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Zusammenfassung

Sei H ≤ Γ−d = PSL(2,O−d) eine Untergruppe von endlichem Index und d
eine quadratfreie natürliche Zahl. Sei H von Level a, wie in [32] definiert, und
sei Ĥ der Kongruenzabschluß von H. Angenommen p ∈ O−d ist eine Primzahl

und a+ pO−d = O−d. Definiere g :=
(

p 0
0 1

)
∈ PGL(2, Q). In dieser Arbeit

zeigen wir, dass für jeden Γ−d-Modul X und jedes q ≥ 1, das folgende Diagramm
kommutativ ist:

Hq(H, X)

TH
g

��

trĤ
H // Hq(Ĥ, X)

TĤ
g

��
Hq(H, X) Hq(Ĥ, X)

resĤ
H

oo

wobei trĤ
H die Spurabbildung (co-restriction), resĤ

H die Restriktionsabbildung, und
TH

g der der Doppelnebenklasse HgH zugeordnete Hecke-Operator ist. Dies
ist eine Verallgemeinerung der Atkin Vermutung, die in einem Spezialfall von
Serre (1987) und in Allgemeinen von Berger (1994) bewiesen wurde. Die Vermu-
tung lautet wie folgt: Die Wirkung von Hecke-Operatoren TH

p auf dem Raum von
Spitzeformen Sk(H) von jedem beliebigen Gewicht k, assoziiert zu einer nicht-
Kongruenten Untergruppe H von PSL(2, Z) mit endlichem Index ist dasselbe
wie die Wirkung des Hecke-Operators TĤ

p auf Sk(Ĥ), wobei Ĥ der Kongruenz-
abschluß von H ist. Dass heißt, dass das folgende Diagramm kommutiert:

Sk(H)

TH
p
��

TrĤ
H // Sk(Ĥ)

TĤ
p

��
Sk(H) Sk(Ĥ)

incl.
oo
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Abstract

Consider a finite index subgroup H ≤ Γ−d = PSL(2,O−d), d any square-free
natural number. Let H be of level a, in the sense of [32], and Ĥ its congruence
closure. Suppose that p ∈ O−d is prime and a+ pO−d = O−d. Define g :=(

p 0
0 1

)
∈ PGL(2, C). In this work, we show that for every Γ−d-module X and

every q ≥ 1 the following diagram commutes:

Hq(H, X)

TH
g

��

trĤ
H // Hq(Ĥ, X)

TĤ
g

��
Hq(H, X) Hq(Ĥ, X)

resĤ
H

oo

where tr denotes the trace (co-restriction) map, res denotes the restriction map,
and TH

g is the Hecke operator associated to the double coset HgH. This is a gen-
eralization of the Atkin's conjecture (now a theorem, first confirmed in a special
case by Serre in 1987 and finally proved in general by Berger in 1994): the action
of the Hecke operators TH

p on the space of the cusp forms Sk(H) of any given
weight k associated to a non-congruence finite index subgroup H ≤ PSL(2, Z)

is essentially the same as the action of the Hecke operators TĤ
p on Sk(Ĥ), where

Ĥ is the congruence closure of H. More precisely, TH
p = TĤ

p ◦ TrĤ
H , where Tr is

the trace map between the space of modular forms. That is, the following diagram
commutes:

Sk(H)

TH
p
��

TrĤ
H // Sk(Ĥ)

TĤ
p

��
Sk(H) Sk(Ĥ)

incl.
oo
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Introduction

This thesis provides a first step in the exploration of arithmetic aspects of non-
congruence subgroups of Bianchi groups.

Why are non-congruence subgroups important? One simple answer is given
by a classical theorem of Belyi: any smooth projective curve defined over a number
field is isomorphic to a modular curve for some finite index subgroup of SL(2, Z).
The majority of these groups are non-congruence. While this is a good enough
motivation to study non-congruence subgroups, there are other reasons which
are more arithmetic in nature.

The first considerations of the arithmetic aspects of non-congruence sub-
groups came from Atkin who conjectured that Hecke theory on a non-congruence
subgroup of SL(2, Z) was essentially given by the Hecke theory on its congruence
closure (see below). This conjecture was proven to be true by Serre, Thompson
and later Berger.

While this gives the impression that non-congruence subgroups are arithmeti-
cally insignificant, the experimental work of Atkin and Swinnerton-Dyer claims
that there is more behind it. They made a series of conjectures about congru-
ences between the Fourier coefficients of modular forms for congruence and non-
congruence subgroups of SL(2, Z). Today there is significant progress towards
the establishment of these congruences, especially by Li, Long and Atkin. A major
input to this progress came from the fundamental paper of Scholl which attached
Galois representations to modular forms for non-congruence subgroups which
are simultaneous eigenvectors under the action of the Hecke operators, see [57].

The efforts of Serre, Bass, Lazard, Mennicke and Milnor show that among the
groups SL(n, R), where n ≥ 2 and R is the ring of integers of a number field K,
the only ones that do have non-congruence subgroups are SL(2, Z) and Bianchi
groups, that is, SL(2,O) with O the ring of integers of an imaginary quadratic
number field. Thus besides SL(2, Z), it is only natural to investigate the arith-
metic of non-congruence subgroups of Bianchi groups (for a good expository
reference for these topics, see [46]). In this thesis, we establish the analog of the
conjecture of Atkin on the Hecke theory. Let us be more precise now.

For every finite index subgroup H of PSL(2, Z) (H ≤ f PSL(2, Z) for short)
and every k, p ∈ N, p prime, let Sk(H) denote the space of the H-cusp forms
of weight k and recall that the Hecke operator TG

p : Sk(H) → Sk(H) is defined

vi
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by
TH

p ( f ) := Σ
i
( f |k p̃) |k gi,

where p̃ :=
(

p 0
0 1

)
, H = ⊔

i
Hpgi, and Hp := H ∩ p̃−1Hp̃. A conjecture of

Atkin (now a theorem, first confirmed in a special case by Serre in 1987 and finally
proved in general by Berger in 1994) states that the action of the Hecke operators
TH

p on the space of the cusp forms of any given weight k associated to a non-
congruence subgroup H ≤ PSL(2, Z) is closely related to the action of the
Hecke operators TĤ

p on Sk(H̃), where H̃ is the congruence closure of H. More
precisely,

Theorem. For allmost all prime numbers p, we have TH
p = TĤ

p ◦ TrĤ
H , where Tr

is the trace map. That is, the following diagram commutes:

Sk(H)

TH
p
��

TrĤ
H // Sk(Ĥ)

TĤ
p

��
Sk(H) Sk(Ĥ)

incl.
oo

Keeping this in mind, and recalling that

1. by the Eichler-Shimura theorem, Sk(H) can be viewed as a subspace of
H1(H, Xk), the first cohomology group of G with coefficients in a certain
H-module Xk, and

2. Hecke operators act on the cohomology groups too,

one comes naturally to the question whether the similar digram commutes for
cohomology, i.e. whether some diagram like

H1(H, Xk)

TH
g

��

TrĤ
H // H1(Ĥ, Xk)

TĤ
g

��

H1(H, Xk) H1(Ĥ, Xk)res
oo

happens to commute? (Here g is a suitable element of PGL(2, Q).) When it comes
to asking questions and playing with ideas, why not be much more idealistic, and
go even further, asking whether

vii
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Hq(H, X)

TH
g

��

TrĤ
H // Hq(Ĥ, X)

TĤ
g

��
Hq(H, X) Hq(Ĥ, X)res

oo

commutes, for "all" dimensions q and "all" H-modules X? The answer is in fact,
yes, and in this work we are going to show this for all finite index subgroups of the
so called Bianchi groups, (i.e. PSL(2,O−d), where O−d is the ring of integers
of Q(

√
−d), and d is any square-free natural number), for certain elements g

(see below). The main idea, which is a generalization of Berger's idea in [9], is
as follows: starting with pure group theory, let G be an arbitrary group, H ≤ f
K ≤ G and g ∈ G be such that [H : Hg] < ∞, K = (Kg)H, (where Kg :=
K ∩ g−1Kg) and [Kg : Hg] = [K : H]2. We show that for every G-module X
and every q ≥ 1 the following diagram commutes (see 3.5.6):

Hq(H, X)

TH
g

��

trK
H // Hq(K, X)

TK
g

��
Hq(H, X) Hq(K, X)

resK
H

oo

Now let H ≤ f Γ−d = PSL(2,O−d) be of level a, and Ĥ be its congruence
closure. Suppose that p ∈ O−d is prime and a+ pO−d = O−d. Define g :=(

p 0
0 1

)
∈ PGL(2, C). We show that H and Ĥ satisfy the above conditions (see

3.6.8). By the term "level" of H here we mean the (unique) ideal a of O−d which is
maximal with the property that the normal closure of {

(
1 a
0 1

)
∈ PSL(2,O−d) |

a ∈ a} is included in H (see Chapter 2).
Let us here mention that recently there seem to be an increasing interest in the

theory of Bianchi automorphic forms, which can be viewed as cohomology classes
of subgroups of Bianchi groups with coefficients in certain modules, see [27] and
[35]. Our results can be used to deduce that Hecke action on Bianchi automorphic
forms for a non-congruence subgroup of PSL(2,O−d) is essentially the same as
the Hecke action on Bianchi automorphic forms for the congruence closure of the
subgroup.

This work consists of three chapters:

Chapter 1

It is a brief review of basic definitions and facts about algebraic number fields.
We fix some notations and list some easy properties and formulas for later quick

viii



CONTENTS

references. Then we come to the number theoretic aspects of algebraic number
fields, for example, asking what happens to an integer prime when considered as
an element of an algebraic number field. We, however, do not follow the "stan-
dard" route of algebraic number theory, defining ramified and inert ideals etc.
Instead, we choose a more elementary approach, using ideas of [22]. This chap-
ter continues by recalling some facts about valued fields and places, which will be
used in chapter 2.

Chapter 2

This chapter has two goals: first, to create a basic (algebraic) picture of Euclidean
Bianchi groups and congruence subgroups, without going through details. We list
some presentations of Euclidean Bianchi groups and cite some results about their
finite, normal, and abelian subgroups separately to give some ideas of their na-
ture. Then we recall that the congruence subgroups are the most obvious normal
subgroups of finite index in Bianchi groups and mention the congruence subgroup
property, CSP. We cite an extended notion of level which will be an important no-
tion for our work. We introduce notations for this kind of level and for the notion
of congruence hull or closure, and discover some elementary properties of them.
We prove, for example, the following (2.3.12)

Proposition. Let H be a subgroup of G = PSL(2, R), where R is any commu-
tative ring with unit. If H has finite index in G and char(R) - [G : HG], then aH
is non-zero.

The second goal is to prove the CSP for PSL(2,O−d[1/p]) and showing that
for any ideal I ▹ O−d and for certain elements g ∈ PGL(2, Q(

√
−d)), the

amalgamated product Γ(I) ∗Γ(I)∩Γ(I)g Γ(I)g is isomorphic to a finite index sub-
group of PSL(2,O−d[1/p]) (2.6.8). This will be used in chapter 3 in order to
show that H and its congruence closure Ĥ satisfy the conditions of the afore-
mentioned pure group theoretic result (see above). At the end of this chapter,
we present some computer-aided examples of computing levels of subgroups of
PSL(2,O−1) and PSL(2,O−7). We see here examples of congruence subgroups
which are link complement groups, that is, isomorphic to the fundamental group
of the complement in S3 of some link.

Chapter 3

In this chapter we prove our generalization of Atkin's conjecture. We start by a
very short overview of modular forms and Hecke operators in order to discuss
Atkin's conjecture. Then we fix our notations for group cohomology and the ac-
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tion of double cosets (Hecke algebra) on it. At this point we are able to prove the
aforementioned "pure group theoretic soul" of our generalized Atkin's conjecture
(3.5.6). This, together with many small results of chapters 1 and 2, leads us to
the main result of chapter 3, theorem 3.6.8.
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1 Algebraic Number Fields

Any finite extension of the field of rational numbers is called an algebraic number
field. In this chapter we study algebraic number fields, as they play a key role in
the construction of Bianchi groups, which are fundamental objects for our work
in this thesis. In section 1 we fix some basic notations and definitions concern-
ing algebraic number fields and review some facts about the number theory of
Q[

√
−d]. In section 2 we review briefly valued fields and recall some facts about

places of a number field.

1.1 Background constructions

Any subfield K of C which is finite dimensional over Q is called an algebraic
number field. We denote the (sub)ring of integers of K by OK, that is, OK is
the ring of algebraic integers in K. An order of an algebraic number field K is a
subring of OK which is a free Z-module of rank [K : Q].

Theorem and Definition 1.1.1. Let K be an algebraic number field with n = [K :
Q]. Then we have the following:

1. OK is integrally closed.

2. Every non-zero prime ideal of OK is maximal (i.e. OK has Krull dimension
1).

3. OK is a free Z-module of rank n, and hence is Noetherian.

4. For every non-zero ideal I of OK, OK/I is finite.

5. OK is a Dedekind domain, (see, for example, the comments after lemma
1.2.4 for a definition) and hence has unique prime ideal decomposition.

6. O∗
K = (O − {0}, ·) is a finitely generated abelian group.

7. If L is another number field with K ⊆ L, then OL ∩ K = OK.

For a proof see, for example [52].

1



1. ALGEBRAIC NUMBER FIELDS

Notation 1.1.2. Let K be an algebraic number field and x, y ∈ K.

1. x denotes the complex conjugate of x. Clearly xy = x y and x + y =
x + y.

2. N(x) := xx denotes the so called norm of x. Clearly N(xy) = N(x)N(y).

3. x | y means there exists q ∈ K with qx = y.

Any algebraic number field K of dimension 2 over Q is called a quadratic
number field. Let K = Q(α), where α satisfies some quadratic equation ax2 +
bx + c = 0, with a, b, c ∈ Z. So α = (−b ±

√
A)/2a with A = b2 − 4ac.

Let A = A2
1d, with d square-free. Then K = Q(

√
d). Thus we see that every

quadratic number field is of the form Q(
√

d), where d is any square-free integer.
For any natural number m, define Od,m:= Z + mωZ where

ω := ωd :=

{√
d if d . 3 mod 4 (iff −d . 1 mod 4),

1+
√

d
2 if d ≡ 3 mod 4 (iff −d ≡ 1 mod 4).

For simplicity, denote Od,1 by Od. We also define O1 := Z.
It can be shown ([52]) that Od is the ring of integers of Q(

√
d). The rings

Od,m are orders in Od. We are particularly interested in number fields O−d,
d ∈ N in this work. From now on, d will be a square-free natural number.

Theorem 1.1.3. Let 0 , x = a + bω ∈ O−d, n ∈ N, and denote by U−d the set
of unit elements of O−d.

1. x + x is always an integer. Moreover, O−d = {u ∈ Q(
√
−d) | u +

u, N(u) ∈ Z}.

2. If ω =
√
−d (i.e. if d . 3 mod 4), then

x = a − bω, and so N(x) = a2 + b2d ∈ N.

3. In case ω =
√
−d, we have N(x) = n if and only if |b| ≤

√
n/d and a =

±
√

n − db2. Moreover, if −1 ≤ a, b ≤ 1 then N(x) ∈ {0, 1, d, d + 1}.

4. If ω = 1+
√
−d

2 (i.e. if d ≡ 3 mod 4), then

x = a + b − bω, and so N(x) = a2 + ab + b2 d + 1
4

∈ N,

5. In case ω = (1 +
√
−d)/2, we have N(x) = n if and only if |b| ≤

2
√

n/d and a = (−b ±
√

4n − db2)/2. Moreover, if −1 ≤ a, b ≤ 1
then N(x) ∈ {0, 1, (d + 1)/4, (d + 9)/4}.

2



1.1. BACKGROUND CONSTRUCTIONS

6. Q(
√
−d) is the field of fractions of O−d.

7. x ∈ O−d is invertible if and only if N(x) = 1.

8. U−1 = {±1,±i}, U−3 = {±1,±ω,±ω2}, and U−d = {±1} for all
other d's.

The proof is straightforward. The following facts are well known:

Theorem and Definition 1.1.4. Let R be any integral domain and x ∈ R be a non-
zero non-unit. x is called prime if for every x, y ∈ R with p | xy, we have either
p | x or p | y. x is called irreducible if for every x, y ∈ R with p = xy, we have
either x or y is a unit element of R. Clearly, every prime element is irreducible.
The converse is true if R is a GCD domain, that is, an integral domain in which
every two non-zero elements have a greatest common divisor (GCD). Equivalently,
any two non-zero elements of R have a least common multiple (LCM). An integral
domain is a unique factorization domain (UFD) if and only if it is a noetherian GCD
domain.

Theorem 1.1.5. The ring O−d is Euclidean if and only if d ∈ {1, 2, 3, 7, 11}.

See [20] for a proof. Recall that every Euclidean domain is a principal ideal
domain (PID) and in every PID the GCD of any two non-zero elements can be
written in the form of a linear combination of them. Let us look at the following
small results, which could simplify some computations in O−d.

Lemma 1.1.6. Let a, b, e, f , k ∈ Z, gcd(a, b) = 1, and k , 0. Then e + f ω ∈
k(a + bω)O−d if and only if{

kN(a + bω) | (a + b)e + b f d′, a f − be whenever d ≡ 3 mod 4,
kN(a + bω) | ae + b f d, a f − be whenever d ≡ 1 mod 4.

,

where d′ = (d + 1)/4.

Proof. Straightforward. �

Lemma 1.1.7. Let m ∈ Z, d ∈ {1, 2, 3, 7, 11}, and x ∈ O−d. If m | N(x) then
m | N(gcd((m, x)).

Proof. There exists y, z ∈ O−d such that gcd(m, x) = zm + yx. So

N(gcd((m, x)) = N(zm + yx) = (zm + yx)(zm + yx) =

(zm + yx)(zm + yx) = N(z)m2 + mzyx + yxzm + N(y)N(x).

As m divides every summand in the left hand side, we infer that m | N(gcd(m, x)).
�

3



1. ALGEBRAIC NUMBER FIELDS

Proposition 1.1.8. Let d ∈ {1, 2, 3, 7, 11} and x ∈ O−d.

1. For every m ∈ Z, gcd(m, x) = 1 if and only if gcd(m, N(x)) = 1.

2. x is prime in O−d if N(x) is a prime number. (For the converse, see for
example corollary 1.1.13 and 1.1.16.)

3. For every p ∈ N prime with p - x and p | N(x), δ := gcd(p, x) is a prime
element in O−d of norm p.

Proof. 1. Assume gcd(m, x) = 1. So ym + zx = 1 for some y, z ∈ O−d,
and hence zx = 1− ym and N(z)N(x) = N(1− ym) = (1− ym)(1−
ym) = 1 − (y + y)m + N(y)m2. As (y + y) and N(y) are integers, this
implies that gcd(m, N(x)) = 1. Conversely, assume gcd(m, N(x)) = 1.
So am + bxx = 1 for some a, b ∈ Z, implying gcd(m, x) = 1.

