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title a little vague ... Aim:

explain what the Saturation conjecture is about (representation
theoretic problem) and how it is related it to Horn's conjecture,
and a few words about the more general setting (reductive
algebraic groups)

Horn: eigenvalues < symplectic geometry
sums of Hermitian matrices

Saturation conjecture — flag varieties

!

buildings
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Hermitian matrices and Horn’s conjecture

Hermitian matrices and eigenvalues

Hermitian matrix A: complex n X n matrix, transpose complex
. —T
conjugate A° = A
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Hermitian matrices and Horn’s conjecture

Hermitian matrices and eigenvalues

Hermitian matrix A: complex n X n matrix, transpose complex
. =T
conjugate A° = A
Hermitian matrices A, B, what can be said about the eigenvalues
of C = A+ B in terms of the eigenvalues of the summands?
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Hermitian matrices and Horn’s conjecture

Hermitian matrices and eigenvalues

Hermitian matrix A: complex n X n matrix, transpose complex
. —T
conjugate A° = A

Hermitian matrices A, B, what can be said about the eigenvalues
of C = A+ B in terms of the eigenvalues of the summands?

Reformulate:

Describe all triples («, 3,7) of n-tuples of weakly decreasing real
numbers

such there exist Hermitian matrices A, B, C having «, 3,~ as
spectra and A+ B = C.
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Hermitian matrices and Horn’s conjecture

Since A+ B = C = Trace(A) + Trace(B) = Trace(C),
necessary condition on the triple («, 3,7)

trace identity: Z i = Z aj + Z B
i j K
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Hermitian matrices and Horn’s conjecture

Since A+ B = C = Trace(A) + Trace(B) = Trace(C),
necessary condition on the triple («, 3,7)

trace identity: Z i = Z aj + Z B
i j K

Other necessary conditions: Weyl (1912)

Vi1 <o+ B for1<i+j—1<n
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Hermitian matrices and Horn’s conjecture

Since A+ B = C = Trace(A) + Trace(B) = Trace(C),
necessary condition on the triple («, 3,7)

trace identity: Z i = Z aj + Z B
i j K

Other necessary conditions: Weyl (1912)
Vi1 <o+ B for1<i+j—1<n

Homework: for n = 2 Weyl + trace condition are sufficient and
necessary to find A, B, C = A+ B with desired eigenvalues.
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Hermitian matrices and Horn’s conjecture

Since A+ B = C = Trace(A) + Trace(B) = Trace(C),
necessary condition on the triple («, 3,7)

trace identity: Z i = Z aj + Z B
i j K

Other necessary conditions: Weyl (1912)
Vi1 <o+ B for1<i+j—1<n

Homework: for n = 2 Weyl + trace condition are sufficient and
necessary to find A, B, C = A+ B with desired eigenvalues.

Aim: give necessary and sufficient conditions in the general case
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Hermitian matrices and Horn’s conjecture

Horn's conjecture

Horn’s conjecture (1962): Let o, 3,7 be n-tuples of weakly
decreasing real numbers. 3 A, B, C = A+ B Hermitian matrices
with spectra «, 3, if and only if the trace identity holds

Z’Ykzzai+25j- (1)

and for all triples (1, J, K) in

H; = certain set of triples of subsets of {1,...,n}, |l| = |J| = |K|=r

and all r < n the following inequalities hold:

Sy it d B (2)

kek iel jed
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Hermitian matrices and Horn’s conjecture

Horn's conjecture

Definition of H}:
elementary, but somewhat involved..., I, J,K C {1,...,n}

' Y Zieli"i_Zjer:ZkeKk"i_w

Set HY = hy, write | = {ih <...<i}, ...

for all p < r and all (X, Y, Z) € Hr
H:;_{(/,J,K)ehfy rall p < randall )€ }

, , +1
Doxex Ix ZerJy <Ysez ket p(pz )
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

Let us take as an example the symmetric group &4 - several ways
to think of the group,
1. group of bijections ¢ : {1,2,3,4} — {1,2,3,4}, for
example (1,2) : 1—2,2—1,3+— 3 and 4 — 4.
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

Let us take as an example the symmetric group &4 - several ways
to think of the group,

1. group of bijections ¢ : {1,2,3,4} — {1,2,3,4}, for
example (1,2) : 1—2,2—1,3+— 3 and 4 — 4.

