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Abstract

The connection between classical modular forms and continuous representations of the

absolute Galois group of the field of rational numbers has been the focus of major

research in the last thirty years. In this thesis, we investigate a similar connection

over the imaginary quadratic fields. We prove a weight reduction theorem for mod p

modular forms and we prove the nonexistence of absolutely irreducible level 1 mod p

Galois representations of small quadratic fields for p = 2, 3. We list certain conjectures,

including an analogue of Serre’s Conjecture. We present algorithms to compute the

modular forms and the Hecke action on them. Implementing the algorithms in MAGMA,

we produce numerical evidence to support some of these conjectures.
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Chapter 1

Outline

A celebrated conjecture (now a theorem of Khare et al.) of Jean-Pierre Serre connects

certain 2-dimensional continuous representations of the Galois group of Q into GL2(Fp)

(these are called Galois representations) with certain classical modular forms of the

hyperbolic plane. In this thesis, we investigate an analogue connection between certain

2-dimensional continuous representations of the Galois group of imaginary quadratic

number fields into GL2(Fp) and certain automorphic forms living on the hyperbolic

3-space (called Bianchi modular forms).

In Chapter 2 we summarize the facts about discrete subgroups of SL2(C) and their

action on the hyperbolic 3-space H. We talk about Bianchi groups SL2(OK) ,whereOK is

the ring of integers of an imaginary quadratic field, and define the Bianchi modular forms

as classes in the cohomology of Bianchi groups. We discuss the Hecke algebra acting on

this cohomology. We end the chapter with a discussion of Galois representations.

In Chapter 3 we give an overview of the classical situation that motivated our re-

search. We discuss the classical modular forms and Serre’s conjecture. Then we turn

to imaginary quadratic fields and list four conjectures, well known to experts, regarding

Galois representations of imaginary quadratic fields and Bianchi modular forms.

In Chapter 4 we present the statements of our theoretical results and we discuss their

relevance to the conjectures we listed.
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In Chapter 5 we present the numerical results that we gathered using the algorithms

and programs that we developed to compute Bianchi modular forms. The numerical

data, together with our theoretical results, provide supporting evidence for some of the

conjectures that we listed.

In Chapters 6 and 7 we present the proofs of our theoretical results.

In Chapter 8 we explain our algorithm that we used to compute the Bianchi modular

forms and the Hecke action on them.
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Chapter 2

Background

2.1 The Hyperbolic 3-Space

In this section, we will discuss the the hyperbolic 3-space and the action of SL2(C) on

it. We refer the readers to the books by Elstrodt-Grunewald-Mennicke [17], Bearden [4],

and Maclahlan-Reid [32] for proofs.

Three-dimensional hyperbolic space is the unique 3-dimensional connected and sim-

ply connnected Riemanninan manifold with constant sectional curvature equal to −1.

Let H be the upper half-space of the three dimensional Euclidean space.

H := C× R+

= {(z, r) | z ∈ C, r ∈ R, r > 0}

= {(x, y, r) | x, y, r ∈ R, r > 0}

We endow H with the hyperbolic metric d coming from the line element ds defined

by

ds2 =
dx2 + dy2 + dr2

r2

and H becomes a model for the hyperbolic 3-space. With the metric d, the geodesics

in H are half circles or half lines which are orthogonal to the boundary plane C in the

Euclidean sense.



4

The group SL2(C) of 2 × 2 complex matrices with determinant one act on H. For

M =
(

a b
c d

)
∈ SL2(C) and (z, r) ∈ H, the action is given by M · (z, r) := (z∗, r∗) where

z∗ =
(az + b)(c̄z̄ + d̄) + ac̄r2

|cz + d|2 + |c|2r2
,

r∗ =
r

|cz + d|2 + |c|2r2
.

This action can be given in a more compact way once quaternions are used to rep-

resent points in H. Let 1, i, j, k be the standart R-basis for Hamilton’s quaternions H.