2. Clear.

3. Write p = qδ for some q ∈ O−d. So p2 = N(p) = N(q)N(δ). We
claim that neitherN(q) nor N(δ) can be equal 1. For if N(q) = 1, then
q is invertible and hence p | δ which implies p | x, contradiction. On the
other hand, as p | N(x), it follows by the above lemma that p | N(δ), so
N(δ) , 1. Hence N(δ) = N(q) = p. So δ is a prime element of O−d.

�

We are going to state some simple but helpful number theoretic facts about
Q[

√
−d]. What we do here, is just generalizing some results of Dresden and

Dymàček, ([22]), which is about Z[i], to O−d.

Notation 1.1.9. 1. Let d be an odd square-free natural number and O :=
O−d.

2. For every m ∈ Z, Zm := Z/mZ.

3. Fq denotes the finite field with q elements.

Proposition 1.1.10. (Compare to [22], Theorem 1) Let m ∈ N. Then O/mO �
Zm[ω].

Proof. Define πm : O → Zm[ω] by πm(a + bω) := [a] + [b]ω where [ ] shows
the equivalence class of integers modulo m. It can be easily seen that this map is
a surjective ring homomorphism and ke(π) = mO. �

Lemma 1.1.11. For every m ∈ N, if Zm[ω] is a field, then m is a prime number.
Moreover, if d ≡ 1 mod 4 then m is odd, if d ≡ 3 mod 8 then Z2[ω] � F4 and
if d ≡ 7 mod 8 then Z2[ω] � F2.

4



1.1. BACKGROUND CONSTRUCTIONS

Proof. Assume that Zm[ω] is a field. It is then clear that m is prime. We have

(1 + ω)2 2≡ 1 + ω2 =

{
1 − d if d ≡ 1 mod 4,
w + 3−d

4 if d ≡ 3 mod 4.
.

If d ≡ 1 mod 4 and m = 2, then (1 + ω)2 2≡ 0, contradiction. So in this case

m , 2. Let d ≡ 3 mod 8. Then 3−d
4 ≡ 0 mod 2 and hence 1 + ω2 2≡ω, that

is ω2 2≡ω − 1, showing that Z2[ω] is a field with 4 elements. Finally, if d ≡ 7

mod 8, then 3−d
4 ≡ 1 mod 2 and hence ω2 2≡ω, that is, ω

2≡ 1, so Z2[ω] is a

field with 2 elements. �

Recall that for two integers a, p, with p prime and p - a, a is called a quadratic

residue mod p if the equation x2 = a is solvable in Zp. The symbol
(

a
p

)
, called

the Legendre symbol, is defined to be 1 if a is a quadratic residue mod p, −1
otherwise, and 0 if p | a.

Proposition 1.1.12. Let 2 < p ∈ N be prime. Then O/pO is a field if and only
if
( p

d
)
= −1

Proof. By lemma 1.1.10, O/pO � Zp[ω]. Consider the epimorphism ϕ :
Zp[x] → Zp[ω] defined via ϕ(x) := ω. Clearly we have

ke(ϕ) =

{
⟨x2 − x + d+1

4 ⟩ if d ≡ 3 mod 4,
⟨x2 + d⟩ if d ≡ 1 mod 4.

.

We know that O/pO is a field if and only if ke(ϕ) is an irreducible ideal. But
x2 + d is an irreducible polynomial over Zp if and only if d is not a quadratic

residue mod p, in Legendre symbol
(

d
p

)
= −1 which is equivalent to

( p
d
)
= −1

by [39], chapter 5, theorem 1. Similarly, x2 − x+ d+1
4 is an irreducible polynomial

over Zp if and only if
(
−d
p

)
= −1, (by [39], chapter 5, exercise 3) which is

equivalent to
( p

d
)
= −1 by [39], chapter 5, theorem 1. �

Corollary 1.1.13. Let 2 < p ∈ N be prime. Then p is prime in O−d if and only
if
( p

d
)
= −1.

Proof. Immediate consequence of the above proposition. �

5



1. ALGEBRAIC NUMBER FIELDS

Proposition 1.1.14. for every square-free natural number d , 1, 3, we have
O−d/ωO−d � Z/δZ, where

δ =

{
d d ≡ 1 mod 4,
−(d + 1)/4 d ≡ 3 mod 4.

Proof. Define f : O−d → Z/δZ by f (a + bω) := a mod δ. Clearly f is a ring
epimorphism. On the other hand, since ω2 = ω − δ, we have ω | δ, and hence
ke( f ) = ωO−d. �

Proposition 1.1.15. ((Compare to [22], Theorem 2) Let a, b ∈ Z − {0} with
gcd(a, b) = 1. Then O/(a + bω)O � ZN(a+bω).

Proof. As gcd(a, b) = 1, we have gcd(b, a2 + b2d) = 1 (useful when d ≡
1 mod 4) and gcd(b, a2 + ab + b2(d + 1)/4) = 1 (useful when d ≡ 3 mod
4), so b is invertible in ZN(a+bω). Define ϕ : O/(a + bωO) → ZN(a+bω)

with ϕ(x + yω) := x − ab−1y. ϕ is clearly an epimorphisms of the additive
underlying groups with a + bω ∈ ke(ϕ). We have

ϕ(x + yω)ϕ(u + zω) = (x − ab−1y)(u − ab−1z) =

(xu − a2b−2zy)− ab−1(uy + zx),

while

ϕ((x + yω)(u + zω)) = ϕ((xu + yzω2) + (uy + zx)ω) ={
(xu − dzy)− ab−1(uy + zx) if d ≡ 1 mod 4,
(xu − zy(d + 1)/4)− ab−1(uy + zx + zy) if d ≡ 3 mod 4.

.

Now, since

a2b−2 N(a+bω)
≡

{
−d if d ≡ 1 mod 4,
−(d + 1)/4 − ab−1 if d ≡ 3 mod 4.

.

we see that ϕ is in fact a ring epimorphism. The aim is now to show that ke(ϕ) =
(a+ bω)O. Let ϕ(x + yω) = 0, so x − ab−1y = 0 in ZN(a+bω), which implies
bx − ay = 0 in ZN(a+bω). We have the following two cases:

Case (1) d ≡ 1 mod 4, so ω2 = −d: Note that a2b−2 = −d in ZN(a+bω).
The equality bx − ay = 0 in ZN(a+bω) implies that the coefficient of ω is an
integer in the right-hand side of the following expression:

6
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x + yω

a + bω
=

ax + bdy
N(a + bω)

+
ay − bx

N(a + bω)
ω.

Now multiplying bx − ay ≡ 0 by ab−1 we get ax − a2b−2by = ax − bdy ≡
0, that is, the real part of the (x+ yω)/(a+ bω) is also an integer. So x+ yω ∈
a + bωO, hence ke(ϕ) = a + bωO.

Case (2) d ≡ 3 mod 4, so ω2 = ω − (d + 1)/4: Note that a2b−2 + ab−1 =
−(d + 1)/4 in ZN(a+bω). The equality bx − ay = 0 in ZN(a+bω) implies that

x + yω

a + bω
=

ax + ay + by(d + 1)/4
N(a + bω)

+
bx − ay

N(a + bω)
ω ∈ O,

that is, x + yω ∈ a + bωO, and hence ke(ϕ) = a + bωO. �

Corollary 1.1.16. Let a, b ∈ Z − {0} with (a, b) = 1. Then a + bω is prime in
O−d if and only if N(a + bω) is prime in Z.

Proposition 1.1.17. ((Compare to [22], Theorem 4) Let a, b, and k be positive
integers with gcd(a, b) = 1. Putting x = a + bω, we have

O/kxO = {[e + f ω] | 0 ≤ e < kN(x), 0 ≤ f < k},

where [ ] denotes the equivalence class modulo kxO. So the ring O/kxO is of
order N(kx) and has characteristic kN(x).

Proof. We first show that the indicated equivalence classes are distinct. Let u =
[e1 + f1ω], v = [e2 + f2ω] be elements of the right hand side set. If u = v then
(e1 − e2) + ( f1 − f2)ω ∈ kxO and by 1.1.6

{
kN(x) | (a + b)(e1 − e2) + b( f1 − f2)d′, a( f1 − f2)− b(e1 − e2) d ≡ 3 mod 4,
kN(x) | a(e1 − e2) + b( f1 − f2)d, a( f1 − f2)− b(e1 − e2) d ≡ 1 mod 4.

In the first case, we get

k(a2 + ab + b2d′) | b((a + b)(e1 − e2) + b( f1 − f2)d′) + (a + b)(a( f1 − f2)−

b(e1 − e2)) = ( f1 − f2)(a2 + ab + b2d′),

so that k | f1 − f2. Since both f1 and f2 are non-negative and smaller than k,
f1 = f2. Thus kN(x) divides both (a + b)(e1 − e2) and b(e1 − e2). Because
gcd(a, b) = 1, we must have kN(x) | e1 − e2, implying that e1 = e2.

In the second case, we see that

kN(x) = k(a2 + b2d) | b(a(e1 − e2) + b( f1 − f2)d) + a(a( f1 − f2)− b(e1 − e2))

7



1. ALGEBRAIC NUMBER FIELDS

= ( f1 − f2)(a2 + b2d),

so that k | f1 − f2. The rest of the argument is similar to the previous case.
We now show that any u = e+ f ω falls into one of these equivalence classes.

Since a and b are relatively prime, there exist integers s and t such that aks +
bkt = k.

Let d ≡ 1 mod 4 and note that (ak + bkω)(−t + sω) = kω − m, for some
m ∈ Z. Now dividing f by k, we get f = f1k + r, for some f1, r ∈ Z with 0 ≤
r < f . Thus [u] = [e + f1kω + rω] = [(e + f1m) + rω]. As k(a2 + b2d) ∈
kxO, dividing e′ := e + f1m by k(a2 + b2d) we get e′ = e′1k(a2 + b2d) + r′ for
some e′1, r′ ∈ Z with 0 ≤ r′ < k(a2 + b2d), so we have [e′ + rω] = [r′ + rω],
0 ≤ r′ < k(a2 + b2d), and 0 ≤ r < f as desired.

Assume next that d ≡ 3 mod 4 and note that (ak + bkω)(−t − s + sω) =
kω − m, for some m ∈ Z. Arguing similarly, we get [u] = [r′ + rω], 0 ≤ r′ <
k(a2 + b2d), and 0 ≤ r < f .

�

Example 1. Let n ∈ N and O := O−7.

1. For 2 ≤ n, there exist a, b ∈ Z with b odd and gcd(a, b) = 1 such that
ωn = 2a + bω.

2. For 3 ≤ n, there exist a, b ∈ Z, both odd, with gcd(a, b) = 1 such that
ωn = a + bω.

3. For 2 ≤ n, we have O/ωnO � Z/2nZ, and for 3 ≤ n, we have O/(1 −
ω)nO � Z/2nZ.

Proof. 1. For n = 2, it is clear since ω2 = ω − 2. Assume the assertion for
n. Write ωn+1 = ω(2a + bω) = −2b + (2a + b)ω. Let ax + by = 1 for
some x, y ∈ Z. So 1 = (2a + b)x + (y − x)b, showing gcd(2a + b, b) =
1. As 2a + b is odd, it follows that gcd(2a + b, 2b) = 1.

2. Similar to (1).

3. Immediate from (1), (2) and proposition 1.1.15.
�

The next theorem (from [40]) is a nice way of classifying ideals generated by
(integer) prime numbers in O−d:

Theorem 1.1.18. Let d be a square-free natural number and p ∈ N be a prime.
Then we have the following cases:

8
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1. If p is odd and p - d then

pO−d =

{
⟨p, n +

√
−d⟩⟨p, n −

√
−d⟩ if

(
−d
p

)
= 1,

prime otherwise.

2. If p | d then pO−d = ⟨p,
√
−d⟩2.

3. If d is odd then

2O−d =


⟨2, 1 +

√
−d⟩2 if −d ≡ 3 mod 4,

⟨2, 1+
√
−d

2 ⟩⟨2, 1−
√
−d

2 ⟩ if −d ≡ 1 mod 8,
prime if −d ≡ 5 mod 8.

Proof. This follows directly from propositions 13.1.3 and 13.1.4, (p. 190) in [39].
�

The following table which lists some information (including all elements of
norm 1, 2 and 3) about the Euclidean O−d's will be useful for quick references.

Table 1.1:

d 1 2 3 7 11
ω i

√
−2 (1+

√
−3)/2 (1+

√
−7)/2 (1 +

√
−11)/2

N(a + bω) a2 + b2 a2 + 2b2 a2 + ab + b2 a2 + ab + 2b2 a2 + ab + 3b2

Elements of norm 1 ±1,±i ±1 ±1,±ω,±ω2 ±1 ±1

Elements of norm 2
±(1 + i),

±(1 − i)
±ω ±ω,±(1− ω)

Elements of norm 3
±(1 + ω),

±(1 − ω)

±(1 + ω),

±(2 − ω),

±(1 − 2ω)

±ω,±(1 − ω)

9
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1.2 Places of a field

With F we will denote a field and with d any square free natural number. Unless
otherwise stated, p denotes a prime number and O := O−d. We also define

O[
1
p
] := {a/pk | a ∈ O, k ∈ N ∪ {0} }.

This section is devoted to fix some notations and terminology and recall some
basic facts about valued fields. We need this constructions in the next chapters.
For details and proof of the results, see for example [42], chapter 6. We start with
the definition of absolute value:

Definition 1.2.1. Let | | : F → R≥0 be a map. Consider the following conditions:

1. |x| = 0 if and only if x = 0 for every x ∈ F.

2. |xy| = |x||y| for every x, y ∈ F.

3. |x + y| ≤ |x|+ |y| for every x, y ∈ F.

4. |x + y| ≤ max{|x|, |y|} for every x, y ∈ F.

Condition (3) is called the triangle inequality and condition (4) is called the ul-
trametric inequality. The map | | is called an absolute value or norm on F if it
satisfies (1), (2), (3) and (F, | |) is then said to be a valued field. An absolute value
is called non-Archimedean if it satisfies (4), otherwise, it is called Archimedean.

When the ultrametric inequality holds, then |x+ y| = |x| whenever |y| < |x|.
The trivial absolute value on F is defined by |0| = 0 and |x| = 1 for all 0 , x ∈ F,
which is non-Archimedean. Any absolute value on a field gives rise to a (metric)
topology, compatible with the field operations:

Proposition 1.2.2. Let | | be an absolute value on a field F. Then the topology on
F induced by the associated metric d(x, y) := |x − y| makes F into a topological
field.

We state here the notion of discrete valuation, which is closely related to the
notion of absolute value.

Definition 1.2.3. A discrete valuation on F is a map v : F → Z ∪ {∞} such
that for all x, y ∈ F,

1. v(x) = ∞ if and only if x = 0.

2. v(x + y) ≥ min{v(x), v(y)}.

10
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3. v(xy) = v(x)v(y) .

The valuation ring of F is defined as the subring Fv := {x ∈ F | v(x) ≥ 0}.
It is a principal ideal domain and F is its field of fractions. The valuation ideal of
v in F is Pv := {x ∈ F | v(x) > 0}. It is the unique maximal ideal of Fv and
is generated by any element x ∈ F with v(x) = 1. The residue class field of v
is the field Fv/Pv.

Any discrete value leads to a non-Archimedean absolute value:

Lemma 1.2.4. Let v be a discrete valuation on F. For every 1 < r ∈ R, define
|x|v,r := r−v(x) if 0 , x ∈ F and |0|v,r := 0. Then | |v,r is a non-Archimedean
absolute value on F.

Now we briefly study Dedekind domains, as there is a close relationship be-
tween discrete valuations defined on the field of fractions of a Dedekind domain
and its non-zero prime ideals. We will need these facts later, especially in the
proof of 2.6.3. So first we recall the necessary basic definitions. Let R be an inte-
gral domain, and let F be its field of fractions. A fractional ideal of R is a nonzero
finitely generated R-submodule of F. A fractional ideal I is contained in R if and
only if it is an (integral) ideal of R. Recall that a Dedekind domain is an inte-
gral domain, which is not a field, and all of its fractional ideals are invertible with
respect to the submodule multiplication. Equivalently, a Dedekind domain is an
integral domain which is not a field, is integrally closed, Noetherian, and has Krull
dimension one (i.e. every non-zero prime ideal is maximal). Another equivalent
definition is that a Dedekind domain is an integral domain which is not a field,
and in which every non-zero proper ideal factors into a product of prime ideals. It
can be shown that such a factorization is then necessarily unique up to the order
of the factors. Let D be a Dedekind domain, and let F be its field of fractions.
For any fractional ideal M of D, there exists some a ∈ D with aM ⊆ D, and
then aM is an ideal of D. If M is any nonzero fractional ideal, then we define
M−1 := {x ∈ F | xM ⊆ D} and M0 := D. It is a non-zero fractional ideal,
and MM−1 = D. In particular, we can consider negative powers of ideals of D
and we see easily that for every such ideal I ED and for every j ∈ Z, I j+1 ⊆ I j:

· · · I2 ⊆ I ⊆ D = I0 ⊆ I−1 ⊆ I−2 ⊆ · · · ,

and for every x ∈ D, (Dx)j = Dxj.
Every non-zero fractional ideal M of F is of the form

M =
l

Π
i=1

Pki
i ,

11
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for a suitable set {P1, · · · , Pl} of distinct non-zero prime ideals of D and for
suitable non-zero integer exponents ki. This expansion is unique up to the order
of the factors, and every such expression is a fractional ideal. In particular, if
0 , x ∈ F, then the principal fractional ideal xD has a factorization as above. If
P is a non-zero prime ideal of D, we let vP(x) be the exponent of P in the prime
factorization of xD. We also define vP(0) = ∞. Then:

Proposition 1.2.5. The map vP is a discrete valuation on F, which, in turn, defines
a non-Archimedean absolute value | |P,r on F (for every r > 1). Moreover, the
set S := D − P coincides with {x ∈ D | vP(x) = 0} and if the localization
S−1D is regarded as a subring of F, then the valuation ring FvP coincides with
S−1D and its valuation ideal coincides with S−1P.

The following simple lemma is often useful:

Lemma 1.2.6. Let P = pD be a principal prime ideal of a Dedekind ring D, for
some p ∈ D. Then for every j ∈ Z, 1 < r ∈ R, and x ∈ D we have:

1. If vP(x) = j, then there exists z ∈ D such that x = pjz and p - z.

2. x is in Pj if and only if vP(x) ≥ j.

3. If x is in Pj but not in Pj+1, then vP(x) = j.

4. vP(pj) = j, and so |pj|P,r = r−j.

Proof. (1) Decompose xD = PjPc1
1 · · · Pcn

n with ci > 0, and P, P1, · · · Pn distinct
non-zero prime ideals. So there is z ∈ Pc1

1 · · · Pcn
n such that x = pjz. Let

z = pz1, z1 ∈ D. Since D is a Dedekind domain, every non-zero prime ideal
of it is maximal. Since P, P1, · · · Pn are distinct, we infer that p < Pi for every
i. Now by maximality of each Pi, there is ti ∈ D as well as pi ∈ Pi such that
ti p + pi = 1, so

1 = (ti p + pi)
ci = tci

i pci + ppiu + pci
i ,

for some u ∈ D. Multiplying these equations together, we get

1 = (t1p + p1)
c1 · · · (tn p + pn)

cn = gp + pc1
1 · · · pcn

n ,

for some g ∈ D. Multiplying by z1 and noting that pz1 = z ∈ Pc1
1 · · · Pcn

n ,
we see that z1 ∈ Pc1

1 · · · Pcn
n . Hence, x = pj+1z1 ∈ Pj+1Pc1

1 · · · Pcn
n , that is

xD = Pj+1Pc1
1 · · · Pcn

n , contradicting the uniqueness of ideal decomposition in
D.

