ Q× such that λ2 = n. Thus, we observe that we can
only have parabolic contributions if n is a perfect square.

Note that Γ(α) = Γ0(N)x and

{±1} · (σ−1Γ0(N)xσ) =

{
±
(

1 hm
0 1

)
: m ∈ Z

}
,

where h is the width of the cusp a. Thus we can choose the fundamental domain

{w ∈ H : |Re(w)| ≤ h

2
}

for (σ−1Γ(α)σ)\H.

Lemma 4.35. Let σ, B and λ be as above. We have

Kk(ασz, σz)j(α, σz)−k Im(σz)k =
k − 1

4π
λ−k

(
Im(z)

Im(z)− iµ

)k
for µ = B

2λ
.

Proof. Left as an exercise. �

We take the following lemma for granted.

Lemma 4.36. A set of representatives for conjΓ0(N)(∆
(p)
n,N) is given by⊔

x∈C(N)

∆(p)
x ,

for ∆
(p)
x = ∆

(p)
n,N ∩∆x.
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Write

lim
s→0

∑
α∈conjΓ0(N)(∆

(p)
2 )

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kfs(z, α)dµ(z)

=
∑

x∈C(N)

[
lim
s→0

∑
α∈∆

(p)
x

∫
Γ(α)\Ux

Kk(αz, z)j(α, z)−k Im(z)k Im(z)−s|j(σx, z)|2sdµ(z)

+
∑
α∈∆

(p)
x

∫
Γ(α)\(H\Ux)

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

]
.

Next we artificially introduce an s-limit in the bulk-term in order to combine
the two integrals.

Lemma 4.37. We have∑
α∈∆

(p)
x

∫
Γ(α)\(H\Ux)

Kk(αz, z)j(α, z)−k Im(z)kdµ(z)

= lim
s→0

∑
α∈∆

(p)
x

∫
Γ(α)\(H\Ux)

Kk(αz, z)j(α, z)−k Im(z)k Im(z)−s|j(σx, z)|2sdµ(z).

Proof. Inserting the limit must be carefully justified. However, to save chalk we
skip the details. �

As a result we find that

lim
s→0

∑
α∈conjΓ0(N)(∆2)(p)

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kfs(z, α)dµ(z)

=
∑

x∈C(N)

lim
s→0

∑
α∈∆

(p)
x

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)k Im(z)−s|j(σx, z)|2sdµ(z).

The remaining integral can now be computed.

Lemma 4.38. We have∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)k Im(z)−s|j(σx, z)|2sdµ(z)

=
k − 1

4π
hxλ

−k
α

i1+s

µ1+s
α

Γ(s+ 1)Γ(k − s− 1)

Γ(k)
.
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Proof. Using our computations at the beginning of the section we compute∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)k Im(z)−s|j(σx, z)|2sdµ(z)

=

∫
(σ−1
x Γ(α)σx)\H

Kk(ασxz, σxz)j(α, σxz)−k Im(σxz)k Im(z)−sdµ(z)

=
k − 1

4π
λ−kα

∫
(σ−1
x Γ(α)σx)\H

(Im(z)− iµα)−k Im(z)k−2dµ(z)

=
k − 1

4π
λ−kα hx

∫ ∞
0

yk−s−2

(y − iµα)k
dy.

To simplify notation let us call the y-integral I.

I =
i2+s

µ1+s
α

∫ sgn(µα)∞

0

(it)k−s−2

(1 + it)k
dt = − i

1+s

µ1+s
α

∫
γ

us(1− u)k−s−2du,

where γ is a path with γ(0) = 1 and γ(1) = 0. Note that since the integrand is
holomorphic for s small enough the integral does not depend on the choice of γ.
Thus we can pick γ : r 7→ 1− r. We find

I =
i1+s

µ1+s
α

∫
γ−1

us(1−u)k−s−2du =
i1+s

µ1+s
α

∫ 1

0

rs(1−r)k−s−2dr =
i1+s

µ1+s
α

B(s+1, k−s−1).

The result follows by expressing the beta function as a Γ-quotient. �

For fixed x ∈ C(N) of width hx we obtain

lim
s→0

∑
α∈∆

(p)
x

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)k Im(z)−s|j(σx, z)|2sdµ(z)

=
hxn

− k
2

2π
lim
s→0

∑
α∈∆

(p)
x

sgn(λα)k
(
iλα
Bα

)1+s

.

Thus we have obtained the following result.

Proposition 4.39. The parabolic contribution is given by

nk−1

2
lim
s→0

∑
α∈conjΓ0(N)(∆2)(p)

∫
Γ(α)\H

Kk(αz, z)j(α, z)−k Im(z)kfs(z, α)dµ(z)

= δn=�
n
k
2
−1

4π
lim
s→0

∑
α∈conjΓ0(N)(∆n,N )(p)

(
ihαλα
Bα

)1+s

.
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We still want to further polish this sum. For the upcoming computations we
always assume n = m2, since otherwise the parabolic contribution vanishes. We
further set

m(α) =
Bα

hαλα
and call the parabolic contribution P . Let us start with the following lemma.

Lemma 4.40. We have

P = −δn=� lim
s→0

n
k
2
−1

8
s

∑
α∈conjΓ0(N)(∆

(p)
n,N )

|m(α)|−1−s.

Proof. So far we have seen that

P = δn=�
n
k
2
−1

4π
lim
s→0

∑
α∈conjΓ0(N)(∆n,N )(p)

(−im(α))−1−s.

Let g =

(
−1 0
0 1

)
. Take α ∈ ∆

(p)
n,N and put α′ = gαg−1. These two matrices

Γ0(N)-conjugate. Let x be the fixed point of α and x′ = gx the fixed point of α′.
Further take σx =∞ and put σ′ = gσg−1. We have

σασ−1 =

(
λα Bα

0 λα

)
and σ′ασ′−1 =

(
λα −Bα

0 λα

)
.

Note that x and x′ have the same width. In particular, m(α′) = −m(α). The key
observation follows from

1

π
(i1+s + (−i)1+s) = −s+O(s2).

One completes the proof by combining the contributions α and α′. Note that some
care is needed to argue that the higher order terms can be ignored. We skip the
details. �

Proposition 4.41. For squarefree N and (n,N) = 1 the parabolic contribution is
given by

P = −δn=�
n
k−1

2

2
2ω(N).

Proof. Let n = m2. The idea is as essentially as before. Let us start by noting that
over Q the conjugacy class of a parabolic matrix α is determined by the eigenvalue
λα. Since λ2

α = n we must have λα = ±m. Thus we can set α± = ±mn(±
m

) and
write

P = −n
k
2
−1

8

∑
±

lim
s→0

s
∑

β∈conjΓ0(N)(∆n,N∩C(α±))

|m(β)|1+s.
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The trick is again to arrange the remaining conjugacy classes according to their
orders. Put ε = β ±m and observe ε2 = 0. Further Q[α] = Q[ε] and Z[α] = Z[ε].
We parametrise all orders by rf = Z + Z ε

f
. In particular Z[α] = r1 ⊂ rf for all

f ∈ N. Further one can proof that, if β ∈ C(α±, f), then

|m(β)| = 2
l

m
.

With this at hand, we can proceed as previously taking the local to global
argument for granted. Note that the analogue of the class number in this case is
simply 1. We arrive at

P = −n
k
2
−1

4

∑
±

lim
s→0

sm1+s
∑
f∈N

f−1−s
∏
p|N

]conjO×p {δ
−1αδ ∈ Op : Qp[α] ∩ δ−1Rpδ = [rf ]p}

= −n
k
2
−1

4

∑
±

lim
s→0

sm1+sζ(1 + s)2ω(N).

We can now take the limit without further complications and get the result. �

4.8. The final trace formula. Without further ado we are now ready to state
the final trace formula.

Theorem 4.42 (Eichler’s trace formula I). Let N be square-free, k > 2 even,
(n,N) = 1 and let Tn be the Hecke-operator acting on Sk(N, Id). Then

Tr(Tn) =δn=�n
k
2
−1k − 1

12
Nψ(N)− δn=�

n
k−1

2

2
2ω(N)

− 1

2

∑
t∈Z,

t2−4n<0

λ+
n (t)k−1 − λ−n (t)k−1

λ+
n (t)− λ−n (t)

∑
f2|t2−4n

h((t2 − 4n)/f 2)

](S×(t2−4n)/f2/{±})
∏
p|N

(
1 +

{
(t2 − 4n)/f 2

p

})

− 1

2

∑
t∈Z,

t2−4n=�

min(|λ+
n (t)|, |λ−n (t)|)k−1

|λ+
n (t)− λ−n (t)|

∑
f2|t2−4n

φ(f)2ω(N).

Here λ±n (t) are the two (complex) roots of the polynomial X2 − tX + n, φ(d) =
d
∏

p|d(1− p−1) the Euler toitent function, ψ(d) =
∏

p|d(1 + p−1) and ω(d) = ]{p |
d}. Here

{
·
p

}
denotes the modification of the Kronecker-symbol defined in (13).

Proof. This follows directly from the discussion of the foregoing subsections. �

Remark 4.43. Note that a similar formula holds for k = 2. However here some
subtleties concerning the Bergman kernel arise. In [5, Theorem 2.2] the formula is
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given as follows:

Tr(Tn) =δn=�
Nψ(N)

12
− δn=�

n
1
2

2
2ω(N) + σ1(n)

− 1

2

∑
t∈Z,

t2−4n<0

∑
f2|t2−4n

h((t2 − 4n)/f 2)

](S×(t2−4n)/f2/{±})
∏
p|N

(
1 +

{
(t2 − 4n)/f 2

p

})

− 1

2

∑
t∈Z,

t2−4n=�

min(|λ+
n (t)|, |λ−n (t)|)

|λ+
n (t)− λ−n (t)|

∑
f2|t2−4n

φ(f)2ω(N).

where as usual N is square-free. This also recovers the dimension formula in [3,
(29)]. Note that one can extend the trace formula to (n,N) 6= 1, arbitrary N and
arbitrary nebentypi. A complete statement is given in [5, Theorem 2.2].

Exercise 7. Use this formula to establish an explicit and a good asymptotic
formula for the dimension of Sk(N, Id) when N is square-free and k > 2 is even.

Proof. The key fact is that T1 : Sk(N, Id)→ Sk(N, Id) is the identity. Thus

dimSk(N, Id) = Tr(T1).

This trace can be computed using the trace formula.
Elementary computations show that t2 − 4 = � > 0 has no solutions t ∈ Z,

so that the hyperbolic contribution does not contribute. Furthermore t2 − 4 < 0
holds only for t = 0,±1. Thus the elliptic contribution splits essentially in two
cases.

First, take t = 0. In this case we deal with the imaginary quadratic field
K = Q(i) od discriminant −4 and only the maximal order contributes. It is
well known that this maximal order OK has class number 1 and O×K = {±1,±i}.
Further λ±1 (0) = ±i are the roots of X2 + 1 and one checks that

λ+
1 (0)k−1 − λ−1 (0)k−1

λ+
1 (0)− λ−1 (0)

= (−1)
k
2
−1.

Second, take t = ±1. In this case we encounter K = Q(
√
−3) and only the

maximal order OK contributes. Again we are in a class number 1 situation and
the unit group is O×K = {±1,±ζ3,±ζ2

3}. For λ = reiθ we have

λk−1 − λk−1

λ− λ
= rk−2 sin((k − 1)θ)

sin(θ)
.