2. as the symmetry group of the tetrahedron and hence
1 o

as a subgroup of O3(R).
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

Let us take as an example the symmetric group &4 - several ways
to think of the group,
1. group of bijections ¢ : {1,2,3,4} — {1,2,3,4}, for
example (1,2) : 1—2,2—1,3+— 3 and 4 — 4.

2. as the symmetry group of the tetrahedron and hence
2.

as a subgroup of O3(R).
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

Let us take as an example the symmetric group &4 - several ways
to think of the group,
1. group of bijections ¢ : {1,2,3,4} — {1,2,3,4}, for
example (1,2): 1—2,2+—1,3— 3 and 4 — 4.

2. as the symmetry group of the tetrahedron and hence

as a subgroup of O3(R).

3. group of 4 x 4-permutation matrices, hence as a
subgroup of GL4(R).
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

Let us take as an example the symmetric group &4 - several ways
to think of the group,

1. group of bijections ¢ : {1,2,3,4} — {1,2,3,4}, for
example (1,2): 1—2,2+—1,3— 3 and 4 — 4.

2. as the symmetry group of the tetrahedron and hence

as a subgroup of O3(R).

3. group of 4 x 4-permutation matrices, hence as a
subgroup of GL4(R).

Roughly: finite dimensional representation of a group = realization
as a group of matrices
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

A finite dimensional representation: p: G — GL(V') group
homomorphism dim V finite, (algebraic, analytic, holomorphic,...)
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

A finite dimensional representation: p: G — GL(V') group
homomorphism dim V finite, (algebraic, analytic, holomorphic,...)

Suppose p1 : G — GL(V1), p2: G — GL(V»)
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

A finite dimensional representation: p: G — GL(V') group
homomorphism dim V finite, (algebraic, analytic, holomorphic,...)

Suppose p1 : G — GL(V1), p2: G — GL(V»)

1) p: G — GL(V1 @ Va), direct sum, p(g) = ( r(e) () )
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GLp(C)-representations and the tensor product problem

Representations: some basic notation

A finite dimensional representation: p: G — GL(V') group
homomorphism dim V finite, (algebraic, analytic, holomorphic,...)

Suppose p1 : G — GL(V1), p2: G — GL(V»)

1) p: G — GL(V1 @ Va), direct sum, p(g) = ( r(e) () )

2) tensor product: p: G — GL(Vi ® Va),
p(g)(v1 @ v2) = p1(g)(v1) © p2(g)(v2)
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GLp(C)-representations and the tensor product problem

Schur and the group GL,(C)

Finite dimensional complex representations of GL,(C) (~ 1900).
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GLp(C)-representations and the tensor product problem

Schur and the group GL,(C)

Finite dimensional complex representations of GL,(C) (~ 1900).

1) representation = € irreducible representations
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GLp(C)-representations and the tensor product problem

Schur and the group GL,(C)

Finite dimensional complex representations of GL,(C) (~ 1900).
1) representation = € irreducible representations

2) bijection: irreducible representations V/(«) are parametrized by
n-tuples of weakly decreasing integers o = (a1 > ap > ... > ).
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GLp(C)-representations and the tensor product problem

Schur and the group GL,(C)

Finite dimensional complex representations of GL,(C) (~ 1900).
1) representation = € irreducible representations

2) bijection: irreducible representations V/(«) are parametrized by
n-tuples of weakly decreasing integers o = (a1 > ap > ... > ).