(2) Let vP(x) = n. By part 1, x = pnz for some z ∈ D with p - z. If x ∈ Pj

and n < j, then p | z, contradiction. The reverse conclusion is clear.
Finally, (3) is an immediate result of part 2 and (4) is clear by part 1. �
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The next proposition lists some of the most important properties of this val-
uation:

Proposition 1.2.7. Let D be a Dedekind domain regarded as a subring of its field
of fractions F. Suppose that v is a discrete valuation on F, and the subring Fv of
F contains D. Then:

1. P := D ∩ Pv is a non-zero prime ideal of D,

2. The associated discrete valuation vP coincides with v,

3. PFv = Pv,

4. D is dense in Fv and D/P � Fv/Pv as fields,

5. Pn is dense in Pn
v for every n ≥ 1, and

6. R + Pn
v = Fv for every n ≥ 1.

Two absolute values | |1 and | |2 on a field F are said to be equivalent if
there exists a positive real number c such that | |1 = (| |2)c. For example, if v
is a discrete valuation on F, then for all 1 < r ∈ R, the absolute values | |v,r
are equivalent. Equivalent absolute values yield the same topology on F. Every
equivalence class of absolute values on a number field F is called a place of F. A
place is called Archimedean or non-Archimedean according as the correspond-
ing absolute values are Archimedean or non-Archimedean. Let F be a number
field and O be its ring of integers. We may identify the set of non-Archimedean
places of F with the set of non-zero prime ideals of O in view of 1.2.5 and the
following:

Theorem 1.2.8. Let F be a number field and O be its ring of integers. Then the
only discrete valuations of F are the vP's, for every non-zero prime ideal P of
O. Hence, every nontrivial non-Archimedean absolute value on F is equivalent to
| |P,r for some non-zero prime ideal P of O (and any 1 < r ∈ R).

Now we turn our attention to the Archimedean places.

Theorem 1.2.9. Let F be a number field with [F : Q] = n, and let there be r1
distinct field maps of F into R and r2 complex conjugate pairs of distinct field
maps of F into C. Then

1. r1 + 2r2 = n.

13
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2. Each such field map f induces an Archimedean absolute value on F by re-
striction from R or C (that is, | | ◦ f , with | | being the ordinary absolute
value), and the only equivalences are the ones from pairs of field maps re-
lated by complex conjugation.

3. The resulting collection of r1 + r2 absolute values exhausts the Archimedean
absolute values on F, up to equivalence.

We specialize the above theorem in the case of our interest, i.e. Q(
√
−d),

and close this section.

Corollary 1.2.10. The number field Q(
√
−d) (for any square-free natural num-

ber d) has only two Archimedean places, (which are equivalent,) corresponding to
an embedding Q(

√
−d) → C and its conjugate.

14



2 PSL(2, C) and its discrete subgroups

Let d be a square-free natural number. Consider the imaginary quadratic num-
ber field Q(

√
−d) and let O−d be its ring of integers. The groups Γ−d :=

PSL(2,O−d) = SL(2,O−d)/{±I} are called Bianchi groups (cf. [10], [11]).
This class of groups is of interest in many different areas. In number theory they
naturally come up in the study of L-functions and elliptic curves (see for exam-
ple [18], [29], [28], [30], [34], [10]). In topology, they are important in the study
of 3-manifolds, as every torsion-free subgroup G 6 Γ−d acts properly, dicon-
tinuously and freely on H and G/H is a noncompact hyperbolic Riemannian
3-manifold. (cf. [65], [66], [31]) Finally they are also interesting in their own
group theoretical right (see for example [24],[25]). Bianchi groups can be consid-
ered as the generalization of the classical modular group Γ1 := PSL(2, Z) ([17]).
For d ∈ {1, 2, 3, 7, 11} the rings O−d are Euclidean rings and the correspond-
ing Bianchi groups are called Euclidean Bianchi groups , which have similar
properties to the modular group ([24]).

In this chapter, first we overview some basic constructions related to Bianchi
groups in 2.1, then outline some group theoretical properties of (Euclidean) Bianchi
groups in section 2.2. Section 2.3 reviews congruence subgroups and the con-
gruence subgroup problem. In section 2.4, we study the congruence closure of a
subgroup of Γ−d. In section 2.5 we prove the perfectness of specific quotients of
Euclidean Bianchi groups and discover some properties of their congruence sub-
groups. In section 2.6 we prove the congruence subgroup property for the groups
SL(2,O−d[

1
p ]), p ∈ O−d prime, which will b needed in the next chapter. finally

we close this chapter by section 2.7, in which we use computer algebra system
GAP to compute the level of some finite index subgroups of PSL(2,O−1) and
PSL(2,O−7).

2.1 Basic constructions

Let X be a metric space and G a group acting on X . A family {Mi | i ∈ I} of
subsets of X is called locally finite if any compact subset of X meets only finitely
many of the Mi 's. We say that G acts properly discontinuously on X if the set
of all G-orbits of X is locally finite. A closed connected subset F of X , with

15
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int(F) , ∅, is a fundamental domain for (the action of) G if GF = X and
int(F) ∩ g(int(F)) = ∅ for all 1 , g ∈ G. Fundamental domains are specially
useful for finding finite representations of groups.

Definition 2.1.1. A subgroup Γ of PSL(2, C) is said to be discrete if it contains
no sequence of matrices converging element-wise to the identity. Discrete sub-
groups of PSL(2, R) are called Fuchsian groups. For example, PSL(2, Z) is a
Fuchsian group.

Let H2 := {z ∈ C | Im(z) > 0} (equipped with the hyperbolic metric

ds2 = dx2+dy2

y ) be the Poincaré (upper) half plane. A function from H2 to itself
which preserves (hyperbolic) distance is called an isometry. The group PSL(2, R)
acts on H2 by Möbius transformations, which are isometries:(

a b
c d

)
· z :=

az + b
cz + d

.

The group of all isometries of H2 is denoted by Isom(H2). This group is
generated by PSL(2, R) together with the map z 7→ −z and we have [Isom(H2) :
PSL(2, R)] = 2.

Similarly, let H3 := C×R+ be the 3-dimensional hyperbolic space with the
hyperbolic metric:

ds2 =
dx2 + dy2 + dr2

r
.

The group PSL(2, C) acts on H3 in the following way:

(
a b
c d

)
· (z, r) :=

1
N
((az + b)(cz + d) + acr2, r), where N := |cz + d|2 + |c|2r2.

Under this action the hyperbolic metric is invariant. Again the group of all
isometries of H3 is denoted by Isom(H3). This group is generated by PSL(2, C)
together with the map (z, r) 7→ (−z, r) and we have [Isom(H3) : PSL(2, C)] =
2. The following proposition shows one of the reasons why discrete subgroups of
PSL(2, R) and PSL(2, C) (e.g. Bianchi groups) are so interesting.

Proposition 2.1.2. Let G be a non-discrete subgroup of PSL(2, R) (respectively
PSL(2, C)). Then there is no fundamental domain for the action of G on H2

(resp. H3).

Proof. Let {gn} be a sequence in G which converges element-wise to the identity
and let F be a fundamental domain for the action of G. Consider an element x
of int(F). So {gnx} converges to x. Hence there is m ∈ N such that int(F) ∩
gm(int(F)) , ∅, which is impossible. �
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2.2. ALGEBRAIC STRUCTURE OF EUCLIDEAN BIANCHI GROUPS

There is a systematic way to produce some discrete subgroups of PSL(2, C):
we just need to find a discrete subring A of C (with 1), then PSL(2, A) is a
discrete subgroup, and, on the other hand, discrete subrings of C (with 1) are
completely known:

Proposition 2.1.3. 1. For every discrete subring A of C containing the unit
element, PSL(2, A) is a discrete subgroup of PSL(2, C).

2. The discrete subrings (with unit) of C are Z and O±d,m (see previous chap-
ter), where d is a square-free natural number and m is a natural number.

For a proof, see [19].

Notation 2.1.4.

1. Γ−d,m := PSL(2,O−d,m).

2. Γ−d := PSL(2,O−d).

3. Γ1 := PSL(2,O1) = PSL(2, Z).

This gives us a class of discrete subgroups of PSL(2, C). The group Γ1 is
known as the modular group. The structure of the modular group is well under-
stood. For example it is isomorphic to the free product of the cyclic groups Z/2
and Z/3, and has a presentation Γ1 =< x, y | x2 = (xy)3 = 1 >. Picard
was the first one who studied the group Γ−1 = PSL(2, Z[i]) in 1883, and this
group is known as the Picard group ([51], [53]). For a detailed study of the Picard
group, see [24] and [23]. The rings O−d are the rings of integers of the imaginary
quadratic number fields Q(

√
−d) and, as mentioned before, the groups Γ−d are

called the Bianchi groups. The rings O−d,m for m ∈ N are orders in Q(
√
−d)

and the groups Γ−d,m are of finite index in the Bianchi groups. (See [59] for a
comprehensive study of discrete subgroups of PSL(2, C).)

2.2 Algebraic structure of Euclidean Bianchi groups

Following the work of Bianchi [11] and Humbert [38], Swan [63] indicated funda-
mental domains for the action of Bianchi groups on the hyperbolic 3-space and
used these fundamental domains to find finite presentations for Bianchi groups
Γ−d for some small values of d, while a separate purely algebraic method was
given by P.M. Cohn [17] for Euclidean Bianchi groups. A computer implementa-
tion of Swan's method was given by R. Riley [56]. For a detailed discussion of the
algebraic structure of Bianchi groups, look at [25] and [24]. Let us start our study
by fixing some presentations for Euclidean Bianchi groups. Then we mention
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2. PSL(2, C) AND ITS DISCRETE SUBGROUPS

some facts about their group structure, their finite and finite index subgroups,
and their normal and abelian subgroups.

Recall from section 1.1 that the ring O−d has a Z-basis consisting of 1 and
ω, where

ω := ωd :=

{
i
√

d if d , 3 mod 4 (iff −d , 1 mod 4) ,
1+i

√
d

2 if d = 3 mod 4 (iff −d = 1 mod 4).

Define the following three matrices of SL(2, C):

A :=
(

1 1
0 1

)
, B :=

(
0 1
−1 0

)
, Cd :=

(
1 ω
0 1

)
, J :=

(
−i 0
0 i

)
,

and let a, b, c := cd and j be the respective images of A, B, C and J in PSL(2, C).
Let us list a presentation for each of the Euclidean Bianchi groups in the following
theorem. We add a presentation of the modular group Γ1 for later references.

Theorem 2.2.1. The Euclidean Bianchi groups Γ−d, d ∈ {1, 2, 3, 7, 11}, and the
modular group Γ1 are finitely presented. Moreover, they have the following pre-
sentations:

Γ1 =< a, b | b2 = (ab)3 = 1 >,

Γ−1 =< a, b, c, j | b2 = (ab)3 = [a, c] = j2 = (aj)2 = (bj)2 = (cj)2 =

= (cbj)3 = 1 >,

Γ−2 =< a, b, c | b2 = (ab)3 = [a, c] = (bc−1bc)2 = 1 >,

Γ−3 =< a, b, c | b2 = (ab)3 = [a, c] = (acbc−2b)2 = (acbc−1b)3 =

= a−2c−1bcbc−1bc−1bcb = 1 >,

Γ−7 =< a, b, c | b2 = (ab)3 = [a, c] = (bac−1bc)2 = 1 >,

Γ−11 =< a, b, c | b2 = (ab)3 = [a, c] = (bac−1bc)3 = 1 >,

where [x, y] denotes the commutator xyx−1y−1.

For a proof, see [24] and [31].
It should be noted that the groups Γ−2, Γ−7, and Γ−11 decompose as non-

trivial amalgamated free products , as well as HNN extensions , see [24]. In con-
trast, Γ−3 dose not decompose neither as a non-trivial amalgamated free product
nor as an HNN extension. This was proved by Serre [61] and (independently) by
Karrass and Solitar [24] in a pure combinatorial way using the presentation of
Γ−3. However, Γ−3 is virtually a non-trivial amalgamated product, i.e. it has a
subgroup of finite index which is a non-trivial amalgamated free product (cf. [23]
and [59]). The following theorem is from [59], section 3.4:
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2.2. ALGEBRAIC STRUCTURE OF EUCLIDEAN BIANCHI GROUPS

Theorem 2.2.2. The group Γ−3,2 = PSL(2,O−3,2) decomposes as a non-trivial
free product with amalgamation and as an HNN extension and we have: [Γ−3 :
Γ−3,2] = 10.

Next we consider finite subgroups of Euclidean Bianchi groups. The only pos-
sible f inite subgroups of Γ−d (all d) are Z/2, Z/3, D2 := Z/2 × Z/2, the
symmetric group S3, and the alternating group A4 [31]. More precisely, we have:

Theorem 2.2.3.

1. Γ−1 contains all possible types of finite subgroups.

2. Γ−2 contains Z/2, Z/3, D2, and A4, but not S3.

3. Γ−3 contains Z/2, Z/3, A4, and S3, but not D2.

4. Γ−7 contains only Z/2, Z/3, and S3.

5. Γ−11 contains only Z/2, Z/3, and A4.

6. The number of conjugacy classes of finite subgroups of Γ−d is finite.

The above theorem gives also some information about torsion-free subgroups
of finite index of Γ−d: Let H be such a subgroup. Any finite subgroup K of Γ−d
acts freely on the set of cosets Γ−d/H and so |K| divides [Γ−d : H]. This is just
an special case of the following

Proposition 2.2.4. Let H be a finite index torsion-free subgroup of an arbitrary
group G. Then the index [G : H] is divisible by the least common multiple (lcm)
of the orders of finite subgroups of G.

Let us now briefly analyze normal subgroups of Euclidean Bianchi groups. First
of all recall that ([21]) for any natural number n > 1 and any field F, the groups
PSL(n, F) are simple except PSL(2, F2) which is isomorphic to the symmetric
group S3 and PSL(2, F3) which is isomorphic to the alternating group A4 (to see
what happens if we replace F with a local (or arbitrary) ring, look at [59]). Not
only are Bianchi groups non-simple, but they have plenty of normal subgroups.
For example, as a result of the specific HNN decompositions of Γ−2, Γ−7, and
Γ−11, these groups have normal subgroups of any given index n [24]. Of course
this is in contrast to both the modular group and Γ−1 and Γ−3, for which there
are significant gaps in the possible indices of normal subgroups, cf. [25]. The
following theorem summarizes these facts in a precise way:
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2. PSL(2, C) AND ITS DISCRETE SUBGROUPS

Proposition 2.2.5. 1. Γ−1 has no normal subgroup of index 3, 8, 12pk (with p
prime and p , 2, 3, 5, 11), 36pk (with p prime and p , 2, 3, 11, 17), 12pkqj

(with p and q primes satisfying 1+ pt - 12qj for all t and p, q , 2, 3, 5, 11),
and any n > 12 with 12 - n

2. For each n ∈ N there exists a normal subgroup of index n in Γ−d for
d ∈ {2, 7, 11}

Let us close this section by the following two results from [24] about abelian
subgroups of Bianchi groups:

Theorem 2.2.6. The only abelian subgroups of Γ−d (all d) are cyclic, D2, or free
abelian of rank ≤ 2. In particular,

1. Any abelian subgroup of Γ−2 or Γ−11 is isomorphic to one of Z/2, Z/3,
Z, Z × Z, D2.

2. Any abelian subgroup of Γ−7 is isomorphic to one of Z/2, Z/3, Z, Z×
Z.

Proposition 2.2.7. Every subgroup of finite index of Γ−d (all d) contains a free
abelian subgroup of rank 2. Hence, as every subgroup of a free group is free
(Nielsen-Schreier theorem), it follows that a subgroup of finite index of Γ−d can-
not be free.

2.3 Congruence subgroups

Let n ∈ N, n > 1, and d be a square-free natural number, or zero. Recall
our convention that O1 := Z (2.1.4), and define the following subgroups of
SL(n,O−d): Let a be a proper non-zero ideal of O−d. Consider the natural
homomorphism resa : SL(n,O−d) → SL(n,O−d/a) obtained by restriction
mod a. The kernel of resa is called the principal or full congruence subgroup of
level a and is denoted by SL(n,O−d, a). It is a normal subgroup of SL(n,O−d)
of finite index (see 1.1.1). For example:

SL(2,O−d, a) :=
{ (

a b
c d

)
∈ SL(2,O−d) |

(
a b
c d

)
=

(
1 0
0 1

)
mod a

}
.

These subgroups are the most obvious finite-index normal subgroups of
SL(n,O−d). Note that SL(n,O−d, a) = res−1

a ({1}), so we can generalize this
construction by replacing {1} with a more general subgroup: If G is any subgroup
of SL(n,O−d/a), then res−1

a (G) is a finite-index subgroup of SL(n,O−d) (con-
taining SL(n,O−d, a)). It is called a congruence subgroup. Equivalently, G is a
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2.3. CONGRUENCE SUBGROUPS

congruence subgroup of SL(n,O−d) if G contains a full congruence subgroup.
There is a similar story for PSL: let π : SL(n,O−d) → PSL(n,O−d) be the
canonical surjection and a EO−d. Define Γ(n,O−d, a) := PSL(n,O−d, a) :=
π(SL(n,O−d, a)) and call it the principal congruence subgroup of PSL of level
a. Again, a subgroup G of PSL(n,O−d) is called congruence if G contains a full
congruence subgroup. We summarize these and the closely related notion of level
of a congruence subgroup in the following definition, in a slightly more general
sense:

Definition 2.3.1. Let R be a commutative ring with unit and a a non-zero ideal of
R.

1. Consider the map resa : SL(n, R) → SL(n, R/a) obtained by restriction
mod a (see [6] chapter 5 for a detailed study of this map). The kernel of
resa is called the principal or full congruence subgroup of level a and is
denoted by SL(n, R, a).

2. Let π : SL(n, R) → PSL(n, R) be the canonical surjection and define

Γ(n, R, a) := PSL(n, R, a) := π(SL(n, R, a))

and call it the principal congruence subgroup of PSL of level a. It is a
normal subgroup of PSL(n, R) since π is surjective. It is easy to see that
Γ(n, R, a) is just the kernel of the restriction map resa : PSL(n, R) →
PSL(n, R/a).

3. A congruence subgroup H of SL(n, R) or PSL(n, R) is a subgroup which
contains a full congruence subgroup SL(n, R, a) or PSL(n, R, a) respec-
tively, for some non-zero ideal a of R. If a is maximal among the ideals
having this property, we say that H is congruence of level a.