We regard H as a subset of H via (z, r) 7→ z+ rj. Then the action of SL2(C) on a point

p = z + rj can be described as

M · p =
ap+ b

cp+ d
.

The action can be extended to the boundary P1(C) = C ∪ {∞}. If (x : y) is an

element of P1(C), then

M · (x : y) = (ax+ by : cx+ dy).

The action of SL2(C) on H is doubly transitive (any pair of elements can be sent to

any pair of elements) and the stabilizer of the point j = (0, 0, 1) ∈ H inside SL2(C) is

SU(2). This implies that, with the fact that −I2 acts trivially on H,

SL2(C)/SU(2) ' PSL2(C)/PSU(2) ' H

In the language of Lie groups, this means that the global symmetric space of the

groups SL2 and PSL2 is H. We will discuss the situation from the perspective of

automorphic forms in a later section.
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We end this section by noting that PSL2(C) is isomorphic to the group Iso+(H) of

orientation preserving isometries of H.

2.2 Discrete Subgroups of PSL2(C)

We consider the topology on SL2(C) that is given by the following norm

||M || =
√
|a|2 + |b|2 + |c|2 + |d|2

for M =
(

a b
c d

)
. A subgroup Γ of PSL2(C) is discrete if its inverse image in SL2(C) ⊂

is discrete. Discrete subgroups of PSL2(C) are also known as Kleinian groups.

A subgroup Γ < Iso+(H) is called discontinuous if for every compact subset K ⊂ H

we have g · K ∩ K = ∅ for all but finitely many g ∈ Γ. The following is a result of

Poincare.

Theorem 2.1. A subgroup Γ < PSL2(C) is discrete if and only if it is discontinuous.

It follows from that for a point P ∈ H, its stabilizer subgroup ΓP < Γ is finite if Γ

is discrete. The classification of finite subgroups of PSL2(C) tells us that ΓP will be

cyclic, dihedral, isomorphic to the alternating groups A4,A5 or the symmetric group

S4.

For the point∞ of P1(C), its stabilizer PSL2(C)∞ in PSL2(C) is equal to the group

B(C) =

{(
a b

0 a−1

)
| 0 6= a, b ∈ C

}
/{±I}

which is a Borel subgroup. Given an element ζ ∈ P1(C) and a subgroup Γ < PSL2(C)

then we have

Γζ = Γ ∩M−1B(C)M
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where M ∈ PSL2(C) is such that Mζ =∞.

A closed subset F ⊂ H is called a fundamental domain for Γ < Iso(H) if the

followings are satisfied:

(1) F meets each Γ-orbit at least once,

(2) the interior of F meets each Γ-orbit at most once,

(3) the boundary of F has Lebesgue measure zero.

If Γ is discontinuous, then a fundamental domain F exists. We say that Γ is of finite

covolume or cofinite if

vol(Γ) =

∫
F
dv <∞

where dv =
dxdydr

r3
is the hyperbolic volume element. The covolume vol(Γ) is indepen-

dent of the fundamental domain chosen. If Γ has a compact fundamental domain, then

Γ is called cocompact.

If Γ < PSL2(C) is a discrete group which acts (fixed point) freely on H then the

quotient space Γ\H inherits the structure of an orientable hyperbolic 3-manifold. Con-

versely, the universal cover of an orientable hyperbolic 3-manifold M will be isometric

to H and thus the fundamental group of M will be a covering group Γ < PSL2(C) that

acts freely and is discrete.

Theorem 2.2. If M is an orientable hyperbolic 3-manifold, then M is isometric to Γ\H

for some torsion-free discrete subgroup of PSL2(C).

