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In order to:

e compute the Hasse-Weil zeta functions of Shimura varieties
(for example Ag),

e prove endoscopic cases of the Langlands functoriality (for
example the transfer from Sp(2n) to GL(2n)),

one first needs to stabilize the Arthur-Selberg trace formula.

This stabilization can only be done after having established some
combinatorial identities between orbital integrals for p-adic
reductive groups.

The series of these conjectural identities form the so-called
“Fundamental Lemma”.



There are four variants of the Fundamental Lemma: ordinary,
twisted, weighted and twisted weighted.

Here we only consider the ordinary Fundamental Lemma.

First occurrence of the Fundamental Lemma in
Labesse-Langlands’ paper (1979).

General formulation of the Fundamental Lemma by
Langlands-Shelstad (1987).



ORBITAL INTEGRALS FOR GL(n)

: o
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F non archimedan local field: for example F = Qp or Fp((w))
Ok the ring of integers of F: Og, = Z and O, ((x)) = Fp[[=]]
G = GL(n), G(F) p-adic or w-adic Lie group

K = G(Of) C G(F) maximal compact open subgroup

g = gl(n, F) the Lie algebra of G(F)

K = Lie(K) = gl(n, Of): an Of-lattice in the F-vector space g
1 : g — {0,1} the characteristic function of K

v € g regular semisimple
= its centralizer G, is a maximal torus in G

dg and dg, Haar measures on G(F) and G,(F)



ORBITAL INTEGRALS FOR GL(n) AS NUMBERS OF
LATTICES

Lemma
05 - ‘X",«//\v‘-

Here:
e X, = {OF-lattices M C F" | (M) C M},
e v € g regular semisimple < F[y] C g commutative

semisimple F-algebra of dimension n = F[y] = [];c, E; where
(Ei)ies is a finite family of finite separable extensions of F,

e choices of uniformizers wg,'s in the Ej's = F[y]* = A, x Ky
where A, = 7! and Ky =1lies OE maximal compact open
subgroup of G,(F) = F[y]*,

e A\, C Gy(F) acts freely on X,,

e vol(K,dg) = vol(K,,dgy) = 1.



UNITARY GROUPS
[F': F] = 2 unramified, Gal(F'/F) = {1,7}.
Gp: F7XCF — F (X, y) = X{yn + X3 yn-1+ -+ Xy,

standard hermitian form
= G(F) =U(n, F) C GL(n, F’) unitary group.

(Ei)ics finite family of finite separable extensions of F such
that E; is disjoint of F’
= E! = EjF’, Gal(E//E;) = Gal(F'/F) = {1,7}.

c=(¢ier, ci € Ej = (E[,®)c) = @,e,(E’ ®; ..) hermitian
space where: ®; ., 1 E/ x E/ — F', (x,y) — TrE;/F/(c;xTy).

discr(®; (), discr(®y ) € F*/Np g F™* 2 7/27Z,

discr(®y ) = E discr(®; ;)
iel



ORBITAL INTEGRALS FOR UNITARY GROUPS

e Assume discr(® o) =0 = (E/, P ) = (F'", ®,).

e Choosing such an isomorphism
= e : P {x € E/ | X" +x =0} C Endp/(E[,®)c) = g.

e v = (7i)ies € E/ such that:
- +7i =0,
- E! = F'[vi] & F'[x]/(P;), P; the minimal polynomial of ~;,
S (PLP) =1V i),

= regular semisimple 7. = tc(7) € g.

Lemma

OS. = the number of Op-lattices M C E| such that:
o Mitc = {x€E | (x,M)COp}=M,
o YM C M.



STABLE CONJUGACY

e The G(F)-conjugacy class of ~y. in g does not depend on the
choice of the isomorphism (E/, ®; ) = (F'", ®,).

e The v.'s are stably conjugated: they are conjugated in
GL(n, F") but not necessarily in G(F).

e The G(F)-conjugacy class of . only depends on

u(c) = (diser(®;.c))ies € (2/22)'.

e As discr(®)c) =0, p(c) lives in A9/2AY where
A = Ker(+: Z! — Z).

In other words = defines a stable conjugacy class in g and inside
this stable conjugacy class there are finitely many G(F)-conjugacy
classes, which are parametrized by /\2/2/\3.



x-ORBITAL INTEGRALS FOR UNITARY GROUPS

o For each 1 € A /2N let us choose ¢, with i(c,) = p. The
Ye,'s form a system of representatives of the G(F)-conjugacy
classes in the stable conjugacy class defined by ~.

e For any x : A9/2A9 — {41} we then have the s-orbital

integral:
G,k __ G
O’)’ o Z H(”)Owcu'
HENY /219

e For k =1, the k-orbital integral is also called the stable
orbital integral:

G._ NGl
S0S == 0%+,



LANGLANDS-SHELSTAD FUNDAMENTAL LEMMA
FOR UNITARY GROUPS

Conjecture (Langlands-Shelstad)
08" = (—gq)"SOY.
Here:
o G=U(n), v=v=(vi)iet € Dic){x € E/ | x +x =0},
koN2N) — {1} & 1= L 1Tk
= endoscopic group H = U(ny1) x U(np) with ny = |/},
U(n U(n
SOH .= SO5"™) x SO™),
g the number of elements of the residue field of F,

r the valuation of the resultant of [[,c, Pi and [[;c,, Pi
(P; the minimal polynomial of ~; over F’).