Applying this to the solutions of X2 + ε + 1 which are λ = εζ3, for ε ∈ {±1}, we
find

λk−1 − λk−1

λ− λ
= δ3-k−1(−1)η+1,
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where η = k − 1 mod 3. In particular the result does not depend on ε. This was
to expect because we combined the conjugacy classes t = 1 and t = −1 to find a
nicer form of the orbital integrals.

Combining everything with the easy scalar and parabolic contribution gives the
answer

dimSk(N, Id) =
k − 1

12
Nψ(N)− 1

2
d(N)

+
(−1)

k
2

4

∏
p|N

(
1 +

(
−4

p

))
+

(−1)η

3
δ3-k−1

∏
p|N

(
1 +

(
−3

p

))
. (14)

Note that one can check

− (−1)
k
2

4
=
k − 1

4
−
⌊
k

4

⌋
and − (−1)η

3
δ3-k−1 =

k − 1

3
−
⌊
k

3

⌋
which makes our formula agree with [3, Chapter III, (29)]. �

Remark 4.44. Another nice application of the trace formula is the vertical Sato-
Tate law. This is a result about the distribution of the random variables Sk(N,χ) 3
f 7→ λf (p) as p is fixed and k + N tend to infinity. As long as N is squarefree,
χ = Id and k > 2 is even a nice limiting behaviour can ve extracted using the trace
formula developed here. Note that one treats all the non-scalar terms essentially
trivial for this purpose.
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5. Some arithmetic in Quaternion algebras

Our final goal is to define the Brandt matrices and to compute their trace. We
will recall the necessary background theory mostly following [9].

5.1. The basics. Let F be a field with char(F ) 6= 2.

Definition 5.1. An algebra B over F is a quaternion algebra if it has a basis
{1F , i, j, k} over F such that

i2 = a, j2 = b and k = ij = −ji,

for some a, b ∈ F×. If this is the case we write

B =

(
a, b

F

)
.

The primary example to keep in mind are the ordinary quaternions

H =

(
−1,−1

R

)
.

Another example is M2(F ) =
(

1,1
F

)
via the isomorphism

i =

(
1 0
0 −1

)
, j =

(
0 1
1 0

)
.

Definition 5.2. An algebra is called central if

Z(B) = {z ∈ B : zb = bz for all b ∈ B} = F.

We define the degree of an algebra B to be the minimal m ∈ N such that every
element b ∈ B satisfies a polynomial f ∈ F [X] (i.e. f(b) = 0) of degree ≤ m.
Further B is called simple if it has no non-trivial two-sided ideals (as a ring).

One has the following well known result.

Theorem 5.1. Let B be an algebra over F . Then the following statements are
equivalent:

• B is a quaternion algebra;
• B is non-commutative and of degree 2;
• B is central and of degree 2;
• B is central, simple with dimF (B) = 4.

Each quaternion algebra B can be equipped with an involution α 7→ α given by

α + βi+ γj + δk 7→ α− βi− γj − δk.

This involution is standard in the sense that bb ∈ F for all b ∈ B. We define

nr(b) = bb and tr(b) = b+ b.
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Example 5.2. If B =
(
a,b
F

)
one can compute that

nr(α + βi+ γj + δj) = α2 − aβ2 − bγ2 + abδ2 and tr(α + βi+ γj + δj)) = 2α.

It is a nice exercise to check some basic properties of this involution and the
associated (reduced) norm and (reduced) trace. In particular their relation to
det(mb) and Tr(mb), where mb ∈ EndF (B) is given by mb(z) = b · z.

Remark 5.3. The norm gives rise to a non-degenerate quadratic form of discrimi-
nant 1 = a2b2 ∈ F/(F×)2.

Definition 5.3. We call a quaternion algebra B over F split if B ∼= M2(F ). A
field K is called splitting field for B if B ⊗F K ∼= M2(K).

Example 5.4. Either a ∈ (F×)2 and B =
(
a,b
F

) ∼= (
1,b
F

) ∼= M2(F ) is split. Or
a 6∈ (F×)2, then F (

√
a) splits B.

Definition 5.4. We define the Hilbert symbol (·, ·)F : F× × F× → {±1} by

(a, b)F =

{
1 if

(
a,b
F

)
is split,

−1 else.

Theorem 5.5. We have the alternative description of the Hilbert symbol

(a, b)F =

{
1 if ax2 + by2 = 1 for some x, y ∈ F,
−1 else.

Proof. We omit the proof. However, it is a good exercise to play around with the
Hilbert symbol and establish some elementary properties. (For example what is
(a, a)F ?) �

Remark 5.6. The theory for F with even characteristic is similar but slightly more
technical. We will not discuss these issues here. Let us only remark, that one
should require the generators i, j to satisfy

i2 + i = a, j2 = b and ij = j(i+ 1).

Furthermore the Hilbert equation should read bx2 + bxy + aby2 = 1.

So far we have discussed quaternion algebras over a very general set of fields.
Now we will specialise to certain cases important for our goal. These will be R,
Qp and Q.

The theory over R should be well known. One of the central results is that the
only non-split quaternion algebra over R is H. We will now prove that the same
holds true over Qp.

We define the p-adic integers by

Zp = lim←−
n

Z/pnZ = {x = (xn)n∈N : xn+1 ≡ xn mod pn for all n ∈ N}.
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The quotient field is given by Qp = Q(Zp). Another more analytic way of thinking
about Qp is as follows. We equip Q with the metric |x|p = p−vp(x) where vp(p

ax′) =
a whenever (p, x′) = 1 is the p-adic valuation on Q. Then Qp is the completion
of Q with respect to |·|p and Zp = {x ∈ Qp : |x|p ≤ 1}. Obviously Z is dense in
Zp. Of course vp extends to a discrete valuation on Qp with values in Z. Let K be
some (quadratic) extension of Qp. Then there is a unique valuation w on K which
extends vp. It is given by

w(x) =
vp(NrK|Qp(x))

[K : Qp]
.

This fact is usually proven in an algebraic number theory course and we take it
for granted.

Lemma 5.7. Suppose B is a quaternion division algebra over Qp. Then there is
a unique (discrete) valuation w : B → R ∪ {∞} extending vp. Furthermore, it is
given by

w(α) =
vp(nr(α))

2
.

Proof. We start by showing that w is indeed a discrete valuation. The property
that is not completely straight forward is the inequality w(α+β) ≥ min(α, β). To
see this we can assume that β 6= 0 and compute

w(α + β) = w(αβ−1 + 1) + w(β) ≥ min(w(αβ−1), 0) + w(β) = min(w(α), w(β)).

Here we used that K = Qp(αβ
−1) is a quadratic extension of Qp and w|K defines

a valuation. Uniqueness can be reduced to to the uniqueness in the quadratic field
case by considering w|Q(α) for α ∈ B×. �

Given a quaternion division algebra over Qp we define

O = {α ∈ B : w(α) ≥ 0} and P = {α ∈ B : w(α) > 0}.
Then O is a (non-commutative) local ring with unique two sided ideal P . We
claim that P = Oβ where β is an element β ∈ P with minimal valuation. Indeed
given α ∈ P \ {0} we check w(αβ−1) = w(α) − w(β) ≥ 0. Thus αβ−1 ∈ O and
α ∈ Oβ. Similarly one sees P = βO = OβO.

Theorem 5.8. There is a unique division algebra B over Qp. For p 6= 2 this is
given by

B ∼=
(
e, p

Qp

)
where e is a quadratic non-residue modulo p.

The proof proceeds by classifying anistropic ternary quadratic forms over Qp up
to similarity. This can be done in an elementary manner. We will sketch a proof
using the theory of valuations.
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Proof. By computing the Hilbert symbol we see that
(
e,p
Qp

)
is non-split and thus

a division algebra. It remains to show uniqueness. Thus, let us take some other
quaternion division algebra B′ over Qp. As argued above this comes with a unique
valuation w, local ring O′ and P ′ = βO′. We compute

w(β) ≤ w(p) = vp(p) = 1 ≤ 2w(β) = w(β2).

This yields the inclusions

βO′ = P ′ ⊃ pO′ ⊃ P ′2 = β2O′.

Obviously O′/P ′ ∼= P ′/P ′2 so that

4 = dim(O′/pO′) ≤ dim(O′/P ′2) = 2 dim(O′/P ′).8

We conclude that dim(O′/P ′) ≥ 2 with equality if and only if pO′ = P ′2. We
observe that O′/P ′ is a finite division algebra over Fp and therefore must be a field
(Wedderburn’s little theorem). In particular there must be i ∈ O′ such that the
reduction i ∈ O′/P ′ satisfies O′/P ′ = Fp(i). Of course B has degree 2 and i is
integral.9 We conclude that Fp(i) is an extension of degree 2 and get pO′ = bloP ′2,
dim(O′/P ′) = 2 and w(β) = 1

2
. Of course K = Qp(i) = Qp(

√
e) must be the

unique unramified quadratic extension of Qp. By changing variables accordingly

we find B′ =
(
e,b
Qp

)
for some b ∈ Zp. Note that (with extra care for p = 2) one

sees that vp(b) ≥ 1 and another suitable change of variables yields the desired
equivalence. �

We now turn towards quaternion algebras B over Q. For a prime p we write
Bp = B⊗Q Qp and B∞ = B⊗Q R. We say B ramifies at v ∈ {p : prime } ∪ {∞}
if the completion Bv is a divison algebra. Otherwise, if Bv

∼= M2(Qv), we call
B unramified at v.10 Let Ram(B) be the set of places v at which B ramifies.11

We call B definite if ∞ ∈ Ram(B) and indefinite otherwise. We define the
discriminant H of B by

disc(B) = H =
∏

p∈Ram(B)\{∞}

p.

From now on let us fix B =
(
a,b
Q

)
. Without loss of generality we can assume

a, b ∈ Z.

Remark 5.9. Note that B is definite if and only if (a, b)R = −1, which happens
exactly when a, b < 0.

8All dimensions are over Fp and we implicitly use the fact that O′ is a Z-lattice of rank 4.
This is not hard to see but will also be discussed later on when we are dealing with orders.

9Also this fact is borrowed from below.
10Note that unramified at v is just a fancy way of saying that Bv is split.
11This is a finite set of places, as can be seen using properties of local Hilbert symbols.
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Next we derive a remarkable parity restriction for the local Hilbert symbols.

Proposition 5.10 (Hilbert reciprocity). For all a, b ∈ Q× we have

(a, b)R ·
∏
p

(a, b)Qp = 1.

We prove this using quadratic reciprocity and a complete understanding of the
Hilbert symbol (·, ·)Q2 .

Proof. By multiplicativity it is enough to prove this for a, b ∈ {p : prime }∪{−1}.
We consider several cases.

First a = b = −1. In this case we have

(−1,−1)Qv =

{
−1 if v = 2,∞,
1 else.

Second a = −1, b = p this covers also a = p, b = −1 by symmetry as well as
the case a = b = p since (a, a)F = (−1, a)F . Obviously we find (−1, p)R = 1 and
(−1, p)Qq = 1 for primes q 6= p. Furthermore for q 6= 2 we have

(−1, p)Qp =

(
−1

p

)
= (−1)

p−1
2 .

At the place 2 we have

(−1, p)Q2 =

{
1 if p = 2 or p ≡ 1 mod 4

−1 if p ≡ 3 mod 4

Putting everything together concludes this case.
Finally lets look at a = p, q = b for (positive) primes p 6= q. By direct compu-

tation one finds

(p, q)R = 1 and (p, q)Q2 = (−1)(p−1)(q−1)/4 =

{
−1 if p, q ≡ 3 mod 4

1 else.