It can be seen that Γ is cocompact if and only if Γ\H is compact. Moreover, Γ is

cofinite if and only if Γ\H is of finite volume. This explains the prefix ”co” in the above

definitions.
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The notion of a cusp is important for the sequel. An element ζ ∈ P1(C) is called a

cusp of a discrete group Γ < PSL2(C) if its stabilizer Γζ contains a free abelian group

of rank 2. We denote the set of cusps of Γ with CΓ.

The following result provides a connection with algebraic number theory.

Theorem 2.3. Let Γ be a discrete subgroup of PSL2(C) which is cofinite. Then the

field Q(trΓ) is a finite extension of Q.

Here Q(trΓ) is the field created by adjoining the traces of all preimages in SL2(C)

of elements of Γ.

2.3 Bianchi Groups

Let d > 0 be a square-free integer and let Od denote the ring of integers of the imaginary

quadratic number field Kd = Q(
√
−d). We will drop the d when we discuss situations

that cover all d’s. The groups PSL2(Od) are called Bianchi groups. Since Od is discrete

in C, Bianchi groups are discrete subgroups of PSL2(C). Using a specific fundamental

domain constructed by Bianchi, one sees that Bianchi groups are cofinite but are not

cocompact.

Theorem 2.4. Every discrete subgroup of PSL2(C) that is not cocompact is commen-

surable with a conjugate of some Bianchi group.

We first discuss the properties of cusps which is a first indicator of the strong con-

nections with arithmetic.

Proposition 2.5. Let Γ < PSL2(C) be commensurable with a Bianchi group PSL2(Od),

then the set of cusps CΓ = P1(Kd) ⊂ P1(C).
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Theorem 2.6. The “number of cusps” of PSL2(Od) (that is, the number of PSL2(Od)-

orbits in P1(Kd)) is equal to the class number of Kd.

It is effectively possible to write down a presentation for PSL2(Od) from a fundamen-

tal domain. This was carried out by Bianchi, Humbert and Swan [53]. In this thesis, we

will focus on the Euclidean imaginary quadratic fields K1 and K2. We note the follow-

ing presentations that Flöge [19] produced using a 2-dimensional PSL2(O)-equivariant

deformation retract of H that is due to Mendoza [33].

PSL2(O1) =

〈
A,B, U

∣∣∣∣ (AB)3 = B2 = AUA−1U−1 = (BUBU−1)3 =

(BU2BU−1)2 = (AUBAU−1B)2 = 1

〉

where A =
(

1 0
1 1

)
, B =

(
0 −1
1 0

)
and U =

(
1 0
i 1

)
. Here we represent elements of PSL(C)

with preimages from SL2(C).

PSL2(O2) =

〈
A,B, U

∣∣∣∣ (AB)3 = B2 = AUA−1U−1 = (BU2BU−1)2 = 1

〉

where A =
(

1 0
1 1

)
, B =

(
0 −1
1 0

)
and U =

(
1 0√
−2 1

)
.

We now define the congruence subgroups. Given an ideal a ⊂ O, the principal

congruence subgroup of level a is defined by

Γ(a) =

{
M ∈ PSL2(O)

∣∣ M ≡ ( 1 0
0 1

)
mod a

}
A subgroup of PSL2(O) is a congruence subgroup if it is contains Γ(a) for some aEO,

otherwise it is a noncongruence subgroup. It is a well known theorem by Bass-Milnor-

Serre that Bianchi groups have many noncongruence subgroups.
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We end this section with a group theoretic description of PSL2(O1) which is again

derived from an explicit fundamental domain. Note the similarity with the fact that

PSL2(Z) ' C2 ? C3.

PSL2(O1) ' ((C2 × C2) ?C2 S3) ?(C2?C3) (A4 ?C3 S3)

where Cn is the cyclic group of order n.

2.4 Cohomology and Hecke Action

In this section we will work with SL2 instead of PSL2 for convenience. For convenience,

we assume that K has class number one. This allows us to associate Hecke operators

with generators of the ideals instead of the ideals themselves. We start by constructing

the Hecke operators explicitly on the first cohomology group with arbitrary coefficient

modules. Next, we describe the specific coefficient modules that we need.