For example: V/((1,0,...0)) =C", V((1,1,0,...,0)) = A>C"
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GLp(C)-representations and the tensor product problem

Schur and the group GL,(C)

Finite dimensional complex representations of GL,(C) (~ 1900).
1) representation = € irreducible representations

2) bijection: irreducible representations V/(«) are parametrized by
n-tuples of weakly decreasing integers o = (a1 > ap > ... > ).

For example: V/((1,0,...0)) =C", V((1,1,0,...,0)) = A>C"
Example for a reducible representation:

C"® C" = symmetric tensors @ skew symmetric tensors
— 52((:n ey /\2cn
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GLp(C)-representations and the tensor product problem

Tensor product decomposition

n-tuples «, 8 weakly decreasing integers, tensor product

V(e)@ V(8) =P el sV ()

Tensor product problem: describe all triples («, 3, ) of n-tuples
of weakly decreasing integers such that cgﬁ >0
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GLp(C)-representations and the tensor product problem

Tensor product decomposition

n-tuples «, 8 weakly decreasing integers, tensor product

V)@ V(B) =P el sV ()
Tensor product problem: describe all triples («, 3, ) of n-tuples

of weakly decreasing integers such that cgﬁ >0

Saturation conjecture:
If 3N > 0 such that ¢y 5 > 0, then ¢ ;> 0.
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GLp(C)-representations and the tensor product problem

Tensor product decomposition

n-tuples «, 8 weakly decreasing integers, tensor product

V(e)@ V(8) =P el sV ()

Tensor product problem: describe all triples («, 3, ) of n-tuples
of weakly decreasing integers such that cgﬁ >0

Saturation conjecture:
If 3N > 0 such that ¢y 5 > 0, then ¢ ;> 0.

Theorem (Klyachko, Knutson, Tao,...) Horn's conjecture is true,
Saturation conjecture holds, and if «, 3, are n-tuples of weakly
decreasing integers, then 3 Hermitian matrices A,B,C = A+ B

with eigenvalues (o, 8,7) if and only if ¢ 5 > 0.
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GLp(C)-representations and the tensor product problem

Symplectic manifold and moment map

Let (M,w) be a manifold together with an anti-symmetric inner
product on the tangent spaces.

Example: R?", basis {e1,...,en, fi,...,fn},
w(ej,e) =w(fi,f;)=0foralli,j=1,...,nand
w(ej, 6) = _W(Gv &) = 0ij-
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GLp(C)-representations and the tensor product problem

Symplectic manifold and moment map

Let (M,w) be a manifold together with an anti-symmetric inner
product on the tangent spaces.

Example: R?", basis {e1,...,en, fi,...,fn},

w(ej,e) =w(fi,f;)=0foralli,j=1,...,nand

w(ei, fj) = —w(fj, &) = dij.

M is called a symplectic manifold if M, together with w, is locally
isomorphic to (R?", w) (...Darboux)
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GLp(C)-representations and the tensor product problem

Symplectic manifold and moment map

Let (M,w) be a manifold together with an anti-symmetric inner
product on the tangent spaces.

Example: R?", basis {e1,...,en, fi,...,fn},

w(ei, &) —w(f,,ij) =0foralli,j=1,...,nand

w(ei, fi) = —w(fi, &) = di.
M is called a symplectic manifold if M, together with w, is locally
isomorphic to (R?", w) (...Darboux)

G connected Lie group, acting smoothly on (M,w). A map

p: M — g* (= dual of Lie G = g) is called a moment map if

1) the map is equivariant, i.e., u(g.m) = gu(m)g=!

)
2) for k € g, the associated vector field is the symplectic gradient
f

of (k, p(:))-
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GLp(C)-representations and the tensor product problem

What is the connection matrix problem - tensor product ?

Language of group actions:
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GLp(C)-representations and the tensor product problem

What is the connection matrix problem - tensor product ?

Language of group actions: O, = Hermitian matrices, spectrum «
- orbit for unitary group U,(C) = {g € GL,(C) | gg" = Id}

ai 0 O
Oa=<k| o0 . 0o |ktlkeU,T)y,
0 0
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GLp(C)-representations and the tensor product problem

What is the connection matrix problem - tensor product ?