For all primes l - 2pq we have (p, q)Ql = 1. Thus we are left with

(a, b)R ·
∏
p

(a, b)Qp = (−1)(p−1)(q−1)/4

(
p

q

)(
q

p

)
= 1.

In the last step we used the quadratic reciprocity law. �

Proposition 5.11. Given a finite set Σ ⊂ {p : prime } ∪ {∞} with an even
number of elements. Then there is a quaternion algebra B over Q with Ram(B) =
Σ.

Proof. Set

D =
∏

p∈Σ\{∞}

p and u =

{
−1 if ∞ ∈ Σ,

1 else.
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We now choose a prime q such that uq is a quadratic non-residue modulo p or all
2 6= p | D and

up ≡

{
1 mod 8 if 2 - D,
5 mod 8 if 2 | D.

Such primes exist due to Dirichlet’s theorem concerning primes in arithmetic pro-
gressions. Now define

B =

(
uD, uq

Q

)
.

By construction we have

Σ ⊂ Ram(B) ⊂ Σ ∪ {q}.

According to Hilbert reciprocity Ram(B) must contain an even number of ele-
ments. Thus, since Σ has an even number elements we find Ram(B) = Σ as
required. �

Proposition 5.12. Let B,B′ be two quaternion algebras over Q. Then B ∼= B′ if
and only if Bv

∼= B′v for all v ∈ {p : prime } ∪ {∞}.

The proof can be reduced to the Hasse-Minkowski theorem, which is a local-to-
global principle for quadratic forms. We skip the details.

Combining the last three propositions yields the following nice classification
result.

Theorem 5.13. There is a one-to-one correspondence between Quaternion alge-
bras over Q up to isomorphism and square-free positive integers H. In other words,
a quaternion algebra is uniquely determined by its discriminant H.

Exercise 8. Consider the quaternion algebra B =
(
−2,−37

Q

)
and determine the

places where it ramifies.

Proof. We first observe that

(−2,−37)R = −1 and (−2,−37)Q37 = (−2,−1)Q37

(
−2

37

)
= −1.

In particular we find that

{∞, 37} ⊂ Ram(B) ⊂ {∞, 2, 37}.

Thus by Hilbert reciprocity we must have {∞, 37} = Ram(B).12 In particular, B
is definite and has discriminant H = 37. �

12Of course one can also compute the Hilbert symbol

(−2,−37)Q2
= (−1,−1)Q2

(2,−1)Q2
(−1, 37)Q2

(2, 37)Q2
= (−1) · 1 · 1 · (−1) = 1.
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5.2. Orders in quaternion algebras. Let R ∈ {Z,Zp} be a principal ideal
domain, take F = Q(R) and let B be a quaternion algebra over F .

Definition 5.5. A (R-)lattice L is a finitely generated submodule L ⊂ B such
that LF = B. A lattice O ⊂ B is called an order if it is a subring of B. We call
an order maximal, if it is not properly contained in any other order.

Example 5.14. We have the following important examples of orders:

(1) Suppose B ∼= M2(F ) is split, then M2(R) is an order in B.
(2) Suppose B ∼=

(
a,b
F

)
, then O = R⊕Ri⊕Rj ⊕Rk is an order in B.

(3) Given a lattice L we define

Ol(L) = {α ∈ B : αL ⊂ L} and Or(L) = {α ∈ B : Lα ⊂ L}.
This is the left order (resp. right order) of L. These orders will be of key
importance later on.

Lemma 5.15. Let F = Q. Then an order O ⊂ B is maximal if and only if
Op = O ⊗Z Zp is maximal for all primes p.

Proof. First let O be maximal and suppose that for some prime q we have Oq ⊂ O′q.
We define O′ = O′q ∩

⋂
p 6=q Op. Obviously O ⊂ O′, which implies O = O′ and

Oq = O′q.
Now we prove the the other direction. Suppose O ⊂ O′. Then we have Op ⊂ O′p

for all p and since Op is maximal we must have Op = O′p. We conclude that

O =
⋂
p

Op =
⋂
p

O′p = O′.

�

Lemma 5.16. Let F = Q and O ⊂ B be an order. Then there is a maximal order
O′ ⊂ B containing O. In particular, maximal orders exist. Furthermore, Op is
maximal for all but finitely many p.

Proof. We leave the proof as an exercise for the reader. �

Thus we need to study orders in quaternion algebras in non-archimedean fields
F = Qp. Let us start with the split case B = M2(Qp). In this case we have
a very general construction of orders. Indeed let V be a F -vector space with
dimF (V ) = 2. Then B ∼= EndF (V ). Given a Zp-lattice L ⊂ V we define

EndR(L) = {f ∈ EndF (V ) : f(L) ⊂ L}.
It can be shown, that this is an order.

Lemma 5.17. Let B = EndF (V ) as above. Every maximal order O in B is of the
form O = EndR(L) for some lattice L ⊂ V . Furthermore, every maximal order in
M2(Qp) is conjugate to M2(Zp).



TOPICS IN AUTOMORPHIC FORMS 54

Proof. We show that every order is contained in EndF (L) for some lattice L ⊂ V .
The first statement then follows from maximality while the second one can be
obtained by a suitable change of basis.

Given any lattice N and any order O′ we define the lattice L = {x ∈ N : O′x ⊂
N}. By definition we have O′ ⊂ EndF (L). �

Example 5.18. Another important example for an order in M2(Qp) is given by

M0(pk) =

{(
a b
c d

)
∈M2(Zp) : c ∈ pkZp

}
.

Note that this order can be constructed as the endomorphism ring of a lattice.

We not turn to the non-split situation. We are still considering F = Qp but
now we are assuming that B is a division algebra. Here we have the following
important result.

Lemma 5.19. Let O = {α ∈ B : α is integral over Zp}. Here an element α ∈ B
is called integral if there is a monic P ∈ Zp[X] such that P (α) = 0. Then O is the
unique maximal order in B.

Proof. It can be seen that all elements of an order must be integral. Thus, if we
succeed to show that O is an order it must be the unique maximal order, since it
contains all orders. We claim that O coincides with the valuation ring of B. If
this is shown O is obviously a ring and satisfies QpO = B. Furthermore, since all
elements of O are integral it follows that it must be an order.13

Thus we need to show that α ∈ O if and only if w(α) ≥ 0. To show this we first
suppose that α is integral. Then the minimal polynomial fα(X) = X2− tr(α)X +

nr(α) ∈ Zp[X]. In particular nr(α) ∈ Zp and w(x) = nr(α)
2
≥ 0. On the other

hand, if w(α) ≥ 0 we set K = Qp(α) and obviously 0 ≤ w(α) = w|K(α). Since the
ring of integers of K coincides with the valuation ring w|−1

K (R≥0) we are done. �

Corollary 5.20. We can write O = SK + SKj, where SK is the ring of integers
in K = Qp(

√
e) the unique unramified extension of Qp and P = Oj is the unique

maximal ideal of O.

Proof. By Theorem 5.8 we have B ∼=
(
e,p
Qp

)
. We can rewrite this as B = K + Kj

with j2 = p. In particular, given α = u+ vj we have nr(α) = nr(u)− pnr(v). Now
the p-adic valuation of nr(u) is even while the one of pnr(v) is odd. We conclude
that vp(nr(α)) ≥ 0 if and only if vp(nr(v)) ≥ 0 and vp(nr(u)) ≥ 0. We are done
since SK = {x ∈ K : vp(nr(x)) ≥ 0}. �

Example 5.21. Let B =
(
−1,−1
Q2

)
. One can show that the element w = 1

2
(−1 +

i + j + k) satisfies the Z2-integral equation w2 + w + 1 = 0. One concludes that

13It makes a nice exercise in algebra to show that a ring O consisting of integral elements with
QpO = B is finitely generated.
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the order Z2 + Z2i + Z2j + Z2k is not maximal. On the other hand the unique
maximal order is given by O = Z2 + Z2i+ Z2j + Z2w.

We now turn to the global situation. Let F = Q and B be a quaternion algebra
over Q. Let us start with a simple example.

Example 5.22. The lattice L = Z + Zi + Zj + Zk is an order, the so called
Lipschitz order, in B, but is not maximal. It is contained in the maximal order

O = Z + Zi+ Zj + Zw,

for w = −1+i+j+k
2

. This order is called the Hurwitz order.

In general orders in B are very wild objects. Therefore we restrict ourselves to
special classes of orders.

Definition 5.6. An order O ⊂ B is called hereditary if for all p we have Op is
maximal or Op

∼= M0(p) ⊂ M2(Qp) ∼= Bp. More generally we call O an Eichler
order if Op is maximal or Op

∼= M0(pk) ⊂M2(Qp) ∼= Bp.

Definition 5.7. Let O ⊂ B be an order with Z-basis α1, α2, α3, α4. Then we
define

disc(O) = |det(tr(αiαj))i,j| ∈ N.

Note that in general the discriminant is an ideal instead of a ring element.
However, since all the rings we are considering are principal ideal domains we can
make this simplification here.

Example 5.23. If B =
(
a,b
Q

)
and O = Z + Zi+ Zj + Zk, then

disc(O) = (4ab)2.

Proposition 5.24. An order O is maximal if and only if disc(O) = disc(B)2.
Furthermore, O is hereditary if and only if disc(O) = M2 disc(B)2 with M square-
free and (disc(B),M) = 1.

The proof reduces to local computations of discriminants using the following
two lemmata. We leave the details to the reader.

Lemma 5.25. Let O ⊂ O′ be two orders in B. Then

disc(O) = [O′ : O]2Z disc(O′),

for [O′ : O]Z = ](O′/O).14 Furthermore, O = O′ if and only if disc(O) = disc(O′).

Lemma 5.26. We have disc(Op) = pvp(disc(O)) and disc(O) =
∏

p disc(Op).

14From this one can derive that disc(O) is always a square. Thus some authors prefer to define

the reduced discriminant which essentially is discrd(O) =
√

disc(O). Of course there is also a
proper algebraic construction of the reduced discriminant.
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We end this subsection on orders by quickly discussing the unit group O× of an
order O ⊂ B, for definite B. Recall that we have the inclusion B ⊂ B∞. Since
B is definite B∞ is a divison algebra, so that nr : B → R defines an anisotropic
quadratic form. Since B∞ is a finite dimensional real vector space nr must be
definite. Further nr(1) = 1, which implies that nr is positive definite.

Now suppose u ∈ O×. Then nr(u), nr(u−1) ∈ Z+, since O is an order. Further
by multiplicativity of the norm we must have nr(u) · nr(u−1) = 1. Thus nr(u) = 1.
Since O is a lattice and {x ∈ B∞ : nr(x) = 1} is compact we find that O× is finite.

Note that more can be said. Indeed, by uniqueness we know that B∞ ∼= H. But
the unit group of the Hamiltonian quaternions and its finite subgroups are well
understood. One can prove the following theorem.

Theorem 5.27. Let O be a Z-order in a definite quaternion algebra B. Then
O×/{±1} is one of the following:

• Cyclic of order 2,4 or 6;
• Quaternion of order 8;
• Binary dihedral of order 12;
• Binary tetrahedral of order 24.

Exercise 9. Let B =
(
−2,−37

Q

)
. Show that

O =
1

2
(1 + j + k)Z +

1

4
(i+ 2j + k)Z + jZ + kZ (15)

is a maximal order.

Proof. We first compute the matrix

A = (tr(αiαj))i,j = −


54 37 37 74
37 28 37 37
37 37 74 0
74 37 0 148

 .