In particular, when R = O−d, every congruence subgroup is of finite index
(1.1.3). We must be very careful about the difference of being congruence in SL
and PSL. The following lemma (from [59], 6.4) shows that there is a simple rela-
tion between congruence subgroups in SL(n, R) and PSL(n, R) in seme cases.

Lemma 2.3.2. Let N be a subgroup of SL(n, R). If N is congruence in SL(n, R)
then π(N) is congruence in PSL(n, R). Conversely, If π(N) is congruence in
PSL(n, R) and −I ∈ N then N is congruence in SL(n, R). In any of these cases,
N and π(N) have the same level.

Proof. If N is congruence, say SL(n, R, a) ⊆ N for some ideal a, then

Γ(n, R, a) = π(SL(n, R, a)) ⊆ π(N).
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Conversely suppose Γ(n, R, q) ⊆ π(N) for some ideal q. Let x ∈ SL(n, R, q).
So π(x) ∈ π(N), hence there is y ∈ N such that x = y or x = −y. In the
latter case, since −I ∈ N, x ∈ N. So SL(n, R, q) ⊆ N. �

In this work we are particularly interested in the case R = O−d, n = 2 and
the groups PSL. The following theorem, from [24], allows us to compute the
index of a principal congruence subgroup. (Recall that for d ∈ {1, 2, 3, 7, 11} the
rings O−d are Euclidean rings ([24]) and so every ideal of O−d in these cases is
principal.)

Proposition 2.3.3. (Newman Formula) Let d ∈ {1, 2, 3, 7, 11} and z ∈ O−d.

1. We have

[Γ−d : Γ(2,O−d,< z >)] = ρ · |z|3 · ∏{1 − 1/|p|2 | p prime, p | z},

where

ρ :=

{
1 if z | 2 ,
1/2 otherwise.

In particular,

2. If p ∈ O−d is prime, then for every n ∈ N,

[Γ−d : Γ(2,O−d,< pn >)] = ρ · |p|3n−2 · (|p|2 − 1).

3. |z| | [Γ−d : Γ(2,O−d,< z >)]. Moreover,

4. If < z >,< ω > for d = 2 or < z >,< 2 > for d = 7, 11 then
Γ(2,O−d,< z >) is torsion-free.

Previously the concept of level was only defined for congruence subgroups
as we have seen. Following an idea of Fricke this concept was extended to arbi-
trary subgroups of SL(2, Z) of finite index by Wohlfahrt [69], [70]. This has been
generalized to PSL(n,O−d) by Grunewald and Schwermer [32]. Generalizing the
concept of level of congruence subgroups, we get an effective criterion for de-
ciding whether or not an arbitrary subgroup of Γ−d of finite index is congruence.
We use this method in section 2.6 to compute some subgroup's levels in Γ−7 and
Γ−1 and show that they are congruence. Let us start with some terminology and
proving some elementary results:

Definition 2.3.4.
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2.3. CONGRUENCE SUBGROUPS

1. For a family {Xα | α ∈ A} (for some index set A) of subsets of an arbitrary
group we define the join of this family, denoted by

∨
α∈A

Xα, as the subgroup

generated by
∪

α∈A
Xα.

2. For a subgroup H of an arbitrary group G, we denote the normal closure
of H in G by HG. This is the intersection of all normal subgroups of G
containing H. As another description, HG =< ghg−1 | g ∈ G and h ∈
H >.

3. Suppose a is a non-zero ideal of a commutative ring R with unit. We define
the subgroup M(a) of unipotent elements of PSL(2, R) as follows:

M(a) :=
{ (

1 a
0 1

)
∈ PSL(2, R) | a ∈ a

}
.

We denote the normal closure of M(a) in PSL(2, R) by Q(a). Clearly
M(0) = Q(0) = 0 and if R is a local or Euclidean ring then Q(R) =
PSL(2, R) (see [6], 5.9.2and [33], 2.4). Moreover, by [16] theorem 6.1,
Q(O−d) = PSL(2,O−d) if and only if d ∈ {1, 2, 3, 7, 11}.

4. For simplicity put Γ(a) := Γ(2, R, a), when R is clear from the context.

First of all we recall some facts about the normal closure, which we use later.

Proposition 2.3.5. Let H, K, and Hα (α ∈ A for some index set A) be subgroups
of an arbitrary group G with H ⊆ K.

1. We have HG = [G, H]H, where [G, H] =< [g, h] | g ∈ G and h ∈ H >
is a normal subgroup of G.

2. HNG(K) ≤ K. As a result, if K EG then HG ≤ K.

3. HK ≤ HG ≤ KG.

4. (
∨

Hα)G =
∨

HG
α .

5. (
∩

Hα)G ⊆ ∩
HG

α .

Proof.

1. Putting X := {[g, h] | g ∈ G and h ∈ H} and Y := {ghg−1 | g ∈
G and h ∈ H}, we see that [G, H]H = X

∨
H and Y ⊆ XH ⊆ X

∨
H,

so HG =< Y >⊆ [G, H]H. On the other hand H ⊆ Y and X ⊆ YY so
[G, H]H ⊆< Y >= HG.
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2. Immediate from the definitions.

3. Easy verification.

4. Clearly
∨

HG
α ⊆ (

∨
Hα)G (by (3)). To prove the reverse inclusion, first set

T := (
∨

HG
α ) =

∨
([G, Hα]Hα) (by (1)) and note that since

∨
Hα ⊆ T,

we just need to show that [G,
∨

Hα] ⊆ T. We need the following trivial
formula:

For every g, x, y ∈ G, we have

[g, xy] = y−1[ygx, y]y2 · x[g, x−1]−1y−1x−1.

Now consider a generator [g, h1 · · · hn] of [G,
∨

Hα], where hi ∈ Hαi for
some index αi. We proceed by induction on n: for n = 1 there is nothing to
be proved. Assume that for every β1 · · · βn−1 ∈ A, [g, x1 · · · xn−1] ∈ T
for every xj ∈ Hβ j . Let x := h1 · · · hn−1 and write

[g, h1 · · · hn] = [g, xhn] = h−1
n [hngx, hn]h2

n · x[g, x−1]−1h−1
n x−1.

Now h−1
n [hngx, hn]h2

n ∈ [G, Hαn ]Hαn ⊆ T, and

x[g, x−1]−1h−1
n x−1 = x[g, x−1]−1x−1 · xh−1

n x−1,

which is an element of T as x[g, x−1]−1x−1 ∈ T by the induction assump-
tion and xh−1

n x−1 ∈ HG
αn ⊆ T.

5. Easy verification.

�

In the following two propositions, we give a list of some basic properties of
Q, M, and Γ, which will be used throughout this work.

Theorem 2.3.6. ([6], corollary 5.9.2) If R is a local ring, then for every I E R,
Q(I) = Γ(I).

Proposition 2.3.7. Let I and J be two proper non-zero ideals of a commutative
ring R with unit such that I ⊆ J and m, n ∈ Z. We have

1. M(I) ⊆ Q(I) ⊆ Γ(I).

2. M(I) ⊆ M(J), Q(I) ⊆ Q(J), and Γ(I) ⊆ Γ(J).
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3. If R = O−d and ω =
√
−d (i.e. if d , 3 mod 4), then

M(< m + nω >) =< amcn, a−ndcm >

.

4. If R = O−d and ω = 1+
√
−d

2 (i.e. if d = 3 mod 4), then

M(< m + nω >) =< amcn, a−n(d+1)/4cm >

.

Proposition 2.3.8. Let I, J, and Jα (α ∈ A) be ideals of a commutative ring R
with unit. Then:

1. M(
∩{Jα | α ∈ A}) = ∩{M(Jα) | α ∈ A}.

2. Q(
∩{Jα | α ∈ A}) ⊆ ∩{Q(Jα) | α ∈ A}.

3. Γ(
∩{Jα | α ∈ A}) ⊆ ∩{Γ(Jα) | α ∈ A}.

4. M(ΣIα) =
∨

M(Iα) and
∨

Γ(Iα) ⊆ Γ(ΣIα).

5. Q(ΣIα) =
∨

Q(Iα)

Proof. Parts (1) to (4) are easy to verify. For the last one, use 2.3.5 part (4). �

Now we are ready to define the extended version of level, acording to [32].
Consider an arbitrary subgroup H of PSL(2, R) of finite index. The set X =
{I E R | Q(I) ⊆ H}, partially ordered by inclusion, has the maximum ΣX :=
Σ{I | I ∈ X} by 2.3.8.

Definition 2.3.9. Let R be a commutative ring with unit and H be an arbitrary
subgroup of PSL(2, R) of finite index. Then we say that H is a subgroup of level
aH if aH = Σ{I E R | Q(I) ⊆ H} (equivalently if aH is a maximal element of
{I E R | I , 0, Q(I) ⊆ H}). Clearly aΓ(I) = I for every ideal I of R.

Proposition 2.3.10. Let H, K, and Hα (α ∈ A) be subgroups of PSL(2, R) of
finite index.

1. If H ≤ K, then aH ⊆ aK.

2. For any family Hα of subgroups of Γ−d, a∩Hα = ∩aHα .

3. aHg = ag H = aH for every g ∈ Γ−d. In particular, aHG = aH.
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4. For any subgroup N ≤ H we have aN∩Γ(aH) = aN.

Proof.

1. By part (5) of 2.3.8 and the definition of level we have Q(aH + aK) =
Q(aH)Q(aK) ≤ K, so aH + aK = aK, that is aH ⊆ aK.

2. By part (1) a∩Hα ⊆ ∩aHα . On the other hand by 2.3.8 part (2), Q(∩aHα) ⊆
∩Q(aHα) ⊆ ∩Hα, hence the result follows from the definition of level.

3. Note that for every ideal I, Q(I) is a normal subgroup and use part (2).

4. Immediate result of parts (1) and (2).

�

Corollary 2.3.11. The intersection of any family of congruence subgroups Hα, of
level aα, is congruence if and only if

∩
aα is non-zero. In this case, a∩ Hα =

∩
aα.

Proof. If
∩
aα is non-zero, then clearly

∩
Hα is congruence. Conversely, suppose

that
∩

Hα is congruence. So a∩ Hα , 0 and by 2.3.10 part (2), a∩ Hα ⊆ ∩
aα.

Therefore
∩
aα is non-zero. The last equality follows from 2.3.10 part (2). �

There are examples of finite index subgroups of PSL(2, k[x]), k a finite field,
of level zero, see [48]. For Γ−d, however, the situation is different, as we see in
the next proposition and its corollaries:

Proposition 2.3.12. Let H be a subgroup of G = PSL(2, R), where R is any
commutative ring with unit. If H has finite index in G and char(R) - [G : HG],
then aH is non-zero.

Proof. We know that the normal core of H in G, HG, has finite index in G, say
m. So for every g ∈ G, gm ∈ HG. This implies that M(mR) ⊆ HG. Since HG
is normal in G, we have by 2.3.5 part (2), Q(mR) ⊆ HG. Since char(R) - m,
mR , 0. Hence the level of H is not zero, too. �

Corollary 2.3.13. Let H be a finite index subgroup of PSL(2, R), where R is a
commutative ring with unit such that char(R) = 0. Then aH is non-zero.

Corollary 2.3.14. Let H be a finite index subgroup of Γ−d, for any square-free
d. Then aH is non-zero.
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As an application of the concept of level, we state the following theorem,
which, accompanied with relevant computer programs, gives an effective crite-
rion for checking whether a subgroup of Γ−d of finite index is congruence or not,
see section 2.7. For a proof, see for example [32].

Theorem 2.3.15. Let H be a subgroup of Γ−d of level aH. Then H is a congruence
subgroup if and only if Γ(aH) ⊆ H.

As we have seen, every congruence subgroup is of finite index. It is not ob-
vious at all whether or not the converse is true. Towards the end of the 19th
century, the question was raised if there were examples of (normal) subgroups of
finite index in the modular group PSL(2, Z) other than (full) congruence sub-
groups. Fricke and Klein (cf. [41] page 63) answered the question affirmatively
and exhibited such subgroups (see also [47].) So the converse is not true for
PSL(2, Z). In 1964, Bass, Lazard, and Serre ([7]) and independently Mennicke in
1965 ([50]) discovered that PSL(2, Z) is exceptional. They proved the following:

Theorem 2.3.16. (Bass-Lazard-Serre (1964), Mennicke (1965)).
If n > 2, then PSL(n, Z) satisfies the congruence subgroup property (CSP) ,
that is, every finite-index subgroup of PSL(n, Z) is a congruence subgroup.

Later, Mennicke and Newmann proved that PSL(n, R) satisfies the CSP where
R is the ring of integers of every real number field and n > 2. Finally, in 1967,
Bass, Milnor, and Serre proved the following: ([8]).

Theorem 2.3.17. (Bass-Milnor-Serre (1967)). For every square-free natural num-
ber d and every n > 2, the group PSL(n,O−d) satisfies the CSP.

On the other hand, Serre in 1970 proved the following

Theorem 2.3.18. The group PSL(2,O−d), d square-free, contains non-congruence
subgroups of finite index.

Note that by 2.3.21, it follows that the group PSL(2,O−d) contains infinitely
many non-congruence subgroups of finite index. Finally, if we consider the fol-
lowing definition:

Definition 2.3.19. Define

nsc(d) := min{[SL(2,O−d) : G] | G ≤ f SL(2,O−d) is non-congruence}

= min{[Γ−d : G] | G ≤ f Γ−d is non-congruenc}.
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Then we have nsc(1) = 5, nsc(2) = 4, nsc(3) = 22, nsc(7) = 3, and
nsc(d) = 2 for all other d's ([32]).

We cite now some interesting results about non-congruence subgroups from
[12].

Proposition 2.3.20. Let K be a normal subgroup of SL(2,O−d) (all d) such that
SL(2,O−d)/K is isomorphic to either the symmetric group Sn or to the alter-
nating group An for some n > 6. Then K is a non-congruence subgroup.

Proposition 2.3.21. If PSL(2,O−d) (all d) contains a non-congruence subgroup,
then it contains infinitely many such subgroups.

Proof. Let G be a non-congruence subgroup. For every non-zero ideal J of O−d,
G ∩ Γ(J) has finite index in PSL(2,O−d) and is non-congruence. For every
p ∈ N prime, we have

[PSL(2,O−d) : G ∩ Γ(< p >)] =

[PSL(2,O−d) : Γ(< p >)][Γ(< p >) : G ∩ Γ(< p >)],

so if for infinitely many prime numbers p, G ∩ Γ(< p >)'s are equal to a com-
mon subgroup H, then by 2.3.3 part 3, these prime numbers divide the integer
[PSL(2,O−d) : H], which is impossible. �

2.4 Congruence closure

Let S be a subgroup of SL(2,O−d). The intersection of all congruence subgroups
of SL(2,O−d) containing S is not necessarily a congruence subgroup, cf. [48].
When this intersection is congruence, (e.g. when S is of finite index, see below)
we denote it by Ŝ and call it the congruence hull or congruence closure of S. By
definition Ŝ = S if and only if S is a congruence subgroup. When it exists, it is the
smallest congruence subgroup containing S and so the index [Ŝ : S] is a measure
of the extent to which S deviates from being a congruence subgroup. Although
the congruence closure is not defined for every subgroup of SL(2,O−d), there
are plenty of subgroups for which the closure is defined, as we see in the next
theorem. For a proof, see [49].

Theorem 2.4.1. Let G be a finitely generated group and d be any square-free
natural number or zero. There exists S ≤ SL(2,O−d) for which Ŝ is defined,
S E Ŝ, and Ŝ/S � G.

Let us cite the definition of the congruence closure precisely and study basic
properties of the congruence closure.
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Notation 2.4.2.

1. Hg := g−1Hg and gH := gHg−1, for an element g and a subgroup H of
an arbitrary group G.

2. HG :=
∩{Hg | g ∈ G} is the normal core of H in G.

Definition 2.4.3. Let R be commutative ring with unit and H be a subgroup of
PSL(2, R). We define the congruence hull or closure of H in PSL(2, R) as the
smallest congruence subgroup of PSL(2, R) containing H, when it exists, and
denote it by Ĥ. In other words,

Ĥ =
∩
{K ≤ PSL(2, R) | K is congruence and H ⊆ K}

when this intersection is congruence. Note that there always exists a congruence
subgroup containing H, e.g. HΓ(I) for every non-zero ideal I of R.

Proposition 2.4.4. Let H be a subgroup of PSL(2, R), with R a commutative ring
with unit. If aH is non-zero, then Ĥ is defined. In particular, if R = O−d and H
is of finite index in Γ−d, then Ĥ is defined.

Proof. It can be easily seen that Γ(aH)H is the smallest congruence subgroup
containing H. So Ĥ = Γ(aH)H. �

Proposition 2.4.5. Let H, K be subgroups of PSL(2, R), with R a commutative
ring with unit, such that Ĥ and K̂ are defined.

1. For every congruence subgroup N of Ĥ, Ĥ = NH. In particular, Ĥ =
Γ(aH)H, if aH is non-zero.

2. If H ⊆ K then Ĥ ⊆ K̂.

3. If Ĥ ∩ K is defined then Ĥ ∩ K ⊆ Ĥ ∩ K̂.

4. If aH is non-zero then ̂HG ∩ Γ(aH) = Γ(aH).

5. If aH is non-zero, then for every N ≤ H with aN , 0 and ̂N ∩ Γ(aH) = N̂
we have N ⊆ Γ(aH).

Proof.

1. NH is a congruence subgroup containing H and included in Ĥ.

2. Immediate from 2.3.10 part (1) and 2.3.7 part (2).
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3. Immediate from 2.3.8 part (3) and 2.3.7 part (2).

4. Immediate from 2.3.10 parts (3) and (4).

5. If ̂N ∩ Γ(aH)) = N̂, then by part (1) and 2.3.10 part (4), Γ(aN)N =
Γ(aN)(N ∩ Γ(aH)). On the other hand Γ(aN) ∩ N = Γ(aN) ∩ (N ∩
Γ(aH)), whence the result.

�

2.5 The groups PSL(2, R)
In this section, first, we gather some information about perfectness of the groups
PSL(2, R), for a commutative (local) ring R with unit. Next, we apply this infor-
mation to the Euclidean Bianchi groups and discover some properties of the level
of congruence subgroups.

For every field F and every 2 ≤ n ∈ N, the groups SL(n, F) (and hence
PSL(n, F)) are perfect, except in the cases SL(2, 2) and SL(2, 3) ([21]). Recall
that a group G is said to be perfect if G′ = G, that is, G has no non-trivial abelian
quotient. Clearly every quotient of a perfect group is perfect. We are going to show
that the group SL(2, R) is also perfect, for every commutative local ring R. To
prove this, we use the elementary matrices Xij(r), i , j, r ∈ R, whose entries
are the same as the 2 × 2 identity matrix except for the i, j-th entry, which is
r. So Xij(r) ∈ SL(2, R) for every r ∈ R. Let E(2, R) denote the subgroup of
SL(2, R) generated by all elementary matrices. We have the following lemmas:

Lemma 2.5.1. Let R be a commutative ring with 1 such that R contains an invert-
ible element a with a−1 , a. Then E(2, R) ≤ [SL(2, R), SL(2, R)].