Language of group actions: O, = Hermitian matrices, spectrum «
- orbit for unitary group U,(C) = {g € GL,(C) | gg" = Id}

ai 0 O
Oa=<k| o0 . 0o |ktlkeU,T)y,
0 0

Set H = real space of Hermitian matrices. Consider the map

p:0ax0gx0y — H
(A,B,C) — A+B+C

Matrix problem: describe all (a,3,7) such that 0 € Im(u)
(replace v by v* = (—=Yny - ., —71))
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GLp(C)-representations and the tensor product problem

Moment map

Lie Un(C) = up(C) skew Hermitian matrices

dual space u,(C)* can be identified with H = Hermitian matrices
by H > X — Trace(—iX")
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GLp(C)-representations and the tensor product problem

Moment map

Lie Un(C) = up(C) skew Hermitian matrices
dual space u,(C)* can be identified with H = Hermitian matrices
by H > X — Trace(—iX")

so can identify

conjugacy classes in H

!

coadjoint orbits = U,(C) — orbits in u,(C)*
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GLp(C)-representations and the tensor product problem

Moment map

Lie Un(C) = up(C) skew Hermitian matrices

dual space u,(C)* can be identified with H = Hermitian matrices
by H > X — Trace(—iX")

so can identify

conjugacy classes in H

!

coadjoint orbits = U,(C) — orbits in u,(C)*

Consequence: O, has a unique structure of a symplectic
manifold such that the inclusion O, < H is the moment map.
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GLp(C)-representations and the tensor product problem

Moment map

General theory implies in our case:

p:0ax0gx0y — H
(A,B,C) — A+4+B+C

is a moment map for the action of the unitary group U,(C).
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GLp(C)-representations and the tensor product problem

Geometric realization of representations

Geometric realization via flag varieties: associate a (partial) flag

a7 0 0
toD(a)=| o -. o | let Cy= eigenspace ~ q;:
0 0 a«ap

flag F:F={0}CC CClL&C,C.. CCn

Let F(«) be the projective variety of all flags of the same type.
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GLp(C)-representations and the tensor product problem

Geometric realization of representations

Geometric realization via flag varieties: associate a (partial) flag

a7 0 0
toD(a)=| o -. o | let Cy= eigenspace ~ q;:
0 0 a«ap

flag F:F={0}CC; CC, @C;, C...CC"
Let F(«) be the projective variety of all flags of the same type.

Borel-Weil: (a version of...) F(a) C P(V(«)), and the
homogeneous coordinate ring is, as GL,(C)-representation,
isomorphic to P~ V(ka)*.
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GLp(C)-representations and the tensor product problem

Back to the tensor product

Tensor product problem: Given n-tuples «, 3,y of weakly
decreasing integers, what are the conditions such that

(V(e)® V(B) ® V(’y))GL" # 0, i.e., contains a GL,-invariant line?
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GLp(C)-representations and the tensor product problem

Back to the tensor product

Tensor product problem: Given n-tuples «, 3,y of weakly
decreasing integers, what are the conditions such that

(V(e) @ V(B) ® V(7)) "

Translation:
V(7) = V(a) @ V(B) & (V(a) @ V(B) ® V(7))

# 0, i.e., contains a GL,-invariant line?

GL,

£0
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GLp(C)-representations and the tensor product problem

Back to the tensor product

Tensor product problem: Given n-tuples «, 3,y of weakly
decreasing integers, what are the conditions such that

(V(e)® V(B) ® V(’)/))GL" # 0, i.e., contains a GL,-invariant line?