Now disc(O) = |det(A)| = 1396 = 372. Since disc(B) = 37 we find that O is
maximal. �

5.3. Ideals in quaternion orders. Let B be a finite dimensional Q-algebra. It
would make sense to consider more generally finite dimensional F -algebras, for a
number field F , but for our purposes F = Q suffices.

We will now have to talk about ideals and ideal classes in orders. The goal is to
somehow generalise the theory known for number fields. It is however necessary
to properly deal with the non-commutativity.

Definition 5.8. We call a lattice L principal if there is α ∈ B such that

L = Ol(L)α = αOr(L).

We call α the generator of L. We call L locally principal if Lp is principal for
all p. We call L integral if L ⊂ Ol(L) ∩Or(L).
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Remark 5.28. It is a nice exercise to observe that the obvious notions of left-integral
and left-principal are equivalent to our definition. Further one can observe that L
is integral if and only if it is a right (resp. left) Or(L) ideal (resp. Ol(L) ideal).

Definition 5.9. let O be an order in B. A left-fractional-O-ideal (resp. right-
fractional-O-ideal) is a lattice L ⊂ B such that O ⊂ Ol(L) (resp. O ⊂ Or(L)).
Given two order O,O′ we say L is a fractional-O,O′-ideal if it is a left-fractional-
O-ideal and a right-fractional-O′-ideal. We call L sated (as a left-fractional-O-
ideal) if O = Ol(L). We can extend the notion of satedness in the obvious way to
right-fractional-O-ideals and fractional-O,O′-ideals.

Definition 5.10. Let L, J ⊂ B be two lattices. We say L is compatible with J
if Or(L) = Ol(J). We set

LJ = {αβ : α ∈ L, β ∈ J}.

Definition 5.11. We call a lattice L ⊂ B right (resp. left) invertible if there is
a lattice L′ ⊂ B such that L is compatible with L′ (resp. L′ is compatible with L)
and LL′ = Ol(L) (resp. L′L = Or(L)). We call L′ the right (resp. left) inverse of
L. We say L is invertible if there is a lattice L′ which is simultaneously right and
left inverse for L. We call L′ the two-sided inverse and write L−1 = L′. It is given
by

L−1 = {α ∈ B : LαL ⊂ L}.

Remark 5.29. It is a nice exercise to show that principal lattices are invertible.

Definition 5.12. A left (resp. right) fractional O-ideal is lattice L ⊂ B with
O ⊂ Ol(L) (resp. O ⊂ Or(L)). We define

nr(L) = gcd({nr(α) : α ∈ L}).
For an integral ideal L we define the absolute norm by

N(L) = ](Ol(L)/L).

If L is fractional there is α ∈ B× with αL integral and we define in an ad-hoc
manner15

N(L) =
N(αL)

nr(α)2
.

Remark 5.30. If L is principal with generator α, then we have nr(L) = nr(α).
More generally one has nr(αL) = nr(α)nr(L). Further nr(L1L2) | nr(L1)nr(L2)
but equality does not hold in general. To prove these facts is a nice exercise.

Lemma 5.31. Suppose L1 is compatible with L2 and L1 or L2 is locally principal,
then nr(L1L2) = nr(L1)nr(L2).

15One can correctly define the Z-module NmB/F (L) = {nr(α)2 : α ∈ L} the absolute norm is

then given by N(NmB/F (L)). This works also over number fields.
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Proof. Note that the equality nr(αL) = nr(α)nr(L) holds also locally. Thus one
completes the proof by observing that nr(L) =

∏
p nr(Lp). �

In the split case we have the following nice result concerning principal lattices.

Proposition 5.32. Let R be a principal ideal domain and F = Q(R) be its field
of fractions. Further let L ⊂ M2(F ) be an R-lattice such that Ol(L) or Or(L) is
maximal. Then L is principal and both Ol(L) and Or(L) are maximal.

Proof. Without loss of generality we assume that L is integral and Ol(L) = M2(R)
is maximal (rescaling and conjugating).

We choose a set of generators α1, . . . , αm of L and define the matrix

A = (α1 · · ·αm)t ∈M2m×2(R).

Bringing this matrix in Hermite normal form yields Q ∈ GL2m(R) with QA =
(β, 0)t for β ∈M2(R). One concludes the proof by showing

L = M2(R)β.

We leave the details as an exercise. �

In a similar direction one has the following important result.

Proposition 5.33. A lattice L is invertible if and only if L is locally principal.

Corollary 5.34. It L1 or L2 is invertible, then nr(L1L2) = nr(L1)nr(L2).

Definition 5.13. We call a fractional-O,O′-ideal L invertible if it is invertible
as a lattice and sated.

Remark 5.35. It can be shown, that for a maximal order O all left (or right)
fractional O-ideals are invertible. This does not remain true in general.

Definition 5.14. Two lattices L1, L2 ⊂ B are in the same right class, if αL1 = L2

for some α ∈ B×. We write L1 ∼r L2. (Similarly one defines left classes.) This
defines an equivalence relation and we denote its classes by [·]r. We define the
right class set of O by

Clsr(O) = {[L]r : L is an invertible right-fractional-O-ideal }.

Our task is now to show that the right class set is finite. To do so we will employ
the geometry of numbers. Let us start by giving a crash course in it.

A lattice Λ ⊂ Rn is a discrete subgroup such that Rn/Λ is compact. Alterna-
tively we can say Λ ∼= Zn and RΛ = Rn. We define

covol(Λ) = vol(Rn/Λ).

More concretely there is a basis α1, . . . , αn of Rn such that Λ =
⊕

i Zαi and
covol(Λ) = |det(αij)i,j|.

We will use the following theorem.
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Theorem 5.36 (Minkowski). Let X ⊂ Rn be a closed convex symmetric subset
and let Λ ⊂ Rn be a lattice. If vol(X) ≥ 2ncovol(Λ) then there is 0 6= α ∈ Λ ∩X.

Proposition 5.37. Let B be a definite Quaternion algebra over Q with an order
O ⊂ B. Then every ideal class in Clsr(O) is represented by an integral right-O-
ideal L with

N(L) ≤ 8

π2

√
disc(O).

In particular, the right class set Clsr(O) is finite.

Proof. Let B =
(
a,b
Q

)
. Since B is supposed to be definite we can assume a, b ∈ Z<0.

We have
B∞ = B ⊗Q R ∼= H.

More concretely we can embed B∞ ↪→ R4 via

t+ xi+ yj + zk 7→
√

2(t, x
√
−a, y

√
−b, z

√
ab).

It is easy to verify that 2nr(α) = ‖α‖2, where ‖ · ‖ is the usual euclidean norm on
R4. Further we compute

disc(O) = covol(O)2,

where we view O as a lattice in R4 under the embedding above. This is obvious if
we can choose a diagonal basis for O.

Let J be an invertible right-fractional-O-ideal. We need to find an integral
ideal L with small absolute norm in the same class of J . To do so we set c4 =
32
π2 covol(J−1) and X = Bc(0). This is obviously closed, symmetric and convex with

vol(X) = 16covol(J−1),

so that Minkowski’s theorem tells us that there is α ∈ (J−1 ∩ X) \ {0}. We put
L = αJ . By construction we have [L]r = [J ]r and L is obviously integral. We have
to estimate the absolute norm:

N(αJ) = nr(α)2N(J) =
1

4
‖α‖4N(J) =

1

4
‖α‖4 disc(O)

1
2

covol(J−1)
≤ 8

π2
disc(O)

1
2 .

The finiteness of the right class set follows since there are only finitely many
integral-right-O-ideals of given norm. �

Definition 5.15. We say two orders are of the same type if there is α ∈ B× such
that O′ = α−1Oα. We write O ≡ O′. We call O and O′ connected if O′p ≡ Op for
all p. We set

Gen(O) = {O′ : O′ is connected to O}.
We define the type-set of O, denoted by Typ(O), to be a set of different types of
orders making up the genus of O.16

16Of course being of the same type defines an equivalence relation on the set of all orders and
thus in particular on Gen(O). The type set is exactly given by Gen(O) modulo this equivalence
relation.
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Example 5.38. There is a unique genus consisting exactly of maximal orders.

Lemma 5.39. Let O′ ∈ Gen(O) then ]Clsr(O) = ]Clsr(O
′).

Proof. The key is to construct a locally principal fractional O,O′ ideal J ⊂ B. Once
one found such an ideal, also called a connecting ideal, one obtains the bijection

Clsr(O)→ Clsr(O
′), [I]r 7→ [IJ ]r.

It is a nice exercise to construct J using the assumption that O and O′ are
connected. One can even go further and show that O and O′ are connected if and
only if such an ideal J exists. �

Remark 5.40. One can show that the map

Clsr(O)→ Typ(O), [I]r 7→ class of Ol(I)

is surjective. In particular, the set Typ(O) is finite.

We end this section by giving an idelic incarnation of the right-class-set. To do
so we quickly introduce some notation. We write

A×B,f =
∏
p

′
B×p = {(bp)p : bp ∈ O×p for all but finitely many p},

A×B = B∞ × A×B,f and Ô× =
∏
p

O×p .

These are the finite ideles and the ideles of B. Note that B× embeds diago-

nally in A×B and A×B,f . Further O× embeds diagonally in Ô×. Suppressing these
embeddings from the notation we have

B× ∩ Ô× = O×.

Lemma 5.41. There is a bijection

Clsr(O)↔ B×\A×B,f/Ô
×.

Proof. Take an invertible right-fractional-O-ideal I. Then I is locally principal
so that we can write Ip = αpOp for αp ∈ B×p , which are well defined up to right
multiplication by O×p . Thus we get a well defined map

{ invertible right-fractional-O-ideals } → A×B,f/Ô
×, I 7→ (αp)p.

This map descents to the desired bijection. �

This is completely analogue to the situation in quadratic fields K (or more
generally separable Q algebras of dimension 2) with an (Z)-order r. Indeed here
one has an group-isomorphism

Cls(r) ∼= K×\A×K,f /̂r
×. (16)
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Here the definitions are completely analogous.

A×K,f =
′∏
p

[K ⊗Qp], and r̂× =
∏
p

[r⊗ Zp]×.

The adeles and ideles turn out particular useful if one wants to work over more
general number fields than Q. However, they form a flexible framework to ef-
ficiently implement the local-to-global arguments that we have already used so
many times.

We conclude this section by proving an adelic compactness result which also
implies the finiteness of the class number. Note that the ideles come with a mul-
tiplicative map

‖ · ‖ : A×B → R>0, (αv)v 7→
∏
v

|nr(αv)|v.

We define A(1)
B = ker(‖ · ‖). Of course we have the inclusion B× ⊂ A(1)

B diagonally.

Theorem 5.42. Let B be a division algebra over Q, then B× ⊂ A(1)
B is co-compact.

Remark 5.43. One deduces easily that B× ⊂ A×B,f is co-compact which on the other

hand implies that B×\A×B,f/Ô× is finite. This is a standard topological argument!

Proof. In this proof we will use the following existence statement which can be
interpreted as an adelic version of Minkowski’s convex body theorem. There is a

compact set E ⊂ AB such that for all β ∈ A(1)
B the map βE ↪→ AB → B\AB is

not injective.
Let E be as above and set X = E − E. Note that X as well as X · X are

compact in AB.
By construction of E there exist distinct elements x, x′ ∈ E such that β(x−x′) ∈

B \ {0} = B×. Thus, for all β ∈ A(1)
B we know that βX ∩B× 6= ∅.