2.4.1 Hecke Operators

Let R be a commutative ring with 1 and α =
(

π 0
0 1

)
where π is a prime element of O.

Let Γ ≤ SL2(O) be a congruence subgroup of level a. We follow the standart notations

and put Γα := Γ ∩ α−1Γα and Γα := Γ ∩ αΓα−1.

Let V be a right R[Mat2(O)6=0]-module where Mat2(O)6=0 is the semi-group of 2× 2

matrices of non-zero determinant with entries in O. We define the Hecke operator Tπ
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on the cohomology as the composition

Hm(Γ, V )

res

��

Hm(Γ, V )

Hm(Γα, V ) α̂ // Hm(Γα, V )

cores

OO

where the map α̂ is defined by

c 7→ (g 7→ c(α−1gα) · αι)

where c is a cocycle in Hm(Γα, V ) and αι = det(α)α−1.

One can describe Hecke operator Tπ explicitly: suppose ΓαΓ =
⊔m

i=1
γiΓ. Given

g ∈ Γ and γi, there is a unique γj(i) such that γ−1
j(i)gγi ∈ Γ. Then

(Tπc)(g) =
∑

1≤i≤m

c(γ−1
j(i)gγi) · γι

i

for all cocycles c in Hm(Γ, V ) and g ∈ Γ. We note that this formula agrees with the one

given in [2, p.194].

For (π, a) = 1, going through the same construction with the matrix β =
(

π 0
0 π

)
instead of α =

(
π 0
0 1

)
, we get the Hecke operators Sπ.

We define the Hecke algebra H as the (commutative) Z-algebra generated by the Tπ’s

and Sπ’s.

2.4.2 Shapiro’s Lemma

For an ideal a of O, set

∆1(a) := {M ∈ Mat2(O)6=0 : M ≡
(

1 ∗
0 1

)
mod a}
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We define the induced module Ind(V ) = Ind(Γ1(a),Γ1(ab), V ) as the set of Γ1(ab)-

invariant maps from Γ1(a) to V , that is

Ind(V ) = {f : Γ1(a)→ V | f(gh) = f(g) · h for all h ∈ Γ1(ab)}.

Then Ind(V ) is a right Γ1(a)-module with the action (f · y)(x) = f(yx) for x, y ∈ Γ1(a)

and f ∈ Ind(V ).

We can extend the Γ1(a)-action on Ind(V ) to a right ∆1(a)-action in the following

way. Let α ∈ ∆1(a) and f ∈ Ind(V ) and x ∈ Γ1(a), then there are β ∈ ∆1(ab) and

y ∈ Γ1(a) such that αx = yβ where ∆1(ab). We define

(f · α)(x) = f(y) · β.

Shapiro’s Lemma asserts that there is an isomorphism

θ : Hm(Γ1(a), Ind(V ))→ Hm(Γ1(ab), V )

given by f 7→ f(I) for every non-homogeneous cocycle f in Hm(Γ, Ind(V )) where I

denotes the identity matrix. The fact that the Hecke operators commute with the

Shapiro isomorphism θ was proved in a more general setting in [2]. See also [57] for a

proof in the case of PSL2(Z) using the same construction as ours for the Hecke operators.

Proposition 2.7. The Hecke operators commute with the Shapiro map θ.

2.4.3 Eigenvalue Systems

A system of eigenvalues of H with values in a ring R is a set-theoretic a map Φ : H→ R.

We say that an eigenvalue system Φ occurs in the RH-module A if there is a nonzero

element a ∈ A such that Ta = Φ(T )a for all T in H.

The following lemma is proved in [2, Lemma 2.1].
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Lemma 2.8. Let F be a field and V be a F∆1(a)-module which is finite dimensional

over F . If an eigenvalue system Φ : H → F occurs in Hn(Γ1(a), V ), then Φ occurs in

Hn(Γ1(a),W ) for some irreducible F∆1(a)-subquotient W of V .