Translation:

V(7) = V(e) @ V(B) & (V(a) ® V(3)® V(7))

# 0
Let «, 3, be n-tuples of weakly decreasing integers, then
F(a) x F(B) x F(v) CP(V(a) @ V(B) ® V(7))

One knows: smooth complex projective varieties have structure of
a symplectic variety, and F(«) x F(B) x F(7) is isomorphic to
Oa x Og x O as symplectic manifold
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GLp(C)-representations and the tensor product problem

GIT-geometric invariant theory

The link between the two pictures:

GIT- (very rough summary) X C P(V) complex projective variety,

action by a group G . Aim: parametrization (GIT-quotient) of
G-orbits (classification problems,....).

Peter Littelmann
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GLp(C)-representations and the tensor product problem

GIT-geometric invariant theory

The link between the two pictures:

GIT- (very rough summary) X C P(V) complex projective variety,
action by a group G . Aim: parametrization (GIT-quotient) of
G-orbits (classification problems,....).

a, B,y n-tuples of weakly decreasing integers

Kirwan-Ness (application of ...) Consider the moment map
p: O x Og x Oy — H. Then there is a natural identification
between the orbit set

#71(0)/Un(C)
and the GIT-quotient
F(a) x F(B) x F(7)//GLa(C)
= Proj (EBkZO(V(ka)* ® V(kB)* @ \/(k,y)*)GLn((C)> '
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GLp(C)-representations and the tensor product problem

Hermitian matrices and tensor product

It means for n-tuples of weakly decreasing integers «, 3,

JA 4+ B + C = 0 with desired spectra «, 8,7 <
Jk>0:(V(ka)® V(k3) ® V(ky))(© £ 0

because in these cases

~1(0)/Un(C) = Proj @D (V (ka)* ® V(kB)" & V(kv)*)<tr(©
k>0

is not the empty set.
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GLp(C)-representations and the tensor product problem

Hermitian matrices and tensor product

It means for n-tuples of weakly decreasing integers «, 3,

JA 4+ B + C = 0 with desired spectra «, 8,7 <
Jk>0:(V(ka)® V(k3) ® V(ky))(© £ 0

because in these cases

~1(0)/Un(C) = Proj @D (V (ka)* ® V(kB)" & V(kv)*)<tr(©
k>0

is not the empty set.

This is a first step, but what about the inequalities and the
saturation conjecture?
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About the saturation conjecture

Some remarks about tensor product rules

For GL,(C) several tensor product rules: Steinberg formula,
Littlewood-Richardson rule using Young tableaux, crystal bases
methods, path model formula, none of it worked.
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About the saturation conjecture

Some remarks about tensor product rules

For GL,(C) several tensor product rules: Steinberg formula,
Littlewood-Richardson rule using Young tableaux, crystal bases
methods, path model formula, none of it worked.

Knutson and Tao developed new method, the so called honey
comb model which lead to a combinatorial proof of the saturation
conjecture in 1999. Derksen and Weyman (2000) gave a different
proof using quiver theory, but both proofs work only for GL,(C)
resp. SLy(C).
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About the saturation conjecture

Some remarks about tensor product rules

For GL,(C) several tensor product rules: Steinberg formula,
Littlewood-Richardson rule using Young tableaux, crystal bases
methods, path model formula, none of it worked.

Knutson and Tao developed new method, the so called honey
comb model which lead to a combinatorial proof of the saturation
conjecture in 1999. Derksen and Weyman (2000) gave a different
proof using quiver theory, but both proofs work only for GL,(C)
resp. SLy(C).

Different approach by Kapovich-Leeb-Millson using the theory of
Euclidean buildings.
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About the saturation conjecture

Path model and tensor product

Picture fc%)r SL3, o = (3,2,0), associates a set of paths to V/(«)

Weyl chamber*™"
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About the saturation conjecture

Path model and tensor product

Picture fc%)r SL3, o = (3,2,0), associates a set of paths to V/(«)

Weyl chamber*™"

tensor product with C3 = shift by 3 = (1,0,0)
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About the saturation conjecture

Path model and tensor product

Picture fc%)r SL3, o = (3,2,0), associates a set of paths to V/(«)

Weyl chamber*™"

tensor product with C3 = shift by 3 = (1,0,0)

omit non-dominant paths

remaining paths =
irreducibles in tensor product decomposition.
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About the saturation conjecture

Triangles in buildings

Problem: Why path for V(N~v) — V(Na) ® V(NJ3) should be
divisible by N to give V(y) — V(a) ® V(5)?