Define T = B× ∩X ·X. Since X ·X is compact and B× is discrete, T must be
a finite set. Further we put

K = T−1 ·X ×X,

which is obviously finite. Now given β ∈ A(1)
B we know that βX ∩ B× 6= ∅ and

similarly Xβ−1 ∩ B× 6= ∅. Unravelling this we find v, v′ ∈ X and b, b′ ∈ B× such
that βv = b and v′β−1 = b′. In particular

b′b = (v′β−1) · (βv) = v′v ∈ B× ∩X ·X = T.

This implies v−1 ∈ T−1X and β = bv−1. Thus we have seen that we can decompose

A(1)
B = B×d−1(K) where d : A(1)

B 3 x 7→ (x, x−1)A×B × A×B.
In particular we have a surjection d−1(K) → B×\A(1)

B . Since the set d−1(K) is
compact we are done. �
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5.4. Eichler’s mass formula. We are now going to prove a formula for the
(weighted) number of (right)-classes in an order O. This can be seen as a quater-
nionic analogue of Dirichlet’s class number formula for imaginary quadratic fields.

Definition 5.16. Given an order O we define the zeta-function of O by

ζO(s) =
∑
I⊂O

1

N(I)s
=
∞∑
n=1

an(O)

n2s

with

an(O) = ]{I ⊂ O : nr(I) = n}.

If O is a maximal order this corresponds to the Dedekind zeta function of an
imaginary quadratic field.

Lemma 5.44. If O′ ∈ Gen(O), then an(O) = an(O′) for all n ∈ N. In particular,
ζO depends only on the genus of O.

Proof. Using the local to global properties of lattices it is easy to construct a
bijection between {I ⊂ O : nr(I) = n} and {I ⊂ O′ : nr(I) = n}. �

Lemma 5.45. Let I be an invertible integral lattice with nr(I) = nm for integer
(n,m) = 1. Then there is a unique integral lattice J such that I is compatible with
J−1 and IJ−1 is integral and nr(J) = m.

Proof. The lattice J is constructed locally. �

Corollary 5.46. For (n,m) = 1 we have anm(O) = an(O)am(O).

Proof. Let An(O) = {I ⊂ O : nr(I) = n}. We have a map

Anm(O)→ An(O), I 7→ J,

where J is the unique lattice constructed in the previous lemma. One can show
that each fibre of this map has cardinality am(O). �

This obviously implies that ζO(s) is eulerian. Thus we can write

ζO(s) =
∏
p

ζOp(s).

If O is a maximal order the numbers an(0) can be computed explicitly and one
finds

ζO(s) = ζ(2s)ζ(2s− 1)
∏

p|disc(B)

(1− p1−2s).

On the way one establishes that, for (n, disc(O)) = 1, we have

an(O) = σ1(n).
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Lemma 5.47. For a maximal order O we have

ζ∗O(1) = lim
s↓0

(s− 1)ζO(s) = π2ϕ(H)

12H
,

where H = disc(B).

Proof. From the explicit formula above we see that

ζ∗O(1) = ζ(2)︸︷︷︸
=π2

6

ϕ(H)

H
lim
s↓0

(s− 1)ζ(2s− 1)︸ ︷︷ ︸
= 1

2
ζ∗(1)= 1

2

.

�

The main reason behind defining these quaternionic zeta functions is to gener-
alise Dirichlet’s class number formula for imaginary quadratic fields. Indeed one
can prove the following weighted class number formula for Eichler orders.

Theorem 5.48. Let B be a definite Quaternion algebra over Q and let O be an
Eichler order with disc(O) = M2D2, where D = disc(B) and (M,D) = 1. Then

mass(Clsr(O)) =
∑

[J ]r∈Clsr(O)

1

wJ
=
ϕ(D)Mψ(M)

12
,

where wJ = ](Ol(J)×/{±1}) and ϕ is the Euler toitent function and ψ(M) =∏
p|M(1 + 1

p
).

Before we can prove this theorem we need some preparation.

Definition 5.17. We define the partial zeta-function of O as follows. Let J
be an integral invertible right-O-ideal. Then we define

ζO,[J ]r(s) =
∑
I⊂O,

[I]r=[J ]r

N(I)−s.

Remark 5.49. These new functions are built such that

ζO(s) =
∑

[J ]r∈Clsr(O)

ζO,[J ]r(s).

On the other hand, since µJ = J if and only if µ ∈ Ol(J)× and [I]r = [J ]r exactly
if I = αJ for α ∈ J−1, we have

ζO,[J ]r(s) =
1

wJN(J)s

∑
0 6=α∈J−1/{±1}

nr(α)−2s.

We will need to understand the analytic properties of these functions. We will
do this by invoking the following theorem, which we don’t prove here.
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Theorem 5.50. Let Λ be a Z-lattice, X ⊂ Rn be a cone and N : X → R>0

be a function such that N(tx) = tnN(x) for all x ∈ X and t ∈ R+. We set
X≤1 = {x ∈ X : N(x) ≤ 1}. Then

ζΛ,X(s) =
∑
X∩Λ

1

N(Λ)s

converges for Re(s) > 1 and

ζ∗Λ,X(1) =
vol(X≤1)

covol(Λ)
.

Lemma 5.51. We have

ζ∗O,[J ]r(1) =
π2

wJ disc(O)
1
2

.

Proof. First we can identify J−1 with a lattice Λ ⊂ R4. This is done as in the
proof of Proposition 5.37. There we did also see that

covol(Λ) =
disc(O)

1
2

N(J)
.

Recall that under this identification we also have 2nr(α) = ‖α‖2. We now take
the cone X by suitably choosing a fundamental domain for the action of {±1} on
BR ∼= R4. Putting N = ‖ · ‖4, we find

ζO,[J ]r(s) =
1

wJ(4N(J))s
ζΛ,X(s).

The above theorem implies the statement since vol(X≤1) = π2

4
. �

Proposition 5.52. If O is a maximal order, then

mass(Clsr(O)) =
ϕ(H)

12
,

where H is the discriminant of B.

Proof. Since disc(O) = H2 for maximal orders we have

ϕ(H)

12
=
H

π2
ζ∗O(1) =

H

π2

∑
[J ]r∈Clsr(O)

ζ∗O,[J ]r(1) = mass(Clsr(O)).

�

We will now reduce the general case to the one of maximal orders as follows.

Definition 5.18. We call O′ ⊃ O a (Z)-superorder if there is a prime l such
that O′p = Op for all p 6= l.

Lemma 5.53. If O′ is a superorder of O, then we have

mass(Clsr(O)) = [(O′l)
× : O×l ]mass(Clsr(O

′)).



TOPICS IN AUTOMORPHIC FORMS 65

Proof. We have the surjective map

Clsr(O)→ Clsr(O
′), [I]r 7→ [IO′]r.

We need to understand the fibres of this map. Without loss of generality we
can work with suitable representatives. The fibres of this map (on the level of
representatives) are

F (I ′) = {I ⊂ O : IO′ = I ′}.
Given µl ∈ (O′l)

× we define

[Iµl ]p =

{
βlµlOl if p = l and Ip = βpOp,

Ip if p 6= l.

This defines a simply transitive right action of (O′l)
× on F (I ′). The kernel is of

course O×l . In particular ]F (I ′) = [(O′l)
× : O×l ]. One further checks that [Iµl ]r =

[Iνl ]r if and only if αIµl = Iνl for α ∈ Ol(I
′)×. We thus get

mass(Clsr(O)) =
∑

[I′]r∈Clsr(O′)

∑
I∈Ol(I′)×\F (I′)

1

wI
.

Unravelling the inner sum using the observation above concludes the proof. �

In general the index [(O′l)
× : O×l ] is determined by the so called local Eichler-

symbol.17 Since we are only interested in Eichler orders we can be more concrete.
Suppose Bl splits and Ol = M0(lk). We now take O′l = M2(Zl). It is well known
that in this case it is well known, that18

[(O′l)
× : O×l ] = lk(1 + l−1) = ψ(lk).

With this at hand we can complete the proof of the main theorem of this section.

Proof of Theorem 5.48. We argue by induction on the number of prime divisors of
M . If M = 1, then we are done because O is maximal. Now suppose l | M . Let
O′ be the Eichler order of level M/(M, l∞). This is a superorder of O and by the
results above we have

mass(Clsr(O)) = ψ((M, l∞))mass(Clsr(O
′)).

We conclude the prove by applying the induction hypothesis together with

ψ((M, l∞))ψ(M/(M, l∞)) = ψ(M).

�

Note that Eichler’s mass formula is a very clean statement. Unfortunately it is
not a straight forward task to remove the weights wJ . This can be done with the
help of the theory of embedding numbers which we develop next.

17This should remind one of how the Kronecker-symbol turns up when relating class numbers
of orders in imaginary quadratic fields to the class number of the ring of integers.

18This is a reincarnation of the fact [SL2(Z) : Γ0(lk)] = ψ(lk).
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Exercise 10. Let B =
(
−2,−37

Q

)
and take O as in (15). Show that O has class

number 3. Further, find representatives of left O ideals and compute their norm.

Proof. In practice one can use Proposition 5.37 to find integral representatives for
the class group of small norm. In our particular case one would need to find all
integral ideals I with

1 ≤ nr(I) = N(I)
1
2 ≤ 5 <

2

π

√
2 · 37 < 6.

Of course the only ideal of norm 1 is the order itself and we have I1 = O. The
computations for 2, 3, 4 and 5 get slightly unpleasant. The idea however is that,
since p = 2, 3, 5 are unramified, we can embed Op ↪→ M2(Zp) for p = 2, 3, 5.
One then uses normal form theory to classify all possible ideals of these norms.
The tricky bit is then to find the relations between them and pick convenient
representatives. This is illustrated in [9][Example 17.6.3] for a different B and O.

We omit the computations but give the following set of representatives taken
from [5][Example 10.1]: Clsl = {[I1]l, [I2]l, [I3]l} for I1 = O,

I2 = (2 + 6j + 10k)Z + (i+ 2j + 9k)Z + 12jZ + 12kZ,
I3 = (2 + 26j + 26k)Z + (i+ 2j + 13k)Z + 28jZ + 28kZ.

Note that it is not hard to pass from left classes to right classes. However, these
representatives don’t have small norm.

�

5.5. Embedding numbers. Let K be a separable quadratic Q-algebra (i.e. ei-
ther a separable quadratic field extension of Q or Q × Q). Embeddings from
K ↪→ B are parametrised by K×\B×. This can be deduced from the Skolem-
Noether theorem.

We want to restrict our attention to integral embeddings. More precisely, fix an
order O ⊂ B and an order r ⊂ K. We consider embeddings φ : r ↪→ O. Such an
embedding can be extended to K in the obvious way.

Definition 5.19. An embedding φ : r ↪→ O is optimal if it satisfies

φ(K) ∩O = φ(r).

The set of all such embeddings is denoted by Emb(r, O).

This gives the following partition of the set of all embeddings:

{φ : r→ O} =
⊔
r′⊃r

Emb(r′, O).

Example 5.54. Suppose d < 0 with d ≡ 0, 1 mod 4, then K = Q(
√
d) defines an

imaginary quadratic field of discriminant dK = f−2d and ring of integers OK . Fur-
thermore, there is exactly one order rf2dK ⊂ OK of conductor f and discriminant
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d. We have
{φ : rf2dK → O} =

⊔
f ′|f

Emb(rf ′2dK , O).

Lemma 5.55. An embedding φ : r ↪→ O is optimal if and only if φp : rp ↪→ Op is
optimal for all p.