Thus it is enough to investigate the cohomology with irreducible coefficient modules

if we are only interested in the eigenvalue systems.

2.4.4 The Coefficient Modules

In this section, we describe certain modules that we will use as the coefficient modules

in the cohomology of Bianchi groups in the next section.

For a commutative ring R with 1, let Ek(R) denote the homogeneous polynomials

of degree k in two variables with coefficients in R. The set {Xk−iY i : 0 ≤ i ≤ k} is an

R-basis of Ek(R).

We can give Ek(C) a right SL2(O)-module structure as follows. For a polynomial

P (X, Y ) in Ek(K) and a matrix
(

a b
c d

)
in SL2(O), we set

(
P ·
(

a b
c d

))(
X, Y

)
= P

((
a b
c d

)(
X
Y

))
= P

(
aX + bY, cX + dY

)
.

When λ is a prime ideal of O, we may view Ek(Fλ), where Fλ is the residue field

of λ, as an SL2(O) module via the above formula by reducing each entry of the matrix

modulo λ.

A result of Steinberg [52] says that the irreducible representations of SL2(K) over C

are of the form

Ek,l(C) := Ek(C)⊗ El(C)

with k, l ≥ 0 integers where the bar on the second module means that the action is
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twisted with complex conjugation. Note that −I acts trivially when k + l is even, thus

in this case the action factors through PSL2(O).

Let ` be a rational prime which splits as λλ̄ in the ring of integers O of K. Note

that then the residue fields of both λ and λ̄ are isomorphic to F`. In this project, we are

interested in the (absolutely) irreducible representations of SL2(O/(`)) = SL2(O/λ) ×

SL2(O/λ̄) over F`. Results of Steinberg [52] and Brauer-Nesbitt [8] show that these are

of the form

Ek,l(F`) := Ek(F`)⊗ El(F`) 0 ≤ k, l ≤ `.

Here, SL2(O) acts on the first module through reduction by λ and on the second through

reduction by λ̄. Note that −I acts trivially when k + l is even, thus in this case the

action factors through PSL2(O).

2.5 Bianchi Modular Forms

In this section, we discuss the automorphic forms on H that are of cohomological type.

Let K be an imaginary quadratic field of class number 1 and let O be its ring of

integers. Let G = ResK/Q(SL2) be the algebraic group over Q that is obtained from

SL2 by restriction the scalars from K to Q, see Platonov and Rapunchik [40][pg.49].

The group of real points G(R) = SL2(K ⊗Q R) = SL2(C) of G acts transitively on

H as we have discussed in Section 2.1. The stabilizer SU(2) of j = (0, 0, 1) ∈ H is a

maximal compact subgroup of SL2(C). Thus the global symmetric space SL2(C)/SU(2)

of G can be identified with H via the map M 7→M · j.

Let Γ be a torsion-free subgroup of G(Z) = SL2(O). Then the quotient Γ\H is a

smooth 3-manifold which is noncompact but is of finite volume. Since H is contractible,
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Γ\H is an Eilenberg-Mac Lane space for Γ. That is, π1(Γ\H) ' Γ and higher homotopy

groups vanish. Let E be a Γ-module and let Ẽ be the local system of coefficients induced

from E. These can be defined as the bundle H ×Γ E with discrete structure group Γ.

We have

Hm(Γ, E) ' Hm(Γ\H; Ẽ)

for all m ∈ N.

In [20], Franke proves the Borel Conjecture [6] which says that the cohomology group

Hm(Γ, E) can be directly computed in terms of certain automorphic forms. Moreover,

he obtains a direct sum decomposition

Hm(Γ, E) = Hm
cusp(Γ, E)⊕Hm

Eis(Γ, E)

where the first summand is called the cuspidal cohomology and it is represented by

cuspidal automorphic forms. The second summand is called the Eisenstein cohomology

and it is constructed using Eisenstein series attached to certain cuspidal automorphic

forms on lower rank groups.