Kapovich-Leeb-Millson consider

G split semisimple algebraic group over a locally compact field with
discrete valuation, finite residue field, associate to this setting the
Bruhat-Tits building X modeled on a Euclidean Coxeter complex.
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About the saturation conjecture

Triangles in buildings

Example: apartment for SL3
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About the saturation conjecture

Triangles in buildings

Example: apartment for SL3

\/ \\We |chan4bérf VAVAVAVAVAVA
/ \/ // \/ \\‘ \\ \ /\ /\\/\ /\/ \
l_\ \/ \/‘,\\/ \/ \\ / \//\\ \ /
/ //\\'\ /\\/\ \/\\ \/ /\
\\\//\// .\//ﬂ \/ \\//\\/ \/ \/ \ \./ N/
INNINNINNNNN/N

\\//\\ ‘/\ /\\\,//\\\/ \/ \\ \/

/
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About the saturation conjecture

Triangles in buildings

Example: apartment for 5L3

\/\\We \chambérf \/ \/ / \/\ / \/

/ \ \\/’ \’ \\, \\ \ /\ / \\//\\ /

\AANN N \/ \/ Rouglwy speaking, the building X is covered
7 \ FAVAVAVAVAV Y/

/ AVARY; VA /2 anfments i.e., real vector spaces

A\ / ) / \ /\ / \ /
/\ \/\ \>\ /\/ >/\ /\/}‘é%éw‘* with an affine Weyl group acting
\, \’\\”/ VAVAVAY, \/er\lw\;;ssouated to the root system of G.

Fundamental domain in an apartment
= alcove, any two alcoves in X are in one apartment.

Can retract X onto one apartment! and fold onto one Weyl
chamber. Idea: lift the paths into the building

On geometry and combinatorics in representation theory

Peter Littelmann



About the saturation conjecture

Triangles in buildings and saturation conjecture

Rough summary: start with V(Nv) — V(Na) @ V(Np)
start with path from model
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About the saturation conjecture

Triangles in buildings and saturation conjecture

Rough summary: start with V(Nv) — V(Na) @ V(Np)
start with path from model, complete to broken triangle
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About the saturation conjecture

Triangles in buildings and saturation conjecture

Rough summary: start with V(Nv) — V(Na) @ V(Np)
start with path from model, complete to broken triangle
they lift / unfold it to a geodesic triangle in the building of side
Jength No,, NG, N~ and show there exists (with some technical
~"restrictions) also a geodesic triangle

of side length o, 3,y

Further, 3¢ (depends only on the root system)
! such that the image of a triangle of side
of length o, €3, ¢~ (again a broken triangle) corresponds to
V(ly) = V(la) @ V(L5).
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About the saturation conjecture

Triangles in buildings and saturation conjecture

Rough summary: start with V(Nv) — V(Na) @ V(Np)
start with path from model, complete to broken triangle
they lift / unfold it to a geodesic triangle in the building of side
Jength No,, NG, N~ and show there exists (with some technical
~"restrictions) also a geodesic triangle

of side length o, 3,y

Further, 3¢ (depends only on the root system)
! such that the image of a triangle of side
of length fa, £3, ¢~y (again a broken triangle) corresponds to
V(ly) = V(la) @ V(L5).
Theorem. (Kapovich-Leeb-Millson) The saturation conjecture
holds for GL,(C) and it holds in general up to the factor { (which
is 2 for Spam and 60 for Eg for example).
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About the saturation conjecture