Proof. Let r ∈ R and put r′ := (a2 − 1)−1r. Then

[

(
a 0
0 a−1

)
,
(

1 r′

0 1

)
] =

(
1 r
0 1

)
.

�

Lemma 2.5.2. Let R be a commutative local ring with 1 and maximal idealm. Then
E(2, R) = SL(2, R).

Proof. Consider A =
(

a b
c d

)
∈ SL(2, R). If all elements of a row of A are in m,

then for every X ∈ SL(2, R), all entries of the same row in AX are in m, so it
cannot be the identity matrix. Similarly, not all entries of a column of A are in m.
Now consider the following cases:
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1. c < m so c is invertible. Putting c′ := (1 − a)c−1 we see that

X21(−c) · X12(c′) · A · X12(−b − c′d) = I2×2,

hence A ∈ E(2, R).

2. b < m so b is invertible. Putting b′ := (1 − a)b−1 we see that

X12(−b − c′d) · A · X12(b′) · X21(−b) = I2×2,

hence A ∈ E(2, R).

3. b, c ∈ m so in this case we must have a, d < m. First we note that

X12(a−1) ·
(

a 0
0 a−1

)
=

(
a a−2

0 a−1

)
,

hence by case 2,
(

a 0
0 a−1

)
∈ E(2, R). Now

X21(−ac) ·
(

a 0
0 a−1

)
· A · X21(−a−1b) = I2×2,

showing that A ∈ E(2, R).

�

Having this information, it is easy to prove the following

Theorem 2.5.3. Let R be a commutative local ring with 1 and maximal ideal m
such that |R/m| > 3. Then SL(2, R) is perfect.

Proof. As the field R/m has more than 3 elements, R must contain an element
a , 0 with a−1 , a invertible and we are done by the above two lemmas. �

We will use the following special case of this theorem:

Corollary 2.5.4. Let R be an integral domain and I be a maximal ideal of it
such that R/I has more than 3 elements. Then for every j ∈ N, the groups
SL(2, R/I j) (and hence PSL(2, R/I j)) are perfect.

Proof. The case j = 1 is clear because R/I is a field with more than 3 elements.
Note that for every j > 1, R/I j is a local ring with maximal ideal I/I j. On the
other hand, 3 < card(R/I) ≤ card(R/I2) ≤ card(R/I3) ≤ · · · so by the
above theorem we are done. �
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Next, we prove a useful property of the principal congruence subgroups. If
I, J ER, where R is a commutative ring with unit such that J2 ⊆ I, then the group
Γ(2, R/I, I + J/I) is abelian and has a fairly simple structure:

Lemma 2.5.5. Let I, J be ideals of a commutative ring R with unit such that J2 ⊆ I.
Then Γ(2, R/I, (I + J)/I) � ((I + J)/I,+)3. In particular, it is an abelian
normal subgroup of PSL(2, R/I).

Proof. Consider u =
(

a+I b+I
c+I d+I

)
and v =

(
a′+I b′+I
c′+I d′+I

)
in Γ(2, R/I, I + J/I).

We have

uv =

(
aa′ + bc′ + I ab′ + bd′ + I
ca′ + dc′ + I cb′ + dd′ + I

)
.

Now note that, since b, c, b′, c′ ∈ I + J, and (I + J)2 ⊆ I + J2 ⊆ I, we
have bc′, cb′ ∈ I. On the other hand, a − 1, a′ − 1, d − 1, d′ − 1 ∈ I + J, so
that ab′ − b′, bd′ − b, ca′ − c, dc′ − c′, aa′ − a − a′ + 1, dd′ − d − d′ + 1 ∈
(I + J)2 ⊆ I. Thus

uv =

(
a + a′ − 1 + I b′ + b + I

c + c′ + I d + d′ − 1 + I

)
= vu.

On the other hand, since ad − bc − 1 ∈ I, we see that d + I = 2 − a + I.
Hence the map f defined via f (u) := (a − 1 + I, b + I, c + I) is clearly an
isomorphism of abelian groups from Γ(2, R/I, (I + J)/I) to ((I + J)/I,+)3.

�

Let R be an integral domain and I E R. For every j ∈ N, define:{
ϵj+1 : PSL(2, R/I j+1) → PSL(2, R/I j)

ϵj+1

(
a+I j+1 b+I j+1

c+I j+1 d+I j+1

)
:=

(
a+I j b+I j

c+I j d+I j

)
.

It is clear that ϵj+1 = resI j/I j+1 , where

resI j/I j+1 : PSL(2, R/I j+1) → PSL(2, (R/I j+1)/(I j/I j+1))

is the map obtained via restriction mod I j/I j+1. So by 2.5.5,

ke(ϵj+1) = Γ(2, R/I j+1, I j/I j+1) � (I j/I j+1,+)3.

Let I be a maximal ideal of R. Then R/I j+1 is a local ring with the maximal ideal
I j/I j+1. In this case it is very easy to prove that ϵj+1 is surjective: considering

u =
(

a+I j b+I j

c+I j d+I j

)
∈ PSL(2, R/I j), we see that ad − bc − 1 ∈ I j, so ad −
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bc + I j+1 is a unit element of R/I j+1. If e + I j+1 is its inverse, then u′ =(
ea+I j+1 eb+I j+1

c+I j+1 d+I j+1

)
∈ PSL(2, R/I j+1) with ϵ(u′) = u.

As a consequense of 2.3.6, we have Γ(2, R/I j+1, I j/I j+1) = Q(I j/I j+1),
so we get the following short exact sequence:

0 → (I j/I j+1,+)3 → PSL(2, R/I j+1) → PSL(2, R/I j) → 0,

As a result, (I j/I j+1,+)3 is a PSL(2, R/I j)-module. So we have proved the
following

Proposition 2.5.6. Let R be an integral domain and I E R. For every j ∈ N,
Γ(2, R/I j+1, I j/I j+1) = Q(I j/I j+1) � (I j/I j+1,+)3 and the following se-
quence is exact:

0 → (I j/I j+1,+)3 → PSL(2, R/I j+1) → PSL(2, R/I j) → 0,

As a result, (I j/I j+1,+)3 is a PSL(2, R/I j)-module.

This result leads immediately to the following facts about orders and solvabil-
ity of PSL(2, Z/2jZ) and PSL(2, Z/3jZ):

Corollary 2.5.7. For every j ∈ N, we have |PSL(2, Z/2jZ)| = 3 · 23j−2 and
|PSL(2, Z/3jZ)| = 4 · 33j−2.

Proof. The proof is by induction on j. For j = 1, there is nothing to prove since
PSL(2, Z/2Z) � S3 is of order 6 and PSL(2, Z/3Z) � A4 is of order 12
(see [21].) Assume that |PSL(2, Z/2jZ)| = 3 · 23j−2 and |PSL(2, Z/3jZ)| =
4 · 33j−2. By 2.5.6, we have the following short exact sequence:

0 → (I j/I j+1,+)3 → PSL(2, Z/I j+1) → PSL(2, Z/I j) → 0,

where I is either 2Z or 3Z respectively. Hence

|PSL(2, Z/I j+1)| = |I j/I j+1|3|PSL(2, Z/I j)|.

For I = 2Z, |I j/I j+1| = 2 and for I = 3Z, |I j/I j+1| = 3, and we are done. �

Corollary 2.5.8. Let R be an integral domain and I ER be such that PSL(2, R/I)
is solvable. Then for every j ∈ N, the group PSL(2, R/I j) is solvable.

Proof. This follows from 2.5.6 by induction. �

Corollary 2.5.9. For every j ∈ N, the groups PSL(2, Z/2jZ) and PSL(2, Z/3jZ)
are solvable.
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Proof. Just note that PSL(2, Z/2Z) � S3 and PSL(2, Z/3Z) � A4 ([21]) are
both solvable. �

Let O := O−d, d ∈ {1, 2, 3, 7, 11}, x ∈ O, and G := PSL(2,O). We
shall prove that if x satisfies the condition that each prime appearing in its prime
factor decomposition has norm > 3, then the group G/Γ(xO) is perfect. We
use this fact here to prove some properties of congruence subgroups. Let us start
by proving some elementary facts about perfect groups. Let G be a group and
N EG be an abelian normal subgroup of it. Recall that the conjugation action of
G on N induces an action of G/N on N, turning N into a G/N-module. The
following simple lemma will be useful later:

Lemma 2.5.10. Let N be a normal subgroup of a non-abelian group G with G/N
perfect. Then G = G′N. Moreover, if N is abelian and a simple G/N-module,
then G = G′ ⊕ N.

Proof. Since G/N is perfect, G/N = (G/N)′ = G′N/N and hence G =
G′N. Let N be abelian and a simple G/N-module. Now G′ ∩ N is a G/N-
submodule of N. If G′ ∩ N = N, then G = G′, contradiction. So G′ ∩ N =
0. �

Let x ∈ O. Decompose x as x = pe1
1 · · · per

r with ei > 0 and pi 's distinct
prime elements of O. Let

π : G � G/Γ(I), πj :
r⊕
1

PSL(2,O/Opei
i )� PSL(2,O/Op

ej
j )

be the canonical projections. We have the following theorem:

Proposition 2.5.11. With the above notation, if N(pi) > 3 for all i, then G/Γ(xO)
is perfect.

Proof. Put I := xO. Since pe1
1 , · · · , per

r are co-prime, we have O = Ope1
1 +

· · ·+Oper
r and hence by the chinese reminder theorem

O/I � O/Ope1
1 ⊕ · · · ⊕ O/Oper

r

which, in turn, gives rise to an isomorphism

ψ : G/Γ(I) → PSL(2,O/I) → PSL(2,O/Ope1
1 )⊕ · · · ⊕ PSL(2,O/Oper

r ).

As N(pi) > 3 for all i, by proposition 1.1.17 |O/Opi| > 3 hence by corollary
2.5.4 we are done. �
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Now we easily see that:

Theorem 2.5.12. Let T be a proper subgroup of PSL(2,O−d), d ∈ {1, 2, 3, 7, 11},
of level xO−d (0 , x ∈ O−d) with PSL(2,O−d)

′ ⊆ T. If T is congruence, then
there exists p ∈ O−d prime such that p | x and N(p) ∈ {2, 3}.

Proof. Decompose x = pe1
1 · · · per

r as above. If N(pi) > 3 for all i, then
G/Γ(xO) is perfect by the above proposition, so by 2.5.10, PSL(2,O) = T,
contradiction. Hence there exists i with N(pi) ∈ {2, 3}. �

Example. Consider the presentation of Γ−7 = PSL(2,O−7) given in theorem
2.2.1. Let T be a proper subgroup of Γ−7 of level xO−7 (0 , x ∈ O−7) with
ω - x and 1 − ω - x. If < ba3 >Γ−7⊆ T, then T is non-congruence.

Proof. The only elements of O−7 of norm 2 are ω, 1− ω and there is no element
of norm 3 (see the table 1.1 at the end of section 1 of chapter 1 ). It can be easily
seen that PSL(2,O−d)

′ =< ba3 >Γ−7 (ba3 = [a−1, b][b, a−2]). Now the above
theorem finishes the work. �

2.6 Congruence subgroup property in SL(2,O[ 1
p ])

Let p ∈ O := O−d be prime, d any square-free natural number. In this section
we show that the group SL(2,O[ 1

p ]) (and hence PSL(2,O[ 1
p ])) has the congru-

ence subgroup property. Then we prove that the group

Γ(I) ∗Γ(I)∩Γ(I)g Γ(I)g

is isomorphic to a finite index subgroup of PSL(2,O[ 1
p ]) which hence satisfies

the CSP, where g :=
(

p 0
0 1

)
∈ PGL(2, Q(

√
−d)), for every p ∈ O prime and

every non-zero ideal I of Q(
√
−d) such that p < I. This result will be used in

the proof of 3.6.7 which, in turn, will be used in the proof of the main theorem of
section 3.6, theorem 3.6.4. We will prove the CSP for SL(2,O[ 1

p ]) in 2.6.3. This
is in fact a generalization of Berger's idea [9], based on the Bass-Serre theory of
trees.

We start by stating an important theorem of Serre, which is the key for prov-
ing the CSP of SL(2,O[ 1

p ]). For the proof and details of the theorem, see [60],
Theorem 2. First recall that:

Definition 2.6.1. Let Sall be the set of all places of a number field F and S ⊆ Sall
be a finite subset of Sall containing S∞, the set of all Archimedean places of F.
The ring of S-integers of F is by definition:

OS := {x ∈ F | v(x) ≥ 0, for every place v ∈ Sall − S}
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OS is a Dedekind domain whose maximal ideals are in 1-1 correspondence
with the elements of Sall − S. The aforementioned theorem of Serre says:

Theorem 2.6.2. (Serre) Let S be a finite subset of the places of the field Q(
√
−d)

containing all Archimedean places, and OS the subring of S-integers. Then the
group SL(2,OS) (and hence PSL(2,OS) by 2.3.2) satisfies the CSP.

We use this for proving the CSP of PSL(2,O[ 1
p ]):

Proposition 2.6.3. Let p ∈ O be prime. Then the group SL(2,O[ 1
p ]) (and hence

PSL(2,O[ 1
p ])) has the congruence subgroup property.

Proof. Let Sall be the set of all places of F := Q(
√
−d) and Sp be the set of

(the two, see 1.2.10) Archimedean places of F together with the non-Archimedean
place corresponding to the prime ideal P := pO. We show that OSp = O[ 1

p ],
and then theorem 2.6.2 finishes the work. So suppose that x ∈ OSp . Decompose
Ox as Pe1

1 · · · Pen
n with Pi 's being distinct prime ideals of O. So for all i, we have

ei < 0 if and only if Pi = P. On the other hand, every negative power of P is
contained in O[ 1

p ], because P−1 = { y ∈ F | ypO ⊆ O} = O[ 1
p ], and we are

done. �

In order to prove the main result of this section, (i.e. proving that Γ(I) ∗Γ(I)∩Γ(I)g

Γ(I)g � Γ(I · O[ 1
p ]), first we need the following lemmas.

Lemma 2.6.4. Let R be a commutative ring with unit, p ∈ R with Rp maximal,
and I, J E R coprime to Rp. Then I J + Rpk = R, for every k ∈ N.

Proof. Clearly I J + Rp = R. So there exist r ∈ R, x ∈ I, and y ∈ J such that
1 = rp + xy, and hence pk−1 = xypk−1 + rpk ∈ I J + Rpk, so I J + Rpk−1 =
I J + Rpk for all k, whence the result follows by induction on k. �

Lemma 2.6.5. Let I ▹O and p ∈ O prime such that p < I. Set Ĩ := I · O[ 1
p ].

Then Ĩ is dense in K := Q(
√
−d) with respect to the topology induced by the

absolute value | |Op on K.

Proof. Let P := Op. As O is a Dedekind domain (1.1.1), every non-zero prime
ideal of it is maximal, so I + P = O. Let x ∈ K and ϵ > 0. Recall from
theorem 1.1.3 that Q(

√
−d) is the field of fractions of O. Write x = a1

b1
with

a1, b1 ∈ O, b1 , 0. Suppose that vP(a1) = α, vP(b1) = β, and use part 1
of lemma 1.2.6 to write a1 = pαa, b1 = pβb with a, b ∈ O and p - a, b, so
x = pα−β a

b . Put s := α − β. Choose k ∈ N such that p−k < ϵ. Let s < 0. By
the previous lemma, bI + Pk−s = O. So there exist g ∈ I, y ∈ O such that
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a = bg+ ypk−s, hence pk−s | a− bg and by part 2 of 1.2.6, |a− bg|P ≤ p−k+s.
Thus |x − psg|P = |ps a

b − psg|P = |ps|P| a
b − g|P. Since |b|P = 1, we have

| a
b − g|P = |a − bg|P ≤ p−k+s, so |x − psg|P ≤ p−s p−k+s = p−k < ϵ and

psg ∈ Ĩ. The case s ≥ 0 is handled in a similar way.
�

We now recall some facts about the theory of groups acting on trees which we
are going to use to prove that Γ(I) ∗Γ(I)∩Γ(I)g Γ(I)g � Γ(I · O[ 1

p ]) in 2.6.8. For
details, see [13] appendix to chapter 2 and [61].

Recall that if a group G acts on a tree X then an edge e = (v, v′) with vertices
v to v′ is called a fundamental domain for the action if every edge of X is G-
equivalent to e and every vertex of X is G-equivalent to either v or v′ but not
both. In this case, the tree consisting of only one edge e with vertices v, v′ is
isomorphic, as a tree, to X/G and we have Gg = Gv ∩ Gv′ , where Gg, Gv,
and Gv′ are the stabilizers of e, v, v′ respectively. The following theorem of Serre
states that such an action of G gives a decomposition of G as an amalgamated
free product:

Theorem 2.6.6. ([13] Theorem A1 chapter 2) Let a group G act on a tree X, and
let e be an edge with vertices v, v′ such that e is a fundamental domain for the
action. Then G = Gv ∗Ge Gv′ .

Let V be a K vector space of dimension 2, where K is a valued field (with
discrete value v) with valuation ring R. Recall that a lattice of V is any free R-
submodule of V of rank 2. If x ∈ K∗, and if L is a lattice of V, then since
xR = Rx, Lx is also a lattice of V. Thus the group K∗ acts on the set of lattices
of V and we call the orbit of a lattice L under this action its class, and denote it
by [L]. Two lattices belonging to the same class are called equivalent. The set
of lattice classes is denoted by L(V). Two elements X, Y ∈ L(V) are said to be
adjacent if lattices L, L′ exist such that X = [L], Y = [L′], and L/L′ � R/xR,
for some x ∈ K∗ with v(x) = 1. This relation makes L(V) a tree. Moreover, the
group SL(2, K) (PSL(2, K) resp.) acts on the set of lattices (and on this tree resp.)
in the following way: Let L = l1R + l2R be a lattice and g =

(
a b
c d

)
∈ SL(2, K).

Then
g · L := (al1 + bl2)R + (cl1 + dl2)R.

We have the following theorem

Theorem 2.6.7. ([61], chapter 2,theorem 2) Let G ≤ PSL(2, K) and L ⊆ L′ be
two adjacent lattices in V. If the closure of G in PGL(2, K) contains PSL(2, K),
then the edge of L(V) with vertices [L], [L′] is a fundamental domain for the
action of G. Moreover, we have G[L] = GL, and G[L′] = GL′ .
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2. PSL(2, C) AND ITS DISCRETE SUBGROUPS

Finally, we are ready to prove the main theorem of this section.

Theorem 2.6.8. Let 0 , I ▹O = O−d and p ∈ O be prime such that p < I.

Define g :=
(

p 0
0 1

)
∈ PGL(2, Q(

√
−d)). Then Γ(I) ∗Γ(I)∩Γ(I)g Γ(I)g � Γ(I ·

O[ 1
p ]), and the latter satisfies the congruence subgroup property.

Proof. Let Ĩ := I · O[ 1
p ]. Consider the p-adic valuation v : Q(

√
−d) → Z ∪

{∞} and let R := {x ∈ Q(
√
−d) | v(x) ≥ 0} be its valuation ring.