Proof. Follows directly from the local-to-global properties of lattices. �

Given γ ∈ O× and an optimal embedding φ : r ↪→ O we can form the conjugate
α 7→ γ−1φ(α)γ. We set

Emb(r, O,O×) = Emb(r, O)/ ∼O× ,
where ∼O× is the equivalence relation coming from conjugation with elements of
O×. We set

m(r, O,O×) = ]Emb(r, O,O×).

Lemma 5.56. We have

Emb(r, O) = K×\E and Emb(r, O,O×) = K×\E/O×,
for

E = {β ∈ B× : K ∩ βOβ−1 = r}.

We have the following important result, which reduces the computation of em-
bedding numbers to local considerations.

Proposition 5.57. One has∑
[I]r∈Clsr(O)

m(r, Ol(I), Ol(I)×) = h(r)m(̂r, Ô, Ô×).

Here the adelic embedding number is defined by m(̂r, Ô, Ô×) = ]A×K,f\Ê/Ô×, for

Ê = {β ∈ A×B,f : β−1AK,fβ ∩ Ô = β−1r̂β}.

Proof. We have the natural surjective map

K×\Ê/Ô× ρ→ A×K,f\Ê/Ô
×.

We claim that the cardinality of the fibres of ρ is precisely the class number h(r).19

In general the the fibre ρ−1(A×K,fβÔ×) consists of

K×vβÔ× with K×v ∈ K×\A×K,f .

A short computation shows that K×vβÔ× = K×βÔ× if and only if K×v ⊂ K×r̂×,
which establishes the claim. We deduce that

]K×\Ê/Ô× = h(r)m(r̂, Ô, Ô×). (17)

19The cleanest instance of this is ρ−1(1) = K×A×K,f/r̂× ∼= Cls(r).
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We now compute this cardinality in a different way. We choose representatives

A×B,f =
⊔

[I]∈Clsr(O)

B×αiÔ
×.

In particular, I = αiÔ ∩ B. To save space we write OI = Ol(I) = αiÔα
−1
i ∩ B.

Finally define
EI = {β ∈ B× : K ∩ βOIβ

−1 = r}.
For βÔ× ∈ Ê/Ô× there is a unique I such that

B×βÔ× ⊂ B×αIÔ
×.

In particular there is b ∈ B× such that βÔ× = (bαIÔ
×) and the class bO×I is well

defined. One checks that b ∈ EI and that given b ∈ EI one has β = bα−1
I ∈ Ê.

Thus we have the bijections

K×\Ê/Ô×
K×βÔ× 7→K×bO×I−→

⊔
[I]∈Clsr(O)

K×\EI/O
×
I →

⊔
[I]∈Clsr(O)

Emb(r, OI , O
×
I ).

Together with (17) this competes the proof. �

This result expresses an average of embedding numbers in terms of the cardinal-
ity of an adelic (double)-quotient. There is hope that the latter can be computed
place by place. Therefore we work locally and assume that rp = Zp[γ]. Let
fγ(X) = X2 − tX + n be the minimal polynomial of γ and write d = t2 − 4n.

Lemma 5.58. Suppose Bp = M2(Qp) and Op is maximal. Then

m(rp, Op, O
×
p ) = 1.

Proof. Because the embedding number only depends on the type of Op we can
assume that Op = M2(Zp). Now we have a canonical optimal embedding given by

γ 7→
(

0 −n
1 t

)
.

Given another embedding ψ defined by

ψ(γ) =

(
a b
c d

)
one considers q(x1, x2) = cx2

1 + (d − a)x1x2 − bx2
2. One can see that there is

x = (x1, x2)t ∈ Z2
p such that q(x1, x2) ∈ Z×p . We define the matrix α = (xψ(γ)x).

Since det(α) = q(x1, x2) we have α ∈ GL2(Zp) = O×p . Furthermore, this matrix is
constructed such that

α−1ψ(γ)α =

(
0 −n
1 t

)
.

We have seen that every other optimal embedding is O×-conjugate to the canonical
one. This completes the proof. �
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We are now going to compute the local embedding numbers in some other im-
portant cases. We define the Legendre type symbol

(
K

p

)
=


1 if Kp

∼= Qp ×Qp,

0 if Qp ⊂ Kp is ramified,

−1 if Qp ⊂ Kp is unramified.

Lemma 5.59. Let Bp be a divison algebra and Op ⊂ Bp maximal. Then we have

m(Sp, Op, O
×
p ) =

{
1−

(
K
p

)
if rk is maximal,

0 else.

Proof. It is a well known fact, that there are only embeddings Kp → Bp if Kp is a
field. Furthermore, since Op is maximal it is the ring of integral elements in Bp.
In particular, if rp is not maximal it is not integrally closed and thus can not be
embedded in O in an optimal manner. Thus we take rp to be maximal.

Observe that for all β ∈ B×p we have βOpβ
−1 = Op, by uniqueness of the maximal

order. We conclude that E = B×p . By Corollary 5.20 we have Op = S ⊕Sj, where
S is the maximal order in the unique unramified quadratic extension Fp of Qp and
j is an element in B with nr(j) = p.

If Kp is unramified, then Kp = Fp and rp = S. In this case we have two optimal
embeddings, since conjugation by j normalises Kp.

If Kp is ramified, then Kp = Qp[j] and this determines the only optimal embed-
ding. �

This lemma can be nicely rephrased in terms of the modified Kronecker-symbol
defined in (13).

Corollary 5.60. Let r ⊂ K be an order in an imaginary quadratic field K of
discriminant dr,. Further let Bp be non-split and let Op ⊂ Bp be the maximal
order. Then

m(Sp, Op, O
×
p ) = 1−

{
dr
p

}
.

Lemma 5.61. Let Bp be split and Op
∼= M0(p). Further assume that r ⊂ K is an

order of discriminant dr. Then we have

m(rp, Op, O
×
p ) = 1 +

{
dr
p

}
.

Proof. We will only sketch this proof. A reincarnation of Atkin-Lehner theory tells
us that (for k > 0)

NB×p
(Op) = {β ∈ GL2(Qp) : βM0(pk)β−1 = M(pk)} = 〈Qp×O×p ,Wpk〉,
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for Wpk =

(
0 1
pk 0

)
. Given an optimal embedding φ we define the A-L-conjugate

embedding20 by

φA−L(α) = W−1
pk
φ(α)Wpk .

Further we call an embedding normalised and associated to x if

φ(γ) =

(
x 1

−fγ(x) t− x

)
.

The proof now roughly proceeds as follows.
First, one shows that either the class of φ or the class φA−L in Emb(rp, Op, O

×
p )

is represented by a normalised embedding.
Second, one investigates when normalised embeddings are conjugate by O×p .

One finds

(1) Two normalised embeddings φ and φ′ are O×p conjugate if and only if x ≡
x′ mod pk;

(2) If d ∈ Z×p , then φA−L and φ′ are O×p conjugate if and only if x′ ≡ t −
x mod pk;

(3) If d ∈ pZp, then φA−L and φ′ are O×p conjugate if and only if x′ ≡ t −
x mod pk and fγ(x) 6≡ 0 mod pk+1;

Third, we parametrise the set of optimal embeddings up to conjugation by O×p
terms of normalised embeddings and their Atkin-Lehner conjugates. Using the list
above this leads to

m(rp, Op, O
×
p ) = ]M(k) + δp|d][img(M(k + 1)→ Zp/pkZp)],

for

M(e) = {x ∈ Zp/peZp : fγ(x) ≡ 0 mod pe}.
Finally, one counts elements in M(e) using the arithmetic of Zp. �

Corollary 5.62. Altogether we have seen that, if O is hereditary and r ⊂ K is an
order of discriminant dr, then

m(̂r, Ô, Ô×) =
∏

p|disc(B)

(
1−

{
dr
p

}) ∏
p| disc(O)

disc(B)2

(
1 +

{
dr
p

})
.

If r is maximal, then the modified Kronecker symbols reduce to classical Legendre
symbols.

We will encounter these notions again when we are computing the traces of
Brandt matrices. On a similar note one can use embedding numbers to compute
the class number on the nose. This is reflected in the following theorem.

20Disclaimer: No standard terminology!
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Theorem 5.63 (Eichler’s class number formula). Let B be a definite quaternion
algebra over Q and O ⊂ B be a (Z)-order. Then we have

]Clsr(O) = mass(Clsr(O)) +
1

2

∑
q≥2

∑
]r×/{±1}=q

h(r)m(̂r, Ô, Ô×).

We postpone the proof for now. A special case of this is the following.

Theorem 5.64. Let B be a definite Quaternion algebra over Q and let O be an
Eichler order with disc(O) = M2D2, where D = disc(B) and (M,D) = 1. Then

]Clsr(O) =
ϕ(D)ψ(M)

12
+
ε2
4

+
ε3
3
,

for

ε2 =

{∏
p|D

(
1−

(
−4
p

))∏
p|M

(
1 +

(
−4
p

))
if 4 - disc(O),

0 else,
(18)

and

ε2 =

{∏
p|D

(
1−

(
−3
p

))∏
p|M

(
1 +

(
−3
p

))
if 9 - disc(O),

0 else.
(19)

One can also compute Type numbers using similar machinery. An example is
the following result.

Theorem 5.65 (Deuring). Let B be a quaternion algebra with disc(B) = p ≥ 5
and let O be a maximal order. Then

]Typ(O) =
]Clsr(O)

2
+
]Cl(Q(

√
−p))

4
·


1 if p ≡ 1 mod 4,

4 if p ≡ 3 mod 8,

2 if p ≡ 7 mod 8.

Exercise 11. Compute mass(Clsr(O)), ]Clsr(O) and ]Typ(O) for O as in (15).

Proof. Of course we have

mass(Clsr(O)) =
ϕ(37)

12
= 3.

Further, by Eichler’s class number formula we find

]Clsr(O) = 3 +
1

4

(
1−

(
−4

37

))
+

1

3

(
1−

(
−3

37

))
= 3.

In particular, writing Clsr(O) = {[I1], [I2], [I3]} we find that Ol(Ii)
× = {±1} for

1 ≤ i ≤ 3. Note that Cls(Q(
√
−37)) = Z/2Z, so that Deuring’s result yields

]Typ(O) = 2.

�

Exercise 12. Fill in the details in the proof of Lemma 4.28 using the results of
this section.
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5.6. Brandt Matrices. Let B be a definite quaternion algebra over Q and let
O ⊂ B be an hereditary order. In the previous section we have seen that h =
]Clsr(O) < ∞. Further we can fix (integral) representatives (with small norm)
I1, . . . , Ih such that

Clsr(O) = {[I1]r, . . . , [Ih]r}.

Definition 5.20. We define the Brandt Matrix T (n) ∈Mh(Z) by

T (n)ij = ]{J ⊂ Ij : nr(J) = n · nr(Ij) and [J ]r = [Ii]r}.

Remark 5.66. For (n, disc(O)) 6= 1 this definition usually appears in slightly dif-
ferent form in order to make the Hecke-relations work for p | disc(O). This mod-
ification would of course also effect the right hand side of Eichler’s trace formula
for Brandt matrices as soon as (n, disc(O)) 6= 1. However, since we will not really
need these ramified Hecke-operators we will stick to this easier definition.

Let M2(O) = {Clsr → Z}. This is a free Z-module with (canonical basis)
B = {δ[Ii]r : 1 ≤ i ≤ h}. In this basis the Brandt-matrix defines a Z-linear map
T (n) : M2(O)→M2(O), which we call the nth Hecke operator. This operator can
be described by

[T (n)f ]([I]r) =
∑
J⊂I,

nr(J)=n·nr(I)

f([J ]r).