The computation of the transfer factor is due to Waldspurger.



RESULTS (CLASSICAL METHODS)

o Labesse-Langlands (1979): U(2).
¢ Kottwitz (1992) and Rogawski (1990): U(3).
e Waldspurger (2005):

The equal characteristic case (F D Fp((w)))
= the unequal characteristic case (F D Qp).



RESULTS (GEOMETRIC METHODS)

F =F4((w)), Fy finite field of characteristic p.

Theorem (Goresky-Kottwitz-MacPherson)

The Langlands-Sheldstad Fundamental Lemma for unitary groups
holds if the following conditions are satisfied

e p>0,
e E; = E does not depend on i € | and is unramified over F,

e ve(a()) = ve(B(v)) for every pair of roots («, 3).

This is the unramified equal valuation case.

Theorem (Ng6-L.)
The Langlands-Sheldstad Fundamental Lemma for unitary groups
holds if p > n.



Grothendieck-Lefschetz fixed point formula
The key of the geometric approaches is:

Theorem (Grothendieck-Lefschetz fixed point formula)

08" = "(~1)"Tr(Frob}, H'(XI/AJ, Ly)).
Here:

o X0 is an algebraic variety over Fg, a connected component of
the affine Springer fiber X,

° /\g is a lattice acting freely on X2,

e L, is the rank 1 /-adic local system on XS//\% defined by the

covering X9 — X9/A2 and the character « of its Galois group
A (€ # Char(Fy)),

e Lrobg is a suitable Frobenius endomorphism.

Natural expectation: The Fundamental Lemma is the consequence
of a (stronger) cohomological statement.



AFFINE SPRINGER FIBERS FOR GL(n)

k algebraically closed, n > 0
= the affine Grassmannian: X = {k[[w]]-lattices M C k((w))"},
an ind-scheme over k whose connected components are:
XI={MeX|[M:K][=]]"] =d}, dcZ.
v € gl(n, k((ww))) regular semisimple
= the affine Springer fiber: X, = {M € X | v(M) C M},
a closed ind—subscheme of X.
k((@))[v] = I1;e; Ei. choosing uniformizers wg,'s of E;'s
= free action of A, =Z/ on X, by \- M = (wEi)"'),-e/(l\/I),
0_ .7l it 0
NS = Ker(+ : Z' — 7Z) stabilizes X7.
Theorem (Kazhdan-Lusztig)

e X, scheme locally of finite type over k and of finite dimension,
whose connected components are the X§/ =X,N X9,

o X, /Ny = XS / /\2 is a projective scheme.



FROBENIUS ENDOMORPHISM

k=T,
Twisted Frobenius on GL(n, k((w))) with respect to Fy:

Frob Zgum -1 Lo, D=

= U(n, Fo((@))).

~ regular semisimple in gl(n, k((w)))
= affine Springer fiber X, and its quotient X, /A, = X9/A9.

7y fixed by Frobg
= a twisted Frobenius endomorphism Frob, on X2/A9.



GORESKY-KOTTWITZ-MACPHERSON APPROACH

If a projective variety over k = F, is equipped with a torus action
satisfying the following properties:

e the fixed point set is finite,
e the set of one-dimentional orbits is finite,

e the ordinary ¢-adic cohomology is pure,

then one can explicitely compute its /-adic cohomology:
e one first computes its /-adic equivariant cohomology for the
torus action by using Atiyah-Borel-Segal’s localization to the
fixed point set,

e one recovers the ordinary cohomology from the equivariant
one.



PURE ¢-ADIC COHOMOLOGY

k =T, ¢ # p, Z separated scheme of finite type over k

o Z defined over F, = Frob, acts on H'(Z,Qy),
e H(Z,Qy) is pure of weight i

&V eigenvalue a of Frobg, |af = q%,

e 7 has pure (-adic cohomology
& H(Z,Qy) is pure of weight i, ¥ i.

Theorem (Deligne's main theorem)

Assume Z proper and smooth over k. Then Z has pure (-adic
cohomology.



¢-ADIC COHOMOLOGY OF AFINE SPRINGER FIBERS

The affine Springer fiber X, not of finite type but H'( X, Q)
makes sense.

Assume that G and y are defined over Fy.

Conjecture (Goresky-Kottwitz-MacPherson)
The (-adic cohomology of X, is pure.

Theorem (Goresky-Kottwitz-MacPherson)

Assume that v is of equal valuations. Then the ¢-adic cohomology
of X, is pure.



TORUS ACTIONS ON AFFINE SPRINGER FIBERS

k =TF4, T C G = GL(n) maximal torus of diagonal matrices,

v = diag(v1, ..., 7vn) € gl(n, k[[w]]) regular semisimple (~; # 7,
vi))
= Xy ={M C k((@))" | yM C M},

T and A = X,(T) =Z" act on X, and the two actions commute.