We know from the previous lemma that Ĩ is dense in K := Q(
√
−d) with

respect to the p-adic norm. We show that the closure of Γ( Ĩ) in PGL(2, K)
contains

(
1 ∗
0 1

)
and

(
1 0
∗ 1

)
, and so PSL(2, K) (see [61], II.1.2 or 2.5.2): Let ϵ > 0

and x ∈ K be given. Useing density of Ĩ in K, choose b ∈ Ĩ such that |b − x|p <

ϵ, then
(

1 b
0 1

)
∈ Γ( Ĩ) is in the ϵ-neighborhood of

(
1 x
0 1

)
. The argument for

(
1 0
∗ 1

)
is similar.

Now apply the previous two theorems with G = Γ( Ĩ), L′ := R · p2 ⊕ R · p ⊆
L := R · p ⊕ R · p, to see that Γ( Ĩ) = GL ∗GL∩GL′

GL′ , where GL, GL′ are the
stabilizers of L, L′ under the G-action respectively. We show that GL = Γ(I)
and GL′ = Γ(I)g:
Lemma. For every x ∈ Ĩ, if x < R then x − 1 < I.
To show that GL = Γ(I), consider u =

(
a+1 b

c d+1

)
∈ Γ(I), with a, b, c, d ∈ I.

So (
a + 1 b

c d + 1

)(
p
0

)
=

(
p(a + 1)

cp

)
,(

a + 1 b
c d + 1

)(
0
p

)
=

(
bp

p(d + 1)

)
.

By the above lemma, a + 1, d + 1 ∈ R, so Lu ⊆ L for every u ∈ Γ(I), that
is Lu = L for every u ∈ Γ(I).
To show that GL′ = Γ(I)g, consider u ∈ Γ(I)g and write u =

(
a+1 b/p
cp d+1

)
with

a, b, c, d ∈ I and argue as above.
Finally, we note that Γ( Ĩ) is of finite index in PSL(2,O[ 1

p ]), and then con-
gruence subgroup property follows from 2.6.3. To see this, use 1.2.6 part 1 to
show that O[ 1

p ]/ Ĩ � O/I, and the latter is finite by 1.1.1. �

2.7 Some computational examples

Let H3 := C×R+ be the 3-dimensional hyperbolic space. Recall that the group
PSL(2, C) acts on H3 in the following way:
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(
a b
c d

)
· (z, r) :=

1
N
((az + b)(cz + d) + acr2, r),

where N := |cz + d|2 + |c|2r2. A subgroup G of PSL(2, C) acts properly dis-
continuously on H3 if and only if it is a discrete subgroup. If, in addition, it is
torsion-free, then the quotient space H3/G gets the structure of a hyperbolic 3-
dimensional Riemannian manifold. We call a torsion-free discrete subgroup G of
PSL(2, C) a link complement (sub)group if H3/G is homeomorphic to S3 − L,
where L ⊆ S3 is a link, that is, a finite union of m disjoint closed simple curves in
the three sphere S3 ; if m = 1, L is a knot. We have for the singular cohomology
of the complement S3 − L the following

Lemma 2.7.1. Let q be a non-negative integer. Then

Hq(S3 − L, Z) =


Z q = 0
Zm q = 1
Zm−1 q = 2
0 q > 2

For a proof, see [58].
Question. For which values of d, the group PSL(2,O−d) contains a link

complement subgroup?
Results on the cohomology of PSL(2,O−d) (see [67]) limit the values of d for

which this is possible to the following list:

{1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71}.

Over the last 20 years, numerous link complement groups have been found in
PSL(2,O−d) for all of these cases. (see [3], [54], [36], [55], [65], [68], and [4]).
Furthermore, many of the corresponding links (figure eight knot, Whitehead link,
Borromean rings, . . . ) have been central to the study of 3-manifolds.

Conversely, a link L in S3 is called arithmetic of type d if S3 − L is homeo-
morphic to H3/G, where G is a torsion-free subgroup of PSL(2,O−d) of finite
index and d is minimal with this property. It can be shown that, every link in S3

is a sub-link of an arithmetic link of type 1 (see [5]). The figure eight knot is the
only arithmetic knot but there exists infinitely many arithmetic links, even with
two components, see [54].

In this section we consider some link complement subgroups of small index
in the Bianchi groups Γ−1 and Γ−7 and compute their levels and show that they
are congruence. We used the computer algebra system GAP1in order to compute
indexes and check wether an element is in a subgroup or not.

1GAP is a system for computational discrete algebra, with particular emphasis on Computa-
tional Group Theory. See http://www.gap-system.org/
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2. PSL(2, C) AND ITS DISCRETE SUBGROUPS

The group Γ−1

In this case we have ω = i, N(m + ni) = m2 + n2, and M(< m + ni >) =<
amcn, a−ncm > (2.3.7). We choose the following presentation for Γ−1: (2.2.1)

Γ1 =< a, b, c, j | b2 = (ab)3 = [a, c] = (aj)2 = (bj)2 = (cj)2 = (cbj)2 = 1 > .

The group Γ−1 has, up to Isom(H3)-conjugacy, exactly 2 torsion free subgroups
of index 6 with torsion free abelianizations ([31] §4). Their level is determined by
the next theorem.

Theorem 2.7.2. Let e := ba−1cb.

1. The subgroup Γ−1(12, 1) :=< c, e > is congruence of level < −2+ 2i >.
It is isomorphic to the complement in S3 of the 2-component link:

2. The subgroup Γ−1(12, 5) :=< a, c, bc2ab > is congruence of level <
1 + 2i >. It is isomorphic to the complement in S3 of the 2-component
link:

Proof. It has been proved in [31] that these groups are isomorphic to the com-
plement in S3 of the given links. So we compute the levels.

1. As [< a, c, e >:< c : e >] = 2 by using GAP, we infer that M(< m+ ni >
) ⊆< c, e > if and only if M(< m + ni >) ⊆< a, e > if and only if m, n
are even. Now consider M(< −2 + 2i >) =< a−2c2, a−2c−2 >. Use
GAP to see that Q(< −2 + 2i >) ⊆< c, e >, but Q(< 2 >) is not
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included in < c, e > . Since −2 + 2i = (1 + i)3 is the prime factorization
of −2 + 2i, < −2 + 2i > is the level of < c, e >. Again using GAP we
compute [Γ−1 : Q(< −2 + 2i >)] = 192 and using 2.3.3 we see that
[Γ−1 : Γ(−2 + 2i)] = 192. So by 2.3.7 part 1, Q(< −2 + 2i >) =
Γ(−2 + 2i).

2. One checks easily that Q(< 1 + 2i >) ⊆ Γ−1(12, 5) (similar to part 1).
But 1 + 2i is a prime in O−1. Also check that [Γ−1 : Q(< 1 + 2i >)] =
[Γ−1 : Γ(1 + 2i)] = 60, and deduce that Q(< 1 + 2i >) = Γ(1 + 2i).

�

The group Γ−7

In this case we have ω = (1 +
√
(− 7))/2, N(m + ni) = m2 + mn + 2n2,

and M(< m+ ni >) =< amcn, a−2ncm+n > (2.3.7). Note that since M(−m+
mi) ⊆< a−mcm, amcm >, Q(−m + mi) ⊆ Nm := (< a−mcm, amcm >)Γ−7 .
We choose the following presentation for Γ−7: (2.2.1)

Γ−7 =< a, b, c | b2 = (ab)3 = [a, c] = (c−1bcba)2 = 1 >

The group Γ−7 has, up to Isom(H3)-conjugacy, exactly 2 torsion free subgroups
of index 6 and also 2 of index 12 with torsion free abelianizations ([31] §2). Their
level is determined by the next theorem.

Theorem 2.7.3.

1. The subgroup Γ−7(6, 1) :=< a2, c, bcb > is congruence of level < 2 >.
It is isomorphic to the complement in S3 of the 3-component link:

2. The subgroup Γ−7(6, 5) :=< c, bab > is congruence of level < 2ω >. It
is isomorphic to the complement in S3 of the 2-component link:

41
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3. The subgroup Γ−7(12, 4) :=< c, bc2b, bca2b, abc2ba−1 > is congruence
of level < −2 + ω >. It is isomorphic to the complement in S3 of the
4-component link:

4. The subgroup Γ−7(12, 12) :=< c, bcb, a−1bcba−1 > is congruence of
level< 2ω >. It is isomorphic to the complement in S3 of the 3-component
link:

Proof. Again the fact that these groups are isomorphic to the complement in S3

of the given links has been proved in [31]. So we compute the levels.

1. Looking at the index [< a, c, bcb >:< a2, c, bcb >] = 2 (use GAP), we
infer that M(< m + nω >) ⊆< a2, c, bcb > if and only if m is even.
Now consider M(< 2 >) =< a2, c2 >. Note that 2 = ω(1 − ω) is the
prime factor decomposition of 2. Clearly M(< ω >) and M(< 1− ω >)
cannot be contained in < a2, c, bcb >. Use GAP to see that Q(< 2 >
) ⊆< a2, c, bcb >, that is, < 2 > is the level of < a2, c, bcb >, and also
[Γ−7 : Q(< 2 >)] = 36. Now using 2.3.3 we see that [Γ−7 : Γ(2)] = 36
and by 2.3.7 part 1, Q(< 2 >) = Γ(2).
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2. First observe that a, a2, and a3 are not in Γ−7(6, 5), but a4 is (by using
GAP), which shows that M(< m + nω >) ⊆ Γ−7(6, 5) if and only if
4 | m and n is even. Using GAP we see that Q(< 2ω >) ⊆ Γ−7(6, 5).
But 2ω = ω2(1 − ω) is the prime factorization of 2ω and non of the
subgroups M(< ω >), M(< ω2 >), M(< 1−ω >), and M(< ω(1−
ω) >) can be contained in Γ−7(6, 5), hence aΓ−7(6,5) =< 2ω >. Again
using GAP we compute [Γ−7 : Q(< 2ω >)] = 144 and using 2.3.3 we see
that [Γ−7 : Γ(2ω)] = 144. So by 2.3.7 part 1, Q(< 2ω >) = Γ(2ω).

3. First look at the index [Γ−7(12, 4)
∨{A} : Γ−7(12, 4)] = 2, which shows

that M(< m + nω >) ⊆ Γ−7(12, 4) if and only if m is even. Using GAP
we see that Q(< −2 + ω >) ⊆ Γ−7(12, 4). But −2 + ω = −ω2 is
the prime factorization of −2 + ω and M(< ω >) cannot be contained
in Γ−7(12, 4), hence aΓ−7(12,4) =< −2 + ω >. The rest of the proof is
exactly similar to parts 1 and 2: just show that [Γ−7 : Q(< −2 + ω >
)] = [Γ−7 : Γ(−2 + ω)] = 24.

4. Again observe that a, a2, and a3 are not in Γ−7(12, 12), but a4 is, which
shows that M(< m + nω >) ⊆ Γ−7(12, 12) if and only if 4 | m and n
is even. Using GAP we see that Q(< 2ω >) ⊆ Γ−7(12, 12). But 2ω =
ω2(1−ω) is the prime factorization of 2ω and non of the subgroups M(<
ω >), M(< ω2 >), M(< 1 − ω >), and M(< ω(1 − ω) >) can be
contained in Γ−7(12, 12), that is, aΓ−7(12,12) =< 2ω >. The rest of the
proof follows from part 2.

�
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3 Hecke Operators

Notation 3.0.4. For an element g and a subgroup H of an arbitrary group G:

1. Hg := g−1Hg, gH := gHg−1, Hg := H ∩ Hg, and gH := H ∩ gH.

2. µH(g) := [H : Hg] = [H : g−1 H].

3. HG :=
∩{Hg | g ∈ G} is the normal core of the subgroup H in the group

G.

4. We use ⊔ to deonte the disjoint uninion.

3.1 Introduction

The study of modular forms for congruence subgroups of SL(2, Z) has been
one of the central topics in number theory for over one century. This theory is
now well developed and has broad applications and impact to many branches of
mathematics. There is a collection of important linear operators acting on modular
forms, called the Hecke operators. The study of Hecke operators associated to
congruence subgroups leads to a deep understanding of the structure of the space
of modular forms and cusp forms. In contrast, the action of Hecke operators for
non-congruence subgroups is rather trivial, as conjectured by Atkin (see below)
and proved by Serre (Appndix to[64] and Berger [9]. In this chapter, motivated by
the recent interest in the arithmetic of Bianchi modular forms ([14] and [26]), we
will prove a generalization of Atkin's conjecture to the cohomology of subgroups
of Bianchi groups. Let us first recall standard facts about modular forms and
state the Atkin's conjecture. For details, see [62]. Let GL(2, R)+ be the sub-
semigroup of GL(2, R) consisting of matrices with positive determinant. As in
chapter 1, H2 = {z ∈ C | Im(z) > 0} is the Poincaré (upper) half plane.
The group GL(2, R)+ acts on C ∪ {∞} by Möbius transformations: for every
σ =

(
a b
c d

)
∈ GL(2, R)+ and z ∈ C,

σ · z :=
az + b
cz + d

,
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σ · ∞ :=

{
a/c if c , 0,
∞ otherwise.

An element ±I2×2 , σ ∈ SL(2, R) is said to be parabolic if tr(σ) = ±2.
It is called elliptic (hyperbolic resp.) if tr(σ) ∈ R and |tr(σ)| < 2. (> 2 resp.)
Finally, if tr(σ) is not real, then σ is called loxodromic. The following proposition
is well known:

Proposition 3.1.1. ([62], 1.13) Let ±I , σ ∈ SL(2, R). Then σ has at most two
distinct fixed points, and we have

1. σ is parabolic if and only if σ has only one fixed point in R ∪ {∞}.

2. σ is elliptic if and only if σ has one fixed point z ∈ H2 and the other fixed
point is z̄.

3. σ is hyperbolic if and only if σ has two fixed points in R ∪ {∞}.

Let G be a discrete subgroup of SL(2, R). A point s ∈ R ∪ {∞} is called
a cusp of G if there exists a parabolic element σ ∈ G such that σs = s. Let
FixG(s) := {g ∈ G | gs = s}. If s is a cusp of G, then it is well known ([62],
1.17) that FixG(s)/(G ∩ {±I}) � Z and any element (, ±I) of FixG(s) is
parabolic.

Let F be the complex vector space of all meromorphic functions f : H2 → C.
For every k ∈ N ∪ {0}, the group GL(2, R)+ acts on F by the so called weight
k operators |k as follows:

( f |k σ)(z) := det(σ)k/2(cz + d)−k f (σz),

where
σ =

(
a b
c d

)
∈ GL(2, R)+, f ∈ F.

For every subgroup G of GL(2, R)+, denote the subspace of functions of F
which are fixed under the action |k of G and are analytic at every cusp of G by
FG, and call them the G-automorphic forms of weight k. If G is a subgroup of
SL(2, R), the G-automorphic forms are then called G-modular forms of weight
k. The space FG is often denoted by Mk(G). If a weight k G-automorphic form
vanishes at every cusp of G, it is then said to be a G-cusp form of weight k and the
subspace consisting of G-cusp forms of weight k is denoted by Sk(G). For every
H ≤ f K ≤ GL(2, R)+, we denote the trace map between the corresponding
spaces of automorphic forms by TrK

H : FH → FK, that is, TrK
H( f ) := Σ

i
f |k ai,

where K = ⊔Hai.
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Although we study abstract Hecke algebras in the next section in more detail,
we need to recall their definition in the case of automorphic forms here, in order
to mention the Atkin's conjecture. For every σ ∈ GL(2, R)+, define the operator

TG
σ : FG

k → FG
k by TG

σ ( f ) := Σ
j
( f |k σ) |k gj where G =

µ(σ)
⊔

j=1
Gσgj. In partic-

ular, for every n ∈ N, TG
n := TG(

n 0
0 1

) is called the Hecke operator associated to

n on the space of the G-automorphic functions.
When the (sub)group G is congruence, the action of Hecke operators is quite

successfully used to understand the structure of Mk(G) (and Sk(G), the space
of cusp forms), by Hecke [37] and Atkin and Lehner [2]. On the other hand, if G
is not congruence, the Hecke operators act in a trivial way. More precisely, let Ĝ
be the congruence closure of G in PSL(2, Z). Then we have

Conjecture 3.1.2. (Atkin) For every prime number p such that p dosen't divide the
level (in the sence of Wohlfart [70]) of G, we have TG

p = TĜ
p ◦ TrĜ

G.

Serre (Appendix to [64] proved this conjecture assuming G E Ĝ = SL(2, Z)
and Berger [9] proved it for every finite index subgroup of SL(2, Z).

We are going to generalize this result in the following way: first by Eichler-
Shimura correspondence of cusp forms and cohomology classes [62], instead of
Sk(G), we can consider the action of the Hecke operators on the first cohomology
group of G with coefficient in a suitable G-module. Next one may want to replace
the modular group SL(2, Z) or PSL(2, Z) with PSL(2,O−d) for every square-
free natural number d and ask wether a similar result holds for Hecke operators
and trace maps between cohomology groups. This is the goal of this chapter, to
show that this is true, even for higher cohomology groups. We start by recalling
the definitions and basic properties of abstract Hecke algebras and their actions
on the cohomology groups in the next section. Then, following the idea of Berger
[9], we will prove a general result not only for every group PSL(2,O−d), but also
for all higher cohomology groups of it with coefficients in any G-module . This
result is a special case of the theorem 3.5.6 which relates the Hecke operators
corresponding to any pair H ≤ f K ≤ G of subgroups of an arbitrary group G
satisfying certain conditions on the indices and the transfer map between respec-
tive cohomology groups.

3.2 Abstract Hecke algebras

In this section we recall the definitions and basic properties concerning abstract
Hecke algebras, to give an idea of the nature of the Hecke operators. For more
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details, see [43]. In this section, G will denote an arbitrary group and R a com-
mutative ring wih unit element except otherwise is explicitly stated.

Definition 3.2.1. Two subgroups H1, H2 of G are called commensurable if their
intersection H1 ∩ H2 has finite index in both H1, H2.

Commensurability is an equivalence relation. For a subgroup H of G, we may
ask whether all of its conjugates Hg for g ∈ G are commensurable with H. This
is of course not always the case, (see example 1, part 2) but we would like to
consider the set of elements g for which this is true (we need it to define Hecke
pairs), and give it a name:

Definition 3.2.2. Let H ≤ G. We define the commensurator of H in G as:

CMG(H) := CM(H) := {g ∈ G | Hg is commensurable with H}

It can be easily seen that CMG(H) is a subgroup of G containing the nor-
malizer of H: NG(H) ≤ CMG(H).

Examples 1. ([43], chapter 1, 3.5)

1. CMSL(2,Q)(SL(2, Z)) = SL(2, Q).

2. CMGL(2,Q)({
(

1 n
0 1

)
| n ∈ Z}) = {

(
a b
0 d

)
| a, b, d ∈ Q, ad , 0}.

Let H ≤ G and S be a sub-semigroup of CM(H) with SH = HS = S.
Then (H, S) is called a Hecke pair in the group G and we define the R-module
LR(H, S) = L(H; S) as the free R-module with basis {Hg | g ∈ S}. It has
in fact a natural H-module structure defined via (ΣriHgi) · h := ΣriHgih, for
every ri ∈ R, gi ∈ S, and h ∈ H.