Lemma 5.67. Let qi = nr(Ii), Oi = Ol(Ii) and wi = ]O×i /{±1}. Then

T (n)ij =
1

2wi
]{α ∈ IjI−1

i : nr(α) =
qjn

qi
}.

Proof. We observe that αIi = J ⊂ Ij and nr(J) = n · nr(Ij) if and only if

α ∈ IjI−1
i and nr(α)qi = nqj.

We observe that α is uniquely determined up to right multiplication by µ ∈ O×i . �

Remark 5.68. Note that this reduces the computation of the entries T (n)ij of the
nth Brandt matrix to a lattice point enumeration. Indeed, we have a quadratic
form

Qij : IjI
−1
i → Z, α 7→ nr(α)

qj
qi
.

The entries are essentially given by the representation numbers a(n;Qij).

Proposition 5.69. The Brandt matrices have the following properties.

(1) The sums
∑h

i=1 T (n)ij are constant in j. Furthermore, if (n, disc(O)) = 1,
then we have

h∑
i=1

T (n)ij = σ1(n).
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(2) If (m,n) = 1, then

T (mn) = T (n)T (m).

Proof. We first prove the first point. To do so let f ≡ 1 be the constant one
function. Observe that∑
i

T (n)ij = [T (n)f ](Ij) =
∑
J⊂Ij

nr(J)=n·nr(Ij)

1 = ]{J ⊂ Ol(Ij) : nr(J) = n} = an(Ol(Ij)).

Since Ol(Ij) ∈ Gen(O) for j = 1, . . . , h the right hand side is independent of j.
Furthermore, if (n, disc(O)) = 1 we have computed it before.

Due to the definition of matrix multiplication we have to show that

T (nm)ij =
h∑
k=1

T (n)ikT (m)kj.

Given an ideal J contributing to T (nm)ij we have nr(JI−1
j ) = nm. Since (n,m) =

1 we can apply Lemma 5.45. This determines a unique ideal J1 such that nr(J1) =
n and nr(JI−1

j J−1
1 ) = n. From this decomposition one can construct a bijec-

tion between ideals J contributing to the count of T (nm) and tuples of ideals
(J1Ik, JI

−1
j J−1

1 Ij) contributing the the right hand count. �

Proposition 5.70. We have

T (pr+2) = T (pr+1)T (p)− pT (pr).

Proof. We would like to apply a similar tactic as previously and argue by uniquely
factoring ideals contributing to T (pr+2). However, this is not possible without
slightly modifying the argument.

We call an ideal I primitive if it can not be written as I = aI ′ for an integral
Ideal I ′ and a ∈ Z. We now decompose

T (pr+2) = Tprim(pr+2) + Timprim(pr+2)

accordingly. The upshot is, that for primitive ideals unique factorisation as earlier
essentially works.

We first observe that Timprim(pr+2) = T (pr−1). Now we look at

[T (pr+1)T (p)]ij =
h∑
k=1

T (pr+1)ikT (p)kj.

We can understand this as counting products J ′rJ
′ with J ′r being a invertible-Oi,Ok-

ideal with nr(J ′r) = pr and J ′ being a invertible-Ok,Oj-ideal with nr(J ′) = p. If
the product is primitive then it uniquely determines Jr and J ′ and it contributes
to the count of Tprim(pr+2)ij. So let us assume that J ′rJ

′ is imprimitive. It can be
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shown, that there are exactly as many configurations giving J ′rJ
′ = J̃ ′rJ̃

′ as there
are right-O-ideals of norm p. Since there are p+ 1 such ideals we get

T (pr+1)T (p) = Tprim(pr+2) + (p+ 1)Timprim(pr+2)

= T (pr+2) + pTimprim(pr+2) = T (pr+2) + pT (pr).

�

We now define a bilinear form 〈·, ·〉 : M2(O) ×M2(O) → Z which is symmetric
and non-degenerate. On the basis B this bilinear form is given by

〈δ[Ii]r , δ[Ij ]r〉 = wi · δi,j.

Proposition 5.71. For (n, disc(O)) = 1 the operator T (n) is self adjoint with
respect to 〈·, ·〉. In symbols, T (n)∗ = T (n).

Proof. Let W = diag(w1, . . . , wh). Using the basis B we can identify M2(O) with
Zh. Writing elements as row vectors we have 〈x, y〉 = xWyt. Further the Brandt
matrices act by right multiplication and the adjoint, defined by 〈xT (n), y〉 =
〈x, T (n)∗y〉, is given by

T (n)∗ = W−1T (n)tW.

We define A(n)ij = {α ∈ IjI−1
i : nr(α) = n

qj
qi
}. Thus,

WT (n) = (
1

2
]A(n)ij)i,j.

Our goal is to construct a bijection from A(n)ij to A(n)ji. This implies that

WT (n) = (WT (n))t = T (n)tW

and T (n)∗ = W−1T (n)tW = T (n) follows straight away.
The map is defined by

A(n)ij → A(n)ji, α 7→ nα−1.

If this map is well defined its obviously bijective. So let us start by checking

nr(nα−1) = n2n−1qiq
−1
j = n

qi
qj

as needed. Further we compute that

α ∈ IjI−1
i = I−1

i Ij =
qj
qi
IiI
−1
j .

Thus,

nα−1 =
n

nr(α)
α ∈ nqj

nr(α)qi︸ ︷︷ ︸
=1

IiI
−1
j .

�

Definition 5.21. Let T(O) be the subring of Mh(Z) generated by T (n) with
(n, disc(O)) = 1. We call this the unramified Hecke-algebra of O.
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Corollary 5.72. The space M2(O) is a (free) finite dimensional T(O) module
featuring a basis of simultaneous T(O) eigenfunctions.

Proof. This follows since T(O) is generated from a family of commuting operators
that are self adjoint with respect to 〈·, ·〉. �

Corollary 5.73. The ring T(O) is a commutative semisimple Z-algebra.

Exercise 13. Compute the Brandt matrices T (n) with n = 1, 2, 3 for the order O
defined in (15).

5.7. The Eichler-Brandt trace formula. Let B be a definite quaternion al-
gebra over Q and let O be a hereditary (Z)-order with disc(O)

1
2 = DM for

D = disc(B) and M square-free with (D,M) = 1.

Theorem 5.74 (Eichler’s trace formula IIa). For (n, disc(O)) = 1 we have

Tr(T (n)) =
1

2

∑
t∈Z

t2−4n<0

∑
f2|t2−4n

hO

(
t2 − 4n

f 2

)
+ δ√n∈Z

ϕ(D)Mψ(M)

12
.

with

hO(d) =
h(Sd)

](S×d /{±1})
∏

p|disc(O)

m([Sd]p, Op, O
×
p ).

We call the numbers hO(d) modified Hurwitz class numbers.

Proof. Note that

Tr(T (n)) =
∑
i

T (n)ii.

We write
2wiT (n)ii =

∑
t∈Z

]{α ∈ Oi : nr(α) = n, tr(α) = t}.

If and only if n is a perfect square we have the contribution α = ±
√
n ∈ Q to the

count. On the other hand, given any such α 6∈ Q contributing to the count we
consider the ring Z[α] ∼= Z[X]/(X2 − tX + n). This is an order of discriminant
t2 − 4n in Q(α). since any embedding of Z[α] is uniquely determined by its value
on α we obtain

]{α ∈ Oi : nr(α) = n, tr(α) = t}−2δn=� = 2]{φ : Z[α]→ Oi} =
∑

Z[α]⊂S

2]Emb(S,Oi).

Note that ]Emb(S,Oi) = wi
2](S×/{±1})m(S,Oi, O

×
i ). Further all orders in quadratic

fields are determined by their discriminant and real quadratic fields can not be
embedded into definite quaternion algebras. We conclude

Tr(T (n)) =
1

2

∑
t∈Z,

t2−4n<0

∑
f≥1,

f2|t2−4n

1

](S×
t2−4n

f2

/{±1})

h∑
i=1

m(S t2−4n

f2
, Oi, O

×
i )+δn=�mass(Clsr(O)).
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We conclude by Proposition 5.57. �

Remark 5.75. According to the explicit computations of local embedding numbers
we can compute the Hurwitz class numbers more explicitly in terms of modified
Kronecker-symbols. For a hereditary order O, we get

hO(d) =
h(Sd)

](S×d /{±1})
∏

p| disc(O)

disc(B)2

(
1 +

{
d

p

}) ∏
p|disc(B)

(
1−

{
d

p

})
. (20)

Exercise 14. Prove Theorem 5.63 using the trace formula for Brandt matrices.

5.8. Extending the Brandt matrix to non-trivial representations. In this
section we have to extend the definition of the Brandt matrix by a symmetric
kth-power. This is necessary to deal with the basis problem for arbitrary (even)
weight.

We start by making the following inclusion

ρ : B× −→ GL2(C), t+ ix+ jy + kz 7→
(

t+
√
−axiC

√
−by +

√
abziC

−
√
−by +

√
abziC t−

√
−axiC

)
.

Note that since B is definite we have a, b < 0 and the square roots are all real.
Further note that this inclusion satisfies

tr(α) = tr(ρ(α)) and nr(α) = det(ρ(α)).

Further we have the canonical map symk : GL2(C) → GLk+1(C) given by lifting
the standard representation of GL2(C) on C2 to Symk(C2). Combining these two
maps we obtain

ρk = symk ◦ρ : B× → GLk+1(C).

We collect two important results.

Lemma 5.76. The functions defined by

ρk(x1 + x2i+ x3j + x4k) = (Pij(x1, x2, x3, x4))0≤i,j≤k

are harmonic polynomials of degree k.

Proof. This can be reduced to well known facts from classical representation theory
of compact Lie-groups. �

Lemma 5.77. Suppose α ∈ B× is such that nr(α) = n and tr(α) = t. Then

tr(ρk(α)) =
λ+
n (t)k+1 − λ−n (t)k+1

λ+
n (t)− λ−n (t)

,

where λ+
n (t), λ−n (t) are the two solutions of X2 − nX + n.

Proof. This can be computed by diagonalising ρ(α). �
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For (n, disc(O)) = 1 we define the n-Brandt-matrix of weight k by

Tk(n) = (M
(k)
ij (n))1≤i,j≤h for M

(k)
ij (n) =

1

2wi

∑
ρk(α) ∈Mk+1(Q).

One can similarly define Tk(n) for (n, disc(O)) 6= 1. However in this case a slight
modification is to ensure the matrices satisfy a Hecke-like-relation. We will omit
these technicalities.

We define the Z-algebra

Tk(O) = 〈Tk(n) : (n, disc(O)) = 1〉Z.

Theorem 5.78. The Z-algebra Tk(O) is commutative and semisimple. Further-
more the Brandt-matrices satisfy the Hecke-relation

T (mpl+1) = T (mpl)T (p)− δp-disc(O) · δl>0 · pk+1T (mpl−1) (21)

for all primes p and (m, p) = 1.

Proof. We skip the proof and hope that the underlying principles are appropriately
illustrated by the k = 0 case discussed above. Note that the Hecke-relation for
primes p | disc(O) relies on a suitable definition of the Brandt matrices T (p) for
such p, which has not been discussed. �

Theorem 5.79 (Eichler’s trace formula IIb). Let O be a hereditary order of level
M , k even and (n, disc(O)) = 1. Then

Tr(Tk(n)) = δn=�(k + 1)n
k
2
Mψ(M)ϕ(D)

12
+

1

2

∑
t∈Z

t2−4n<0

λ+
n (t)k+1 − λ−n (t)k+1

λ+
n (t)− λ−n (t)

·
∑

f2|t2−4n

h(S t2−4n

f2
)

](S×
t2−4n

f2

/{±1})
∏

p| disc(O)

disc(B)2

(
1 +

{
t2−4n
f2

p

}) ∏
p|disc(B)

(
1−

{
t2−4n
f2

p

})
,

with the usual notation.