Triangles in buildings and saturation conjecture

Rough summary: start with V(Nv) — V(Na) @ V(Np)
start with path from model, complete to broken triangle
they lift / unfold it to a geodesic triangle in the building of side
Jlength N, N3, Ny and show there exists (with some technical
~"restrictions) also a geodesic triangle

of side length o, 3,y

Further, 3¢ (depends only on the root system)
! such that the image of a triangle of side
of length fa, £3, ¢~y (again a broken triangle) corresponds to
V(ly) = V(la) @ V(L5).
Theorem. (Kapovich-Leeb-Millson) The saturation conjecture
holds for GL,(C) and it holds in general up to the factor { (which
is 2 for Spam and 60 for Eg for example).
Conjecture. G simply laced (SL,, Spinap, Es, E7, Eg), then £.= 1.
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Schubert calculus

GraBmann variety

What about Horn's conjecture, where do the inequalities come
from in this picture?

Fix a complete flag F*: Fo C F[; C ... C F, =C" i.e., a sequence
of subspaces such that dim F; = i.
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Schubert calculus

GraBmann variety

What about Horn's conjecture, where do the inequalities come
from in this picture?

Fix a complete flag F*: Fo C F[; C ... C F, =C" i.e., a sequence
of subspaces such that dim F; = i.
For example:

1 1 0
F{oycFhR={(l0|)chR=(0],l1] cRr=C.
0 0 0
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Schubert calculus

GraBmann variety

What about Horn's conjecture, where do the inequalities come
from in this picture?

Fix a complete flag F*: Fo C F[; C ... C F, =C" i.e., a sequence
of subspaces such that dim F; = i.
For example:

1 1 0
F{oycFhR={(l0|)chR=(0],l1] cRr=C.
0 0 0

Fix re {1,2,...,n—1}.
The GraBmann variety G, , is the set of all subspaces U of C" of
dimension r. For example Gy, = P"1 is the projective space.
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Schubert calculus

Schubert variety

Let I € {1,2,...,n} be a subset of cardinality r, write
I =(ih <...< ). The Schubert variety X;(F) is the subset

X|(F)={U€ G, p|dim(UNF,)>tforl<t<r}

- let w; be its homology class (independent of F)

Peter Littelmann On geometry and combinatorics in representation theory



Schubert calculus

Schubert variety

Let I € {1,2,...,n} be a subset of cardinality r, write
I =(ih <...< ). The Schubert variety X;(F) is the subset

X|(F)={U€ G, p|dim(UNF,)>tforl<t<r}

- let w; be its homology class (independent of F)
- little technical twist: set I* ={n+1—i]|i€l},

often one uses for the cohomology classes as indexing
A1) = (ir = r,...,i1 — 1) instead, let o) be the cohomology
class corresponding to w;+ via Poincaré duality.
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Schubert calculus

Schubert variety

- the classes o,

a=(a1>...>a), wheren—r>aj;anda, >0

form a basis of the integral cohomology ring of the GraBmann
variety G, ..

One knows:
Ga-0g =) )0y
with ZO{,‘ =+ Zﬁj = Z’)/k.

Moreover, c, 5 = d] 5, so Littlewood-Richardson coefficients =
cohomology ring structure coefficients.
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Schubert calculus

Rayleigh trace

Suppose A Hermitian matrix, eigenvalues o = (a3 > ... > «,), let
{v1,...,Vvn} be an orthogonal basis of eigenvectors,

F(A) :={0} C (v1) C (vi,w) C...CC"

complete flag.
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Schubert calculus

Rayleigh trace

Suppose A Hermitian matrix, eigenvalues o = (a3 > ... > «,), let
{v1,...,Vvn} be an orthogonal basis of eigenvectors,

F(A) :={0} C (v1) C (vi,w) C...CC"

complete flag.Let U C C" be an r-dimensional subspace, fix an
orthonormal basis {uz, ..., u,}, set

r

Ra(U) == (Auj, uj), then

Jj=1

Proposition Z;el o = minUeX,(]:(A)) Ra(U)
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Schubert calculus

Schubert calculus

Let A, B, C Hermitian matrices, spectra o, 3,7, A+ B = C.