Definition 3.2.3. For a Hecke pair (H, S) in G we define its R-Hecke alge-
bra HR(H, S) as the (R- and H-) submodule of all H-invariant elements of
LR(H, S):

HR(H, S) = H(H, S) = {u ∈ L(H, S) | uh = u ∀h ∈ H}.

The multiplication of H(H, S) is defined as follows: For x = ΣriHgi and y =
ΣtjHk j in H(H, S), we define x · y := ΣΣritjHgik j.
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Clearly for H = 1, HR(1, S) is just the semigroup-ring RS. Now suppose
that (H, S) is a Hecke pair in G. For x ∈ CM(H), Hx has finite index in H.
So µ := µH(x) = [H : Hx] is finite. Write H as a union of µ disjoint cosets

of Hx, say H =
µ
⊔
1

Hxhi. It is easy then to check that HxH =
µ
⊔
1

Hxhi. De-

fine HxH :=
µ

Σ
1

Hxhi. Then HxH ∈ H(H, S). If H is normal in G, then

CM(H) = G, Hx = Hx = H and µ(x) = 1 for every x, y, g ∈ G. So
HxH = Hx = HxH = Hx. Hence H(H, G) is just the group-ring R G

H with
the usual multiplication of group-rings.

The elements HxH for x ∈ S make a basis for the R-module H(H, S), as
we see in the following theorem, in which we also formulate the product rule of
H(H, S) in terms of these basis elements. Define

ν
y
x(g) :=| {i | xhiy ∈ HgH} | and ξ

y
x(g) = ν

y
x(g)µ(y)µ(g)−1,

for every g, x, y ∈ S.

Theorem 3.2.4. For a Hecke pair (H, S) in G its R-Hecke algebra HR(H, S) is
the free R-module with basis {HgH | g ∈ S}. In terms of this basis, the
multiplication of HR(H, S) can be expressed as:

HxH · HyH = Σξ
y
x(g) · HgH,

where g's come from a decomposition HxHyH = ⊔HgH.

So we may suppress the underlines of the elements HxH, consideringHR(H, S)
as the free R-module with basis {HgH | g ∈ S} and the above multiplication.
We cite one more fact about Hecke algebras here to give a better idea of their
nature.

Lemma 3.2.5. Let (H, S) be a Hecke pair in G and S−1 = {x−1 | x ∈ S}. Then
(H, S−1) is also a Hecke pair and the R-module homomorphism H(H, S) →
H(H, S) which sends HxH to Hx−1H is an anti-isomorphism of rings. In par-
ticular, if S is a group, then the above map is an anti-automorphism of the ring
H(H, S).

What makes Hecke algebras so interesting is that, as will we see in the fol-
lowing sections, the cohomology groups H∗(H, A), (for every R and G-module
A,) are HR(H, S)-modules and in addition, the action of this algebra respects
the standard constructions of homological algebra, see 3.5.3 and 3.5.4.
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3.3 Group cohomology

Let G be a group, and let A be a left G-module. The cohomology of G with coef-
ficients in A can be described using either homogeneous or non-homogeneous
co-chains. Let C0(G, A) := A and, given a positive integer q, let Cq(G, A)
denote the group consisting of the A-valued functions f : Gq → A on the
q-fold Cartesian product Gq = G × · · · × G. Any such map is called a non-
homogeneous q-co-chain. We then consider the map

∂q : Cq(G, A) → Cq+1(G, A),

(∂q f )(g1 · · · gq+1) :=

g1 f (g2, · · · , gq+1) +
q
Σ
1
(−1)i f (g1, · · · , gi−1, gigi+1, · · · , gq+1)+

+(−1)q+1 f (g1, · · · , gq)

and (∂0a)(g) := ga − g, for all g1, · · · , gq+1 ∈ G and a ∈ A.
Then we have ∂q∂q−1 = 0. The maps ∂ are called the co-boundary maps for

non-homogeneous co-chains. The associated q-th cohomology group is given
by

Hq(G, A) := Zq(G, A)/Bq(G, A)

where Zq(G, A) := ke(∂q) and Bq(G, A) := im(∂q−1) and H0(G, M) :=
Z0(G, A) = AG, the submodule of G-invariant elements of A. The elements of
(B1(G, A) resp.) Z1(G, A) are also called (inner− resp.) derivations.

Let H ≤ G and g ∈ G. We define the conjugation isomorphism cg from the
q-co-chain group Cq(H, A) to Cq(g−1Hg, A) as follows:

cg( f )(g−1h1g, · · · , g−1hqg) := g−1 f (h1, · · · , hq).

Clearly it is a chain map, that is, the following diagram commutes for every q:

Cq(H, A)

cg
��

∂q // Cq+1(H, A)

cg
��

Cq(g−1Hg, A)
∂q // Cq+1(g−1Hg, A)

The map cg induces an isomorphism c∗g : Hq(H, A) → Hq(g−1Hg, A). For
every u ∈ Hq(H, A), we define

u · g := (c∗g)(u) ∈ Hq(g−1Hg, A). (3.3.1)

We then have the following lemma:
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3. HECKE OPERATORS

Lemma 3.3.1. Let H ≤ G and g ∈ G. For every RG-module A and q ∈ N, the
following digram commutes:

Hq(H, A)

res
��

−·g
// Hq(Hg, A)

res
��

Hq(gH, A)
−·g

// Hq(Hg, A)

Proof. Easy verification. �

For the sake of completeness, we also define the cohomology using the homo-
geneous co-chains: for any non-negative integer q, let Cq(G, A) ≤ Cq+1(G, A)
be the subgroup consisting of those maps f : Gq+1 → A such that

f (gg0, · · · , ggq) = g f (g0, · · · , gq)

for all g, g0, · · · , gq ∈ G, the so called homogeneous co-chains. The co-
boundary maps δq : Cq(G, A) → Cq+1(G, A) are defined as follows:

(δq f )(g0, · · · , gq+1) :=
q+1
Σ
0

(−1)i f (g0, · · · , gi−1, gi+1, · · · , gq+1)

and (δ0 f )(g0, g1) := f (g1)− f (g0) for all g0, · · · , gq+1 ∈ G. Then for q ≥ 1,
the q-th cohomology group is given by

Hq(G, A) := ke(δq)/im(δq−1).

There is a 1 − 1 correspondence between Cq(G, A) and Cq(G, A), for every
q ≥ 1, which is compatible with the co-boundary maps: Given f ∈ Cq(G, A)
and ϕ ∈ Cq(G, A), define

fH(g0, · · · , gq) := g0 f (g−1
0 g1, g−1

1 g2, · · · , g−1
q−1gq),

ϕN(g1, · · · , gq) := ϕ(1, g1, g1g2, · · · , g1g2 · · · gq),

for all g0, · · · , gq ∈ G. Extending linearly, we get the isomorphisms

(−)H : Cq(G, A) → Cq(G, A), (−)N : Cq(G, A) → Cq(G, A),

which are inverse of each other, and we have (∂ f )H = δ fN and (δϕ)N = ∂ϕH for
all f ∈ Cq(G, A) and ϕ ∈ Cq(G, A), showing that the above two definitions for
cohomology coincide.
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3.4 Restriction and transfer maps on the cohomology groups

Given a subgroup H ≤ G and a G-module A, we know that there is a map resG
H :

Hn(G, A) → Hn(H, A) induced by the inclusion and called the restriction map.
Let H ≤ G and [G : H] = n < ∞. We construct a map going in the other
direction, the so called transfer (or co-restriction) map. Let {s1, . . . , sn} be
a transversal for the left cosets of H in G and write G as a disjoint union G =
n
⊔
1

Hsi. For every left G-module A, there is a homomorphism trH,G : AH → AG,

defined via tr(a) :=
n
Σ
1

sia, called the transfer map. This map can be extended

uniquely to a map trG
H : H∗(H, A) → H∗(G, A), called also the transfer (or

co-restriction) map. We give an explicit description of it: For every x ∈ G, let x̄
be the unique element si with x ∈ Hsi. So we have xx̄−1 ∈ H. Now for every
k > 0, f : Hk → A ∈ Ck(H, A), and g1, . . . gk ∈ G, we have

trG
H( f )[g1, . . . , gk] =

n
Σ
1

s−1
i f [sig1(sig1)

−1
, . . . , (sig1 . . . gk−1)gk(sig1 . . . gk)

−1
].

This is the transfer (or co-restriction) map on co-chain groups relative to the
given transversal. These maps do depend on the choices of the transversal (cf
[15]). On the other hand, since a co-restriction map sends cocycles to cocycles
and co-boundaries to co-boundaries, there is an induced map on cohomology
groups, called transfer (or co-restriction) over cohomology groups, and it can be
proved that this map is independent of the choice of the tranversal (see [15]). We
denote it also by trG

H. The following proposition cites some of the main properties
of the restriction and transfer maps. For a proof, see for example [13].

Proposition 3.4.1. Let H, K ≤ G with [G : H] ≤ ∞, A any G-module, and
n ∈ N.

1. If H ≤ K then trG
H = trG

K ◦ trK
H and resG

H = resK
H ◦ resG

H.

2. For every u ∈ Hn(G, A), we have trG
HresG

H(u) = [G : H]u.

3. Wirte G =
m
⊔
1

HgiK. Then for every u ∈ Hn(G, A),

resG
K ◦ trG

H(u) =
m
Σ
1

trK
K∩Hgi ◦ resHgi

K∩Hgi (ugi).

3.5 The action of Hecke algebras on the cohomology groups

Let R be a commutative ring with unit and G be an arbitrary group. It is well
known that for every left RG-module A and every Hecke pair (H, S) in G, there
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3. HECKE OPERATORS

is a natural right action of the Hecke algebra H(H, S) = HR(H, S) on the co-
homology groups H∗(H, A) defined in the following way: Let x ∈ S and write

H as a union of µ = µ(x) disjoint cosets of Hx in H: H =
µ
⊔
1

Hxhi. It is easy

then to check that HxH =
µ
⊔
1

Hxi, where xi := xhi. Since for every y ∈ H,

HxHy = HxH, we have HxH =
µ
⊔
1

Hxi =
µ
⊔
1

Hxiy, so for every 1 ≤ i ≤ µ,

xiy = ti(y)xi(y) (3.5.1)

for a unique element ti(y) ∈ H and a unique index i(y). So (x1(y) · · · xµ(y)) is
a permutation of (x1 · · · xµ). For each y, y′ ∈ H, (xiy)y′ = ti(y)(xi(y)y′) =

ti(y)ti(y)(y′)x(i(y))(y′). On the other hand xi(yy′) = ti(yy′)xi(yy′), so

i(yy′) = (i(y))(y′), ti(yy′) = ti(y)ti(y)(y
′). (3.5.2)

Given a non-negative integer q and a left RG-module A, we define the action
of HxH on a homogeneous co-chain ϕ ∈ Cq(H, A) as follows:

(ϕ • HxH)[y0, . . . , yq] :=
µ

Σ
1

x−1
i ϕ[ti(y0), . . . , ti(yq)],

for all y0, · · · , yq ∈ H. It is known that ϕ • HxH ∈ Cq(H, A) (see [45], 3.3).
The induced map Tx := TH

x : Cq(H, A) → Cq(H, A) is linear and independent
of the choice of the coset decomposition of HxH. Moreover, Tx ◦ δq = δq ◦ Tx,
so it in turn induces a homomorphism Tx : Hq(H, A) → Hq(H, A) which is
called the Hecke operator on Hq(H, A) corresponding to the double coset HxH.
The Hecke operators can also be described by non-homogeneous co-chains. For

a non-homogeneous co-chain f ∈ Cq(H, A) define (q ≥ 1)

( f · HxH)(y1, . . . , yq) :=
µ

Σ
1

x−1
i f [ti(y1), ti(y1)(y2), ti(y1y2)(h3) . . . , ti(y1···yq−1)(yq)],

(3.5.3)
for all y1, · · · , yq ∈ H. Again it is known that f · HxH ∈ Cq(H, A) and the

induced map Tx := TH
x : Cq(H, A) → Cq(H, A) is linear, independent of the

choice of the coset decomposition of HxH, and compatible with the co-boundary
maps, inducing a homomorphism Tx : Hq(H, A) → Hq(H, A). It can be shown
that Tx( f ) = (Tx fH)N (see [45] prop. 3.3).

The following compact description of the Hecke operators is in some cases
helpful:

Proposition 3.5.1. Consider an RG-module A and a Hecke pair (H, S) in G.
Let x ∈ S. For every u ∈ Hq(H, A), we have TH

x (u) = trH
Hx

resHx

Hx
(u · x) =
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3.5. THE ACTION OF HECKE ALGEBRAS ON THE COHOMOLOGY GROUPS

trH
Hx
(resH

x H(u) · x), where − · x is as in the equation (3.3.1). In other words, the
following diagram commutes:

Hq(H, A)

res
��

TH
x // Hq(H, A)

Hq(xH, A)
−·x // Hq(Hx, A)

tr

OO

Proof. We keep the above notations. Let u = [ f ], where f ∈ Cq(H, A) and
suppose y1, · · · , yq ∈ H and 1 ≤ i ≤ µ. We have xiy1 = ti(y1)xi(y1)

so

ti(y1) = xiy1x−1
i(y1)

= xhiy1h−1
i(y1)

x−1. On the other hand, (using the over-line

notation of the previous section) let hiy1 = hj, so hiy1 = x−1uxhj for some
h ∈ H. Thus xhiy1 = hxhj, that is, xi(y1)

= xhj = xhiy1, j = i(y1), and

ti(y1) = h = xhiy1hiy1
−1

x−1.

Similarly,

ti(y1)(y2) = xhi(y1)y2hi(y1)y2
−1

x−1 = xi(y1)y2hi(y1)y2
−1

x−1 = xhiy1y2hi(y1)y2
−1

x−1.

Since xi(y1)
y2 = ti(y1)

(y2)xi(y1)(y2), we have hi(y1)
y2 = x−1ti(y1)

(y2)xhi(y1)(y2),
hence hi(y1)

y2 = hi(y1)(y2) = hi(y1y2) = hiy1y2. So

ti(y1)
(y2) = xhiy1y2hiy1y2

−1
x−1.

Continuing inductively, we see that

( f · HxH)(y1, . . . , yq) :=
µ

Σ
1

x−1
i f [ti(y1), ti(y1)(y2), ti(y1y2)(h3) . . . , ti(y1···yq−1)(yq)]

=
µ

Σ
1

h−1
i x−1 f [xhiy1hiy1

−1
x−1, · · · , xhiy1 · · · yq−1yqhiy1 · · · yq

−1
x−1]

= (trH
Hx

resHx

Hx
(cx( f )))(y1, · · · , yq),

showing that TH
x (u) = trH

Hx
resHx

Hx
(ux). The other equality follows from lemma

3.3.1. �

Lemma 3.5.2. Let H be a normal subgroup of G and A be a G-module. Then
for every q ∈ N, x ∈ G and every non-homogenous f ∈ Cq(H, A), we have
µ(x) = 1 and ( f · HxH)(h1, · · · , hq) = x−1 f (t1(h1), · · · , t1(hq)), for all
h1, · · · , hq ∈ H.
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3. HECKE OPERATORS

So far the cohomology groups H∗(H, A) (for every R and G-module A), are
HR(H, S)-modules. What makes this action homologically interesting is that it
respects the standard constructions of homological algebra. For example,

Proposition 3.5.3. ([1] Lemma 1.1.1) Consider a Hecke pair (H, S) in G and let
0 → A → B → C → 0 be a short exact sequence of RG-modules. Then the
long exact cohomology sequence

· · · → Hn(H, A) → Hn(H, B) → Hn(H, C) → Hn+1(H, A) → · · ·

is then an exact sequence of H(H, S)-modules, too.

We say that a Hecke pair (H′, S′) is dominated by another Hecke pair (H, S)
in G, denoted by (H′, S′) ≼ (H, S), if H′ ≤ H, HS′ = S, and H ∩ S′S′−1 ⊆
H′. In this case H(H, S) embeds in H(H′, S′) as a subalgebra via the restriction
of the map L(H, S) → L(H′, S′) which sends x ∈ L(H, S) to ΣaiH′gi, where
x = ΣaiHgi, gi ∈ S′ and for every (left or right) RG-module A we view the
HR(H′, S′)-modules H∗(H′, A) as HR(H, S)-modules as well. Moreover,

Proposition 3.5.4. ([1] Lemma 1.1.3) With the above notations,

1. if A is a "right" RG-module, then the restriction map

res : Hn(H, A) → Hn(H′, A)

commutes with the action of HR(H, S).

2. if A is a "left" RG-module and [H : H′] < ∞, then the co-restriction map

cor : Hn(H′, A) → Hn(H, A)

commutes with the action of HR(H, S).

It can be shown also that the Shapiro's lemma is compatible with the Hecke
algebra action on the cohomology, see [1] lemma 1.1.4. For more details, see
[44].

We now come back to our main task of this section, i.e. to provide the under-
lying group theoretic tool for our generalization of Atkin's conjecture. We need
the following lemma, which will be useful later, specially in the proof of the 3.5.6,
the main theorem of this section. It is known as Poincaré lemma:

Lemma 3.5.5. Let H, K ≤ G. Then [H : H ∩ K] ≤ [G : K] and if G = HK,
then equality holds. Conversely, if we have the equality and [G : K] < ∞, then
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G = HK.
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The next theorem provides the group theoretic background for our general-
ization of Atkin's conjecture. If we apply it to a finite index subgroup of PSL(2,O−d)
and its congruence closure, then we get a generalization of Atkin's conjecture
for Hecke operators acting on the cohomology groups (see the next section).
Our proof is element-wise, as it is more convenient when one wants to make
computer-aided calculations.

Theorem 3.5.6. Let H ≤ f K ≤ G and g ∈ G be such that µH(g) < ∞ and
K = (Kg)H. Consider the following conditions:

1. [Kg : Hg] = [K : H]2.

2. K = H(K ∩ gH).

3. [H ∩ Kg : Hg] = [K : H].

4. For every G-module A and every q ≥ 1 the following diagram commutes:

Hq(H, A)

TH
g

��

trK
H // Hq(K, A)

TK
g

��
Hq(H, A) Hq(K, A)

resK
H

oo

Then 1 ⇔ 2 ⇔ 3 and 3 ⇒ 4

Proof. The equivalence of 1, 2 and 3 is easy to prove (see lemma 3.6.3 part 1).

We start proving 3 ⇒ 4. Let µ := µH(g) = [H : Hg] and write H =
µ
⊔
1

Hggi.

Since K = (Kg)H, so Kggi ⊆ K for every i and K =
µ
∪
1

Kggi. Without lose of

generality, assume that K =
b
⊔
1

Kggi where b = [K : Kg], so

KgK =
b
⊔
1

Kggi. (3.5.4)
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For every y ∈ K, define ti(y) as the unique element of K such that ggiy =
ti(y)ggi(y) for a unique index i(y) (see equation (3.5.1)).