The most well known example of the above decomposition is given by the theorem

of Eichler and Shimura (see Theorem 3.3).

Due to Borel and Serre [7], there is a compactification Γ\H with boundary such that

the inclusion Γ\H ↪→ Γ\H is a homotopy equivalence. Thus after a suitable extension

of the sheaf Ẽ, we have Hm(Γ\H; Ẽ) = Hm(Γ\H; Ẽ).

Let δ(Γ\H) denote the boundary of Γ\H. Then Harder [22, 23] shows that the kernel

of the restriction map

Hm(Γ\H, Ẽ) −→ Hm(δ(Γ\H), Ẽ)

can be identified with the cuspidal cohomology Hm
cusp(Γ, E) and the image of this map
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can be identified with the Eisenstein cohomology Hm
Eis(Γ, E). The cuspidal cohomology

can also be algebraically described as the kernel of the restriction map in

0 −→ Hm
cusp(Γ, E) −→ Hm(Γ, E)

res−→
∏

h∈CΓ

Hm(Γ ∩ Γh, E). (2.1)

Recall that CΓ is the set of cusps of Γ and Γh is the stabilizer of h ∈ H inside SL2(O).

We note that the virtual cohomological dimension of SL2(O) is 2, see Serre [45].

Thus for torsion-free Γ, Hm(Γ, E) = {0} for all m > 2.

We summarize from [55] what is known about the nature of the first two cohomology

groups. Recall the definition of the irreducible SL2(K)-modules Ek,l(C) from Section

2.4.4.

• Hm
cusp(Γ, Ek,l(C)) = {0}, unless k = l for m = 1, 2.

• H1
cusp(Γ, Ek,l(C)) ' H2

cusp(Γ, Ek,l(C))

• dim H1
Eis(Γ, Ek,l(C)) = 1

2
dim H1(δ(Γ\H), Ẽk,l(C))

• H2
Eis(Γ, Ek,l(C)) ' H2(δ(Γ\H), Ẽk,l(C)) unless k = l = 0

We have seen that the cohomology groups H1(Γ, E) and H2(Γ, E) can be identified

with certain automorphic forms. These automorphic forms (also known as automorphic

forms of cohomological type) are what we want to call Bianchi modular forms. But as

their cohomological identification is what we are going to use for computational purposes,

we go ahead and call the cohomology classes themselves “Bianchi modular forms”. The

cuspidal automorphic forms are very important for us and the cuspidal part of H1 and

H2 are isomorphic. So we solely focus on the first cohomology.
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For an ideal a of O, we define

Γ0(a) =
{(

a b
c d

)
∈ SL2(O) : c ≡ 0 mod a

}
and

Γ1(a) =
{(

a b
c d

)
∈ SL2(O) : c ≡ d− 1 ≡ 0 mod a

}
Definition 2.9. Let a be an ideal of O.

• A Bianchi modular form of level a and weight (k, l) is a cohomology class in

H1(Γ1(a), Ek,l(C)). It is cuspidal if it is in the cuspidal part H1
cusp(Γ1(a), Ek,l(C)).

• Similarly, we define a mod ` Bianchi modular form of level a and weight (k, l) as a

cohomology class in H1(Γ1(a), Ek,l(F`)). It is cuspidal, if it is in the cuspidal part

that is given algebraically by the exact sequence (2.1).

2.6 Galois Representations

Let K be a number field and K an algebraic closure. Let GK = Gal(K/K) be its

absolute Galois group. We equip GK with the profinite topology:

GK = lim←−Gal(L/K)

where the limit is taken over finite Galois extensions L/K.