Claim: Let I1,J,K be subsets of {1,...,n} of cardinality r such
that i sy # 0. Then

DD i+ > b

keK icl Jjed
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Schubert calculus

Schubert calculus

Let A, B, C Hermitian matrices, spectra o, 3,7, A+ B = C.

Claim: Let I1,J,K be subsets of {1,...,n} of cardinality r such
that i sy # 0. Then

DD i+ > b
keK iel jed

Idea: LR-coeficients > 0 = product of cohomology classes > 0 =
intersection of the Schubert varieties
Xi=(F(=A)) N Xp=(F(=B)) N Xk (F(C)) # 0
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Schubert calculus

Schubert calculus

Let A, B, C Hermitian matrices, spectra o, 3,7, A+ B = C.
Claim: Let I1,J,K be subsets of {1,...,n} of cardinality r such
that i sy # 0. Then

DD i+ > b

keK icl jed

Idea: LR-coeficients > 0 = product of cohomology classes > 0 =
intersection of the Schubert varieties

X (F(=A)) N X5=(F(=B)) N Xk (F(C)) # 0

Take a subspace U in the intersection, then

_Zai - Zﬂj + Z Yk < R_a(U) + R_g(U) 4+ Rc(U) = 0.

icl jeJ keK
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Schubert calculus

The reverse direction was proved by Klyachko.
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Schubert calculus

The reverse direction was proved by Klyachko.

It can be shown that the linear inequalities obtained by Schubert
calculus are Horn's inequalities (recursive procedure)
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Schubert calculus

The reverse direction was proved by Klyachko.

It can be shown that the linear inequalities obtained by Schubert
calculus are Horn's inequalities (recursive procedure)

So we get: solutions of the matrix problem

ap > . JA, B, C Hermitian matrices
(a,B,7) ER| By >. spectra a, 3,7
Y= A+B=C

forms a polyhedral cone in R3", the defining inequalities given by
Horn's conjecture, trace identity,and entries weakly decreasing
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Schubert calculus

The reverse direction was proved by Klyachko.

It can be shown that the linear inequalities obtained by Schubert
calculus are Horn's inequalities (recursive procedure)

So we get: solutions of the matrix problem

ap > . JA, B, C Hermitian matrices
(a,B,7) ER| By >. spectra a, 3,7
Y= A+B=C

forms a polyhedral cone in R3", the defining inequalities given by
Horn's conjecture, trace identity,and entries weakly decreasing

The integral points in the cone correspond to solutions of the
tensor product problem
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Schubert calculus

The set of inequalities given by Horn’s conjecture is not minimal:
Knutson, Tao and Woodward proved that it suffices to take those

(1,4, K) such that c:\\((;;)/\(J) =1, and that this set is minimal.

What about the general case? (beyond GL,(C))
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Some remarks

G connected semisimple complex algebraic group

Eigenvalue problem makes sense also in this case (going to
compact subgroup...Weyl chamber)

also the tensor product problem
proof of the weak equivalence is the same
saturation conjecture still open in the simply laced case.

Another “lift" of the path model to the building using minimal
galleries has been constructed by Gaussent and L, set of all

" galleries” of the model is a projective variety (Bott-Samelson
variety). Background: connection with intersection cohomology
realization of representations (Mirkovich and Vilonen).
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Some remarks

Some remarks

Here the “preimage”’ of one path naturally has the structure of a
quasi-affine variety. Counting points (over finite fields) leads to
formula for the structure constants of the spherical Hecke algebras
(multiplication of Hall-Littlewood polynomials) (Schwer).

Same type of formulas also obtained by Kapovich-Leeb-Millson
(counting number of geodesic triangles with fixed side lengths),
what is the connection?

What about inequalities: work of Berenstein-Sjamaar,
Leeb-Millson, using Schubert calculus, Belkale - Kumar were able
to reduce the system of inequalities, but it is an open question
whether this set is irredundant

Question about products of cohomology classes # 0, Belkale -
Kumar got necessary conditions.
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Some remarks
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