Write
H ∩ Kg =

m
⊔
1

Hghj (3.5.5)

where m = [H ∩ Kg : Hg]. By assumption m = [K : H]. Since for every
j, ghjg−1 ∈ K and {Hghjg−1 | 1 ≤ j ≤ m} consists of exactly m disjoint
co-sets, we see that

K =
m
⊔
1

Hghjg−1. (3.5.6)

For every y ∈ K, define ȳ as the unique ghjg−1 such that y ∈ Hghjg−1.
Since b = [H : H ∩ Kg] by 3.5.5, and {(H ∩ Kg)gi | 1 ≤ i ≤ b} consists

of exactly b disjoint co-sets, we have H =
b
⊔
1
(H ∩ Kg)gi so by equation (3.5.5)

H =
b
⊔
1

m
⊔
1

Hghjgi hence

HgH =
b
⊔
1

m
⊔
1

Hghjgi =
q
⊔
1

m
⊔
1

Hz(j,i), (3.5.7)

where z(j,i) := ghjgi. For every x ∈ H, define t(j,i)(x) as the unique element of
H such that z(j,i)x = t(j,i)(x)z(j,i)(x), for a unique pair of indices (j, i)(x) (see
equation (3.5.1)).

We start with q = 1. Consider [ f ] ∈ H1(H, A) where f ∈ C1(H, A) is a
derivation. We show that (TH

g f )(x) = TK
g (trK

H( f ))(x) for every x ∈ H. For
every x ∈ H, we compute

(TH
g f )(x) = ( f · HgH)(x) =

b
Σ

i=1

m
Σ

j=1
(ghjgi)

−1 f (t(j,i)(x))

and

TK
g (tr

K
H( f ))(x) = (trK

H( f ) · KgK)(x) =
b
Σ

i=1
g−1

i g−1trK
H( f )(ti(x)) =

b
Σ

i=1
g−1

i g−1 m
Σ

j=1
(ghjg−1)−1 f (ghjg−1ti(x)(ghjg−1ti(x))−1) =

b
Σ

i=1

m
Σ

j=1
g−1

i h−1
j g−1 f (w(j,i)(x)),
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where w(j,i)(x) := ghjg−1ti(x)(ghjg−1ti(x))−1. We show that w(j,i)(x) =

t(j,i)(x). Clearly w(j,i)(x) ∈ H. Note that ti(x) satisfies ggix = ti(x)ggi(x),

and ghjg−1ti(x) = ghkg−1 for some k, hence

ghjgix = ghjg−1ggix = ghjg−1ti(x)ggi(x) =

ghjg−1ti(x)(ghkg−1)−1(ghkg−1)ggi(x) = w(j,i)(x)ghkgi(x),

so by definition of t(j,i),

w(j,i)(x) = t(j,i)(x) f or every x ∈ H, (3.5.8)

and this finishes the case q = 1.

Let q ≥ 2 and consider [ f ] ∈ Hq(H, A) where f ∈ Cq(H, A). We show that

(TH
g f )(x1, · · · , xq) = TK

g (tr
K
H( f ))(x1, · · · , xq)

for every x1, · · · , xq ∈ H. We have

(TH
g f )(x1, · · · , xq) = ( f · HgH)(x1, · · · , xq)

=
b
Σ

i=1

m
Σ

j=1
(ghjgi)

−1 f (t(j,i)(x1), · · · , t(j,i)(x1···xq−1)
(xq)) (3.5.9)

and

TK
g (tr

K
H( f ))(x1, · · · , xq) = (trK

H( f ) · KgK)(x1, · · · , xq) =

b
Σ

i=1
g−1

i g−1trK
H( f )(ti(x1), · · · , ti(x1···xq−1)

(xq)) =

b
Σ

i=1
g−1

i g−1 m
Σ

j=1
(ghjg−1)−1 f (ghjg−1ti(x1)(ghjg−1ti(x1))

−1, · · · ,

ghjg−1ti(x1) · · · ti(x1···xq−2)(xq−1)ti(x1···xq−1)(xq)ghjg−1ti(x1) · · · ti(x1···xq−1)(xq)
−1
)

(3.5.10)
Comparing the corresponding entries of f in equations (3.5.9) and (3.5.10) and

recalling the equation (3.5.8), we see that it is enough to show that for every
2 ≤ r ≤ q,

t(j,i)(x1···xr−1)
(xr) =

ghjg−1ti(x1) · · · ti(x1···xr−2)(xr−1)ti(x1···xr−1)(xr)ghjg−1ti(x1) · · · ti(x1···xr−1)(xr)
−1

.
(3.5.11)
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We prove this as follows. By equation (3.5.8),

w(j,i)(x1 · · · xr) = t(j,i)(x1 · · · xr).

Using equation (3.5.2), we get

t(j,i)(x1 · · · xr) = t(j,i)(x1)t(j,i)(x1)
(x2)t(j,i)(x1x2)(x3) · · · t(j,i)(x1···xr−1)

(xr),

as well as

w(j,i)(x1 · · · xr) = ghjg−1ti(x1 · · · xr)(ghjg−1ti(x1 · · · xr))
−1

=

ghjg−1ti(x1) · · · ti(x1···xr−1)
(xr)(ghjg−1ti(x1) · · · ti(x1···xr−1)

(xr))
−1

,

hence

t(j,i)(x1)t(j,i)(x1)
(x2)t(j,i)(x1x2)(x3) · · · t(j,i)(x1···xr−1)

(xr) =

ghjg−1ti(x1) · · · ti(x1···xr−1)
(xr)(ghjg−1ti(x1) · · · ti(x1···xr−1)

(xr))
−1

.
(3.5.12)

Now we prove equation (3.5.11) by induction on r ≥ 2. For r = 2, equation
(3.5.12) reduces to

t(j,i)(x1)t(j,i)(x1)
(x2) = ghjg−1ti(x1)ti(x1)

(x2)(ghjg−1ti(x1)ti(x1)
(x2))

−1
.

Since t(j,i)(x1)
−1ghjg−1ti(x1) = ghjg−1ti(x1) (by the equation (3.5.8)), we

have

t(j,i)(x1)
(x2) = ghjg−1ti(x1)ti(x1)

(x2)(ghjg−1ti(x1)ti(x1)
(x2))

−1
.

Now assuming the equation (3.5.11) for any s ≤ r − 1, we have

ghjg−1ti(x1) · · · ti(x1···xr−2)(xr−1) =

t(j,i)(x1···xr−2)(xr−1)
−1ghjg−1ti(x1) · · · ti(x1···xr−3)(xr−2)ti(x1···xr−2)(xr−1) =

· · · =
t(j,i)(x1···xr−2)(xr−1)

−1t(j,i)(x1···xr−3)(xr−2)
−1 · · ·

t(j,i)(x1)
−1ghjg−1ti(x1)ti(x1)

(x2) · · · ti(x1···xr−2)(xr−1).
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Replacing this in the right hand side of the equation (3.5.11) and using the
equation (3.5.12) we get

ghjg−1ti(x1)ti(x1)
(x2) · · · ti(x1···xr−2)(xr−1)·

ti(x1···xr−1)
(xr)ghjg−1ti(x1) · · · ti(x1···xr−1)

(xr)
−1

=

t(j,i)(x1···xr−2)(xr−1)
−1t(j,i)(x1···xr−3)(xr−2)

−1 · · ·

t(j,i)(x1)
−1[ghjg−1ti(x1)ti(x1)

(x2) · · · ti(x1···xr−2)(xr−1)·

ti(x1···xr−1)
(xr)ghjg−1ti(x1) · · · ti(x1···xr−1)

(xr)
−1

] =

t(j,i)(x1···xr−2)(xr−1)
−1 · · · t(j,i)(x1)

−1[t(j,i)(x1) · · · t(j,i)(x1···xr−1)
(xr)] =

t(j,i)(x1···xr−1)
(xr),

proving equation (3.5.11), which finishes the proof.
�

Corollary 3.5.7. Let H ≤ f K E G and g ∈ G be such that [H : Hg] = [K : H].
Then for every G-module A and every q ≥ 1 the following diagram commutes:

Hq(H, A)

TH
g

��

trK
H // Hq(K, A)

TK
g

��
Hq(H, A) Hq(K, A)

resK
H

oo

Corollary 3.5.8. Let H ≤ f G and g ∈ G be such that [H : Hg] = [G : H]. Then
for every G-module A and every q ≥ 1 the following diagram commutes:

Hq(H, A)

TH
g

��

trG
H // Hq(G, A)

resG
Hxxppppppppppp

Hq(H, A)

3.6 Hecke operators for non-congruence subgroups

In this section we use Theorem 3.5.6 to prove a generalization of Atkin's conjec-
ture for Hecke operators on the cohomology groups of Γ−d = PSL(2,O−d), (for
all square free natural numbers d) with coefficients in any Γ−d-module. We prove,
in a sequence of lemmas, that if H ≤ f Γ−d is of level a := aH, and p ∈ O−d is

59



3. HECKE OPERATORS

prime such that a+ pO−d = O−d Then for g :=
(

p 0
0 1

)
∈ PGL(2, Q(

√
−d)),

H ≤ Ĥ ≤ Γ−d staisfy the conditions of 3.5.6. In this section, d will be a square
free natural number.

We start with some technical elementary lemmas:

Lemma 3.6.1. Let I EO−d and p ∈ O−d such that I + pO−d = O−d. Define

g :=
(

p 0
0 1

)
∈ PGL(2, Q(

√
−d)). Then

Γ(I) ∩ Γ(pO−d) ⊆ Γ(I) ∩ Γ(I)g ∩ gΓ(I)

.

Proof. Suppose that 1 = v + o · p with v ∈ I, o ∈ O−d.

Let u ∈ Γ(I) ∩ Γ(pO−d), so we may write u =
(

a+1 b
c d+1

)
=

(
a′p+1 b′p

c′p d′p+1

)
,

with a, b, c, d ∈ I and a′, b′, c′, d′ ∈ O−d. So ug =
(

a+1 b/p
cp d+1

)
=

(
a′p+1 b′

c′p2 d′p+1

)
.

Therefore we have b/p = b′ ∈ O−d, so that b′ = vb′ + ob ∈ I. This shows that
ug ∈ Γ(I), i.e. u ∈ gΓ(I). The inclusion Γ(I) ∩ Γ(pO−d) ⊆ Γ(I)g is proved
in a similar way.

�

Lemma 3.6.2. Let f : X → Y be a homomorphism between arbitrary groups
X, Y. For every H ≤ K ≤ Y, we have [ f−1(K) : f−1(H)] ≤ [K : H], and
the equality holds if K = H(K ∩ f (X)). Conversely, if [K : H] < ∞ and
the equality holds, then K = H(K ∩ f (X)). As a result, for every M ≤ f X,
[ f (X) : f (M)] = [X : MKe( f )]. In particular, [ f (X) : f (M)] | [X : M].

Proof. f induces an injection from the left cosets of f−1(H) in f−1(K) into the
left cosets of H in K by assigning each x f−1(H) to f (x)H. It is onto if and
only if K = H(K ∩ f (X)). Now if [K : H] < ∞ and the equality holds, then
this map is onto and hence K = H(K ∩ f (X)). Finally for M ≤ f X, just put
H = f (M), K = f (X). �

Lemma 3.6.3. For any element g of a group G and any subgroups H ≤ f K ≤ G,
we have

1. [H ∩ Kg : H ∩ Hg] ≤ [K : H], equality holds if and only if K = H(K ∩
gH).

2. If K = NH for some N ≤ K, then in (1) equality holds if and only if
N ⊆ H(K ∩ gH).
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3.6. HECKE OPERATORS FOR NON-CONGRUENCE SUBGROUPS

3. Let g ∈ G and H, N ≤ K ≤ S ≤ G with K = NH. Set H1 := N ∩ HS,
where HS denotes the normal core of H in S. If [H1 ∩ Ng : H1 ∩ Hg

1 ] =
[N : H1], then [H ∩ Kg : H ∩ Hg] = [K : H].

Proof. For (1), consider the map f = g(−) |H : H → G. Clearly f−1(K) =
H ∩ Kg and f−1(H) = H ∩ Hg, so we are done by 3.6.2. The proofs of (2), (3)
are straightforward.

�

Let g ∈ G and H ≤ K ≤ G. define π, πg : K ∩ Kg → H\\K := {Hx |
x ∈ K} by π(x) := Hx and πg(x) := H(gx). The function

(π, πg) : K ∩ Kg → H\\K × H\\K,

is called (π, πg) for H ≤ K. If H E K, then π and πg are homomorphisms
with ke(π) = H ∩ Kg and ke(πg) = Hg ∩ K and hence ke(π, πg) = ke(π) ∩
ke(πg) = H ∩ Hg. In this case (π, πg) is onto if and only if [H ∩ Kg : H ∩
Hg] = [K : H].

Lemma 3.6.4. Let H ≤ f K ≤ G. For any g ∈ G, if the map (π, πg) is onto then
[H ∩ Kg : H ∩ Hg] = [K : H].

Proof. Let (π, πg) be onto, and consider an element x ∈ K. So there exists
y ∈ K ∩ Kg with (π, πg)(y) = (H, Hx), that is, y ∈ H and x = h(gy) for
some h ∈ H. So x ∈ H(K ∩ gH). Hence by 3.6.3 part 1, [H ∩ Kg : H ∩ Hg] =
[K : H]. �

Lemma 3.6.5. Let H, N ≤ K ≤ S ≤ G with K = NH, [K : H] < ∞ and
H1 := N ∩ HS. For any g ∈ G, if (π, πg) for (H1, N) is onto, then [H ∩ Kg :
H ∩ Hg] = [K : H].

Proof. Immediate from previous lemma and part 3 of 3.6.3. �

Finally we need the following lemma:

Proposition 3.6.6. Suppose X, X1, X2 are arbitrary groups with epimorphisms

X1
f1
↞ X

f2
� X2. If X

( f1, f2)−→ X1 × X2 is not surjective, then there exist a group

Y , 1 and epimorphisms X1
h1
� Y

h2
↞ X2 such that h1 f1 = h2 f2, i.e. the

following diagram commutes:

X
f1

~~}}
}}

}}
} f2

  A
AA

AA
AA

X1

h1   A
AA

AA
AA

A X2

h2~~}}
}}

}}
}}

Y

61



3. HECKE OPERATORS

Proof. Let Ni := Ke( fi) and put Y := X/(N1N2). Define hi( fi(x)) := xN1N2
and note that Y , 1 as ( f1, f2) is not onto. �

Now we can show that for every finite index subgroup H of Γ−d, its congru-
ence closure, and special elements g ∈ PGL(2, C), the conditions of 3.5.6 are
satisfied:

Proposition 3.6.7. Let p ∈ O−d be prime, and define g :=
(

p 0
0 1

)
∈ G :=

PGL(2, Q(
√
−d)). Consider H ≤ f Γ−d of level a := aH, and assume a +

pO−d = O−d. Let Ĥ be the congruence closure of H in Γ−d. then

[H ∩ Ĥg : H ∩ Hg] = [Ĥ : H].

Proof. Set H1 := HΓ−d ∩ Γ(a), where HΓ−d is the normal core of H in Γ−d. Then
Ĥ = Γ(a)H (2.4.5 part 1) and as aH1 = a, Ĥ1 = Γ(a) (2.4.5 part 2). If the map
(π, πg) for H1 ≤ N := Γ(a) is onto, then by 3.6.5 we are done. First we show
that both π and πg are onto:
Consider the canonical surjections π1 : N � N/H1 and π2 : N � N/(N ∩
Γ(pO−d)) and let ψ := (π1, π2) : N → N/H1 × N/(N ∩ Γ(pO−d)). If

ψ is not onto, then by 3.6.6 there exist a group T , 1 and N/H1
k1
� T

k2
↞

N/(N ∩ Γ(pO−d)) such that k1π1 = k2π2. Suppose T = N/W, where W :=
ke(k1π1). Since T , 1, H1 ⊆ W ( N, and as N is the congruence closure
of H1, therefore W is not congruence. But N ∩ Γ(pO−d) ⊆ W, contradiction.
Hence ψ is onto. Now for s ∈ N/H1, there exists t ∈ N such that ψ(t) =
(s, 1) = (H1t, (N ∩ Γ(pO−d))t ), that is t ∈ N ∩ Γ(pO−d) and s = H1t.
Now by 3.6.1 N ∩ Γ(pO−d) ⊆ N ∩ Ng, which implies that π(t) = H1t = s,
i.e. π is onto. On the other hand N ∩ Γ(pO−d) ⊆ N ∩ gN (again by 3.6.1),
implying tg ∈ N ∩ gN, hence πg(tg) = H1(

g(tg)) = H1t = s, so πg is also
onto.
Now contrarily assume that (π, πg) for H1 ≤ N is not onto. Then by 3.6.6

there exist a group Y , 1 and epimorphisms N/H1
h1
� Y

h2
↞ N/H1 such that

h1π = h2πg. Now define F1 : N → Y and F2 : Ng → Y by F1(x) := h1(H1x)
and F2(x) := h2(H1 · gx). Clearly F1 |N∩Ng= F2 |N∩Ng . So we have a map

F : N ∗N∩Ng Ng → Y

such that F |N= F1 and F |Ng= F2. Hence [N ∗N∩Ng Ng : ke(F)] ≤| Y |≤
[N : H1] < ∞ and [N : N ∩ Ke(F)] =| Y |
 1. So H1 ⊆ N ∩ ke(F) ( N, but
N is the congruence closure of H1, therefore N ∩ ke(F) cannot be congruence.
Hence by 2.3.11 ke(F) is a non-congruence subgroup of N ∗N∩Ng Ng of finite
index, contradicting 2.6.8. �
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Now we sum up what we have proved so far in this section to prove:

Theorem 3.6.8. Let H ≤ f Γ−d = PSL(2,O−d) (d any square-free natural num-
ber) be of level a := aH, and Ĥ be its congruence closure. Suppose that p ∈ O−d

is prime and a+ pO−d = O−d and define g :=
(

p 0
0 1

)
∈ PGL(2, Q(

√
−d)).

Then for every Γ−d-module M and every q ≥ 1 the following diagram commutes:

Hq(H, M)

TH
g

��

trĤ
H // Hq(Ĥ, M)

TĤ
g

��
Hq(H, M) Hq(Ĥ, M)

resĤ
H

oo

Proof. Ĥg is congruence by 3.6.1 and 2.3.8 part 3. Hence by 2.4.5 we have Ĥ =

(Ĥg)H. Now using 3.6.7 and 3.5.6 we are done. �

Remark 3.6.9. Note that since the virtual cohomological dimension of a Bianchi
group is two, the most interesting cases of these results are for q = 1, 2.

Remark 3.6.10. One application of Theorem 3.6.8 is in the theory of Bianchi
modular forms for imaginary quadratic fields of class number one.The Eichler-
Shimura-Harder correspondence (see [35]) allows us to see these forms as classes
in the cohomology of finite index subgroups of Bianchi groups. Theorem 3.6.8
can be used to deduce that Hecke action on Bianchi modular forms for a non-
congruence subgroup of a Bianchi group is essentially the same as the Hecke
action on Bianchi modular forms for its congruence closure.
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congruence subgroup, 25

PSL, 14

Quadratic
residue, 5
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√
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