For every finite place λ in K, we will distinguish subgroups

Iλ ≤ Dλ ≤ GK

Also we will specify a class of elements Frobλ which give important information for

almost all λ.
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Let Kλ be the completion of K at a finite place λ. Fix an embedding K ↪→ Kλ.

This gives rise to an embedding GKλ
↪→ GK . We call the image of GKλ

inside GK

the decomposition subgroup of GK at λ. Note that a different embedding K ↪→ Kλ

conjugates the decomposition subgroup by an element of GK .

There is a reduction map π : GKλ
→ GFq where Fq is the residue field of Kλ. This

gives an exact sequence

1→ Iλ → GKλ
→ GFq → 1

The kernel Iλ is called the inertia subgroup of GK at λ.

A Frobenius element Frobλ of GK is a preimage of the automorphism x 7→ xq under

π. We note that this automorphism topologically generates GFq .

An n-dimensional Galois representation ρ of K over a topological field F is a con-

tinuous homomorphism

ρ : GK → GLn(F )

If F is a field of char. ` , we call ρ a mod ` Galois representation of K. If F is an

extension of the field Q` of `-adic numbers then ρ is called `-adic.

A Galois representation ρ of K is said to be unramified at a finite place λ if ρ(Iλ) =

{1}. In this case, every Frobλ has the same image under ρ. Remember that a different

embedding K ↪→ Kλ conjugates Frobλ. Thus the image ρ(Frobλ) is well-defined only

up to conjugation but the trace and the determinant of the image are well-defined.
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Chapter 3

Conjectures

In this chapter we list certain conjectures which have been considered by other authors

(mainly Avner Ash and Fritz Grunewald) before. We start by a discussion of the classical

case that motivates our conjectures and results.

3.1 The Classical Case

The theorems of Eichler-Shimura and Deligne [13] and the conjecture (now a theorem

by Khare, Winterberger and others [28, 29]) of Serre [48] show that certain Galois

representations of Q and certain classical modular forms are intimately related. In this

section, we will briefly discuss this connection.

3.1.1 Modular Forms

Modular forms are complex analytic functions on the upper half-plane satisfying a certain

kind of functional equation and growth condition.

The group SL2(Z) acts on the hyperbolic upper half plane {z ∈ C : Im(z) > 0}

through linear fractional transformations:
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(
a b

c d

)
· z =

az + b

cz + d

This action can be extended to the cusps P1(Q). Note the similarity with the inter-

action between SL2(O) and the hyperbolic upper half space H, see Section 2.1.

For an integer N , let

Γ0(N) = {g ∈ SL2(Z) : g ≡
( ∗ ∗

0 ∗
)

mod N}

and

Γ1(N) = {g ∈ SL2(Z) : g ≡
(

1 ∗
0 1

)
mod N}

More precisely, a holomorphic modular form of level N and weight k (both positive

integers) is a holomorphic function f on the upper half plane which satisfies:

• f
(
γ · z

)
= (cz + d)kf(z) for every γ =

(
a b
c d

)
∈ Γ1(N)

• f is ”holomorphic at cusps” .

The second condition roughly means that f has controlled growth towards the cusps.

Modular forms are usually presented as convergent Fourier series

f(z) =
∞∑

n=0

anq
n

where q = e2πiz. This is possible because the matrices
(

1 b
0 1

)
lie in Γ1(N) so that f(z+b) =

f(z) for all integers b. A modular form is called cuspidal if it vanishes at the cusps. If

f is cuspidal then a0 = 0. We say that f is normalized if a1 = 1.

The space Mk(Γ1(N)) of modular forms of level N and weight k is finite dimensional.

There is a commuting collection of operators Tm, m ≥ 1, called Hecke operators, acting
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on Mk(Γ1(N)). These operators fix the subspace Sk(Γ1(N)) of cuspidal forms and its

complement Eisk(Γ1(N)) so that

Mk(Γ1(N)) = Sk(Γ1(N)⊕ Eisk(Γ1(N))

as Hecke-modules.