Proof. Note that tr(Tk(n)) =
∑h

i=1 tr(M
(k)
ii (n)). We proceed as before and com-

pute

2wi tr(M
(k)
ii (n)) =

∑
t∈Z

∑
α∈Oi,

nr(α)=n,
tr(α)=t

tr(ρk(α))

=
∑
t∈Z

∑
α∈Oi,

nr(α)=n,
tr(α)=t

λ+
n (t)k+1 − λ−n (t)k+1

λ+
n (t)− λ−n (t)

,

where we applied Lemma 5.77. The terms of the inner sum are independent
of α, so that we can proceed as in the proof of Theorem 5.74 and use (20) to
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explicate the Hurwitz class numbers. Note that if n is a square the contribution
of α = ±

√
n ∈ Q is weighted by

tr(ρk(±
√
n)) = (k + 1)n

k
2 .

�

Theorem 5.80. If k > 0, then the series

θ(z;O, k)ij =
∞∑
n=1

Tk(n)ije(nz), for 1 ≤ i, j ≤ (k + 1)h,

are generalised theta series and satisfy

θ(z;O, k)ij ∈ Sk+2(disc(O)
1
2 , 1).

Proof. By writing out the definition of the coefficients Tk(n)ij the fact that the
series are indeed generalised θ-series follows from Lemma 5.76. The result then
follows from Proposition 3.7 after identifying the correct level. �

We will refer to the matrix θ(z;O, k) = (θ(z;O, k)ij)ij of theta series as the
Brandt theta series.

Exercise 15. Explain why Theorem 5.80 fails for k = 0. Further modify the
original Brandt matrices to fix this problem.
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6. The basis problem

Recall that our goal was to decompose the T(N) -module Sk(N, Id) into sub-
modules, which consist of (quaternionic) theta series and carry a intrinsic Hecke-
action.

Let us first introduce some notation. Given a space of functions V ⊂ {f : H→
C} we define

V K = {z 7→ f(Kz) : f ∈ V }.
Further given two positive square-free integers M and H we write OM,H for a
hereditary order of level M in the quaternion algebra B of discriminant H. Note
that we will always ensure that H has an odd number of prime divisors (µ(H) =
−1) so that B is definite.

For some 1 ≤ j0 ≤ (k + 1)h we define the C-vector space

Θk(OM,H) = 〈θ(z,OM,H , k)ij0 : 1 ≤ i ≤ (k + 1)h〉C.
This is the space of theta series spanned by the entries of one (the j0th) column
of the Brandt theta series. Note that the dimension of Θk(OM,H) is in general
not (k + 1)h. In other words, the theta series θ(z,OM,D, k)ij0 are not linearly
independent.

Lemma 6.1. For (p,K) = 1 we have

Tnθ(K·, OM,H , k)ij0 =

(k+1)h∑
l=1

Tk(n)ilθ(K·, OM,H , k)lj0 .

Here Tn is the nth Hecke-operator on Sk+2(KMH, Id) and Tk(n) is the nth Brandt-
matrix of weight k associated to OM,H .

Proof. Since the Brandt matrices T (n) and the Hecke-operators satisfy the same
(Hecke)-relations it is enough to verify the statement for n = p prime. We will
only consider primes (p,KMH) = 1 and omit the details in the remaining cases.

We start by noting that Tp acts as follows:

[Tpθ(K·, OM,H , k)ij0 ](z) =
∑
m≥1

[
δp|mp

k+1Tk(
m

p
)ij0 + Tk(pm)ij0

]
e(mKz).

From (21) we deduce that Tk(pm) + δp|mp
k+1Tk(

m
p

) = Tk(p)Tk(m). Looking at the

entry ij0 reveals

[Tpθ(K·, OM,H , k)ij0 ](z) =
∑
m≥1

[Tk(p)Tk(m)]ij0 e(mKz)

=

(k+1)h∑
l=1

Tk(p)ik
∑
m≥1

Tk(m)kj0e(mKz).

This obviously concludes the proof. �
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This lemma ensures that the spaces Θk(OM,H)K are T(MHK) sub-modules of
Sk+2(MHK, Id). These subspaces are exactly the pieces we want to decompose
our space in. Note that we will not be able to cover forms that are lifted from level
1, since the quaternionic theta functions always feature at least the discriminant of
the underlying quaternion algebra in their level. Thus we will not be able to avoid
the subspace Sk(1, Id) itself in our decomposition. We are now ready to state the
main theorem of this course.

Theorem 6.2. For square-free N , k > 2 even and p | N we have

Sk(N, Id) = Θk−2(ON
p
,p)⊕ Sk

(
N

p
, Id

)
⊕ Sk

(
N

p
, Id

)p
. (22)

Iterating this theorem yields the following corollary.

Corollary 6.3. Let N = p1 · . . . · pr, then we have

Sk(N, Id) =

 r⊕
i=1

⊕
K| N∏i−1

j=1
pj

Θ(O∏r
j=i+1 pj ,pi

)K

⊕
⊕
K|N

Sk(1, Id)

 .
Remark 6.4. Let us make the following computation as a reality check. Using (14)
we find

dimSk(N, Id)− 2 dimSk(
N

p
, Id) = TrT1|Sk(N,Id) − 2 TrT1|Sk(N

p
,Id)

=
k − 1

12
· N
p
· ψ(

N

p
) · ϕ(p)− (−1)

k
2

4

∏
p′|N

p

(
1 +

(
−4

p

))
·
(

1−
(
−4

p′

))

+
(−1)η

3
δ3-k−1

∏
p′|N

p

(
1 +

(
−3

p′

))
·
(

1−
(
−3

p

))
= TrTk−2(1).

Where we used Theorem 5.79 in the last step. Note that using the trace formula
for k = 2 one obtains

dimSk(N, Id)− 2 dimSk(
N

p
, Id) = ]Cls(ON

p
,p)− 1 = trT0(1)− 1.

This is another incarnation of the little correction that has to be made for k = 2.

The proof of our main theorem will heavily rely on the comparison of traces.
The trace of Tn, at least for (n,N) = 1, on Sk(N, Id) is given by Theorem 4.42.
The following lemma allows us to compute the trace of Tn|Sk(N

p
,Id)⊕Sk(N

p
,Id) using

Theorem 4.42 for N ′ = N
p

.
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Lemma 6.5. Let Tn be the nth Hecke-operator acting on Sk(N). Fix a basis B for
Sk(

N
p
, Id), then Bp = {φ(p·) : φ ∈ B} is obviously a basis for Sk(

N
p
, Id)p. Let Tn be

the matrix representing the nth Hecke-operator acting on Sk(
N
p
, Id) with respect to

the basis B. Then

MB∪Bp(Tn|Sk(N
p
,Id)⊕Sk(N

p
,Id)) =



(
Tn 0

0 Tn

)
if (n, p) = 1,(

−δp2|np
k−1T n

p2
−pk−1Tn

p

Tn
p

Tn

)
else.

Proof. This is easily verified taking the definition of the Hecke-operators for dif-
ferent levels into account. �

We will only need this for (n,N) = 1, in which case we get

Tr(Tn|Sk(N
p
,Id)⊕Sk(N

p
,Id)) = 2 Tr(T ′n),

where T ′n is the nth Hecke operator on Sk(N
′, Id). We replace the action of the

Hecke-operator on Θk−2(ON
p
,p) by the nth Brandt-matrix Tk−2(n) of weight k− 2,

for which we can compute the trace using Theorem 5.79.

Proof of Theorem 6.2. Note that both sides of (22) are (finite dimensional) repre-
sentations of the semisimple ring T(N). Indeed, this is obvious for the left hand
side. On the right hand side we let T (n) act by Tk−2(n) ⊕ T ′n ⊕ T ′n, which is
well defined since Tk−2(n), T ′n and Tn satisfy the same relations for (n,N) = 1
(see Theorem 5.78). The theorem will follow as soon as we know that these two
representations are equivalent. To see this it is enough to verify the trace identity

Tr(Tn)− 2 Tr(T ′n) = Tr(Tk−2(n)) (23)

for all (n,N) = 1. We check these identities by considering the different contribu-
tions to the traces of Tn and T ′n in Theorem 4.42.

The contribution of the scalar term yields

Tr(Tn)scalar − 2 Tr(T ′n)scalar = δn=�n
k
2
−1k − 1

12

[
Nψ(N)− 2

N

p
· ψ(

N

p
)

]
= δn=�n

k
2
−1k − 1

12

N

p
· ψ(

N

p
) [pψ(p)− 2] = δn=�n

k−2
2
k − 1

12

N

p
· ψ(

N

p
)ϕ(p).

This matches exactly the main term of Tr(Tk−2(n)) given by Theorem 5.79.
The parabolic contribution yields

Tr(Tn)parabolic − 2 Tr(T ′n)parabolic = δn=�n
k−1

2 [2w(N)−1 − 2w(N
p

)] = 0.

Note that w(N)− 1 = w(N
p

) holds only if p2 - N .
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The hyperbolic contribution is given by

Tr(Tn)hyperbolic − 2 Tr(T ′n)hyperbolic

= −1

2

∑
t∈Z,

t2−4n=�

min(|λ+
n (t)|, |λ−n (t)|)k−1

|λ+
n (t)− λ−n (t)|

∑
f2|t2−4n

φ(f)[2ω(N) − 2 · 2ω(N
p

)] = 0.

Finally we compute the elliptic contribution:

Tr(Tn)elliptic − 2 Tr(T ′n)elliptic

= −1

2

∑
t∈Z,

t2−4n<0

λ+
n (t)k−1 − λ−n (t)k−1

λ+
n (t)− λ−n (t)

∑
f2|t2−4n

h((t2 − 4n)/f 2)

](S×(t2−4n)/f2/{±})

·
∏
p′|N

p

(
1 +

{
(t2 − 4n)/f 2

p′

})
·
[(

1 +

{
(t2 − 4n)/f 2

p

})
− 2

]

=
1

2

∑
t∈Z,

t2−4n<0

λ+
n (t)k−1 − λ−n (t)k−1

λ+
n (t)− λ−n (t)

∑
f2|t2−4n

h((t2 − 4n)/f 2)

](S×(t2−4n)/f2/{±})

·
∏
p′|N

p

(
1 +

{
(t2 − 4n)/f 2

p′

})
·
(

1−
{

(t2 − 4n)/f 2

p

})
.

According to Theorem 5.79 this agrees with

Tr(Tk−2(n))− δn=�n
k−2

2
k − 1

12
· N
p
ψ(
N

p
)ϕ(p).

Thus the trace equality (23) is established and the proof is complete. �

Remark 6.6. Note that using the appropriate trace formula for (n,N), (n, disc(O)) 6=
1 one can even show the trace identity

Tr(Tn) = Tr(Tk−2(n)) + Tr(Tn|Sk(N
p
,Id)⊕Sk(N

p
,Id))

for all n.

Exercise 16. After doing Exercise 15 modify the statement of Theorem 6.2 ac-
cordingly and proof it. One can use the Eichler’s version of the trace formula for
k = 2 stated in Remark 4.43.
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