The fixed point set is discrete:
o XVT = {@_, @ Mk[[=]] | A € A},

° XVT plus action of A = A plus action by translations on itself.



EQUIVARIANT COHOMOLOGY OF AFFINE
SPRINGER FIBERS

H$(Spec(k), Q¢) = Sym*X*(T) ® Q¢ O a = HF%(Spec(k), Qo)
H$ (X, Q¢) = Sym*X*(T) @ Q/[[A]].

Theorem (Goresky-Kottwitz-MacPherson)

Assume that H*(Xy, Q) is pure. Then:

e the restriction map H}(X,,Q¢) — H‘T(XWT,Qg) is injective,
e jts image = set of f € Sym®*X*(T) ® Qy[[A]] such that

f(1—a”)? € a¥Sym*~IX*(T) @ Q[A]],

VaeR(G,T),Vd=12...,ve(a(y)),
o H*(Xy, Qe) = HT(Xy, Q) /aHT(Xy, Q).



NGO-L. APPROACH

First main idea: Deform complicated affine Springer fibers into
simpler ones (look for an analog of Grothendieck-Springer
simultaneous resolution of the nilpotent cone).

Problem: It does not seem to work!

Second main idea: Replace affine Springer fibers (local objects) by
compactified Jacobians (global objects).

Third main idea: Hitchin fibration is a wonderful group theoretical
family of compactified Jacobians.



PROBLEM IN DEFORMING AFFINE SPRINGER FIBERS
tw 1
w= (5 ) s kt=n)
For t # 0 the affine Springer fiber is a chain of projective lines

/\/\/\

and for t = 0 it is a single projective line
= no algebraic family.

Replace the affine Springer fiber at t # 0 by

=<
—

= a nice algebraic family.

and at t =0 by



TORSION FREE MODULES

v € gl(n, k[[w]]) C gl(n, k((zw))) regular semisimple,

P = P(w, x) € k[[w]][x] minimal polynomial of ~,

R = k[[@]l["] = k{[=]][x]/(P) C Frac(R) = k((=))[x]/(P).
Spf(R) formal germ of plane curve (P(w, x) = 0).

e Pr moduli space of invertible R-modules M equipped with a
rigidification M ®g Frac(R) = Frac(R), a commutative group
scheme over k called the local Jacobian of Spf(R),

e Pr moduli space of torsion free R-modules M equipped with
a rigidification M ®g Frac(R) = Frac(R), an equivariant
compactification of Pg called the local compactified Jacobian
of Spf(R).

Proposition
The tautological map X, — Pg, (M stable by ) — (the
R-module M), is an homeomorphism.



COMPACTIFIED JACOBIANS

C integral projective curve over k with only plane curve
singularities (Oc c = k[[x, y]]/(f), Yc € C).

e Pic(C) the moduli space of locally free Oc-Modules of rank
1, a commutative group scheme over k called the Picard
scheme or Jacobian of C,

e Pic(C) the moduli space of torsion free Oc-Modules of
generic rank 1, an equivariant compactification of Pic(C)
called the compactified Jacobian of C.

Proposition
We have a natural isomorphism of algebraic stacks:

[Pic(C)/Pie(C)] = [[[Po, ./ Po,

ceC



PURITY CONJECTURE FOR COMPACTIFIED
JACOBIANS

The purity conjecture of Goresky, Kottwitz and MacPherson for
affine Springer fibers together with the previous two propositions

(X, = Pr and [Pic(C)/Pic(C)] = HCEC[ﬁ@C,C/P@C,C]) imply:

Conjecture

Let C be any integral projective curve over k = F,. Assume C has
only unibranch plane curve singularities. Then the {-adic
cohomology of Pic(C) is pure.

Variant with no unibranch assumption: replace Pic(C) by a
suitable étale covering.



HITCHIN FIBRATION

I" a fixed connected smooth projective curve over k, g(I') > 2,
A a given effective Cartier divisor on I', deg(A) > 2g(I") — 2,

M the algebraic stack of Higgs (or Hitchin) pairs (£, 6) where:
e £ rank n vector bundle on T,
e 0:&—E(D),

A=@L, H(T,Or(in)).
Hitchin fibration: m : M — A with

m(E,0) = (—tr(0), tr(A%0), ..., (—=1)"tr(A"F))



SPECTRAL CURVES

p: X =VY(Or(—A)) — T ruled surface,
u € H(X, p*Or(A)) universal section.

a € A = the spectral curve C; C ¥ with equation:
Ca = {un + p*al : Un_l + -+ p*an - 0}7

p: C; — T is a finite ramified covering of degree n.

Proposition (Beauville-Narasimhan-Ramanan)

V a € A such that C, is reduced, m~1(a) = M, is canonically
isomorphic to Pic(C,).



ABOUT OUR PROOF

e First of all we work with the Hitchin fibration for an
unramified unitary group scheme over I'.

e Next we use Goresky-Kottwitz-MacPherson approach via
equivariant cohomology, but now in family.

e The required purity conjecture follows from Deligne's purity
theorem for Rm,Q, where m : M — A is the Hitchin
fibration.