Let f =
∑∞

n=0 anq
n be a normalized simultaneous eigenvector (an eigenform) for

these operators. Then

Tm(f) = amf

It is a theorem of Shimura that if f is a normalized cuspidal eigenform, then an are

algebraic integers and Q(a2, ...) is a finite extension of Q.

The space Mk(Γ1(N)) admits a basis that consists of modular forms with integer

coefficients. One constructs the space of mod ` modular forms with level N and weight

k as Mk(Γ1(N),Z)⊗F` where Mk(Γ1(N),Z) is the space of modular forms with integer

coefficients.

3.1.2 Modularity and Serre’s Conjecture

Given a normalized cuspidal eigenform, theorems of Deligne-Serre (weight 1), Eichler-

Shimura (for weight 2) and Deligne (for weight > 2) construct `-adic Galois representa-

tions of Q with special properties.

Theorem 3.1. Let f be a normalized cuspidal eigenform of weight k, level N . Let Of

be the ring of integers of the algebraic number field Kf generated by the coefficients of

f . Let ` be a rational prime and λ a prime of O over `. Then there exists a Galois

representation

ρf,λ : Gal(Q/Q) −→ GL2(Of,λ)
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where Of,λ is the ring of integers of the completion of K at λ, such that for all p 6 |`N

trace(ρf,λ(Frobp)) = ap and det(ρf,λ(Frobp)) = bp · p

where ap, bp are the eigenvalues of f under the Hecke operators Tp and Sp respectively.

Serre’s conjecture is in a way a converse to the above theorem. Given a ρf,λ as above,

one may reduce the image by the maximal ideal of Of,λ and get a mod ` representation

ρ̄f,λ : Gal(Q/Q) −→ GL2(F`a)

The weak form of Serre’s Conjecture says that all absolutely irreducible and odd

mod ` Galois representations come from a normalized cuspidal eigenform in the way

described above.

Here absolutely irreducible means that the representations stays irreducible when

viewed as a representation into GL2(F`). A Galois representation of Q is odd if the

determinant of the image of a complex conjugation is −1.

The strong form of Serre’s Conjecture attaches each such mod ` representation ρ̄ a

level N(ρ̄) and a weight k(ρ̄) and says that there is a cuspidal eigenform f with this

level and weight giving rise to ρ̄.

Given a mod ` Galois representation, Serre defines the level N(ρ̄) as the Artin con-

ductor away from `. More precisely,

N(ρ) =
∏

p6=(`)

pm(p)

the product running over finite places p of Q and the exponents m(p) only depend on

ρ|Ip , restriction of ρ̄ to the inertia subgroup at p. In particular, m(p) = 0 if and only if

ρ̄ is unramified at p. N(ρ̄) is well defined because ρ̄ may ramify at only finitely many

places.
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To describe these exponents, let us view ρ as a homomorphism GF into Aut(V ) where

V is a 2-dimensional vector space over F`a . Then

m(p) =
∞∑
i=0

1

[G0 : Gi]
dim(V/V Gi)

where G0 = Ip and Gi ⊂ G0 are the higher ramification groups at p. Here V Gi stands

for the subspace of V that is fixed by every element of Gi. The fact that this sum is an

integer is proved in Serre [46].

The recipe of Serre for the weight k(ρ) is quite involved. Since we do not need it, we

skip its definition. We merely note that k(ρ) only depends on ρ|I`
.

3.1.3 The Big Picture

Here is the big picture for the classical situation over Q.

Table 1: The big picture for the classical case

{
`-adic Galois
rep’s of Q

}
Eichler-Shimura, Deligne←−−−−−−−−−−−−−−−−−

{
modular forms

}
⇓ m
⇓ m
⇓ m{

mod-` Galois
rep’s of Q

}
−−−−−−−−−−−−→
Serre’s Conjecture

{
mod-`

modular forms

}

Notice that the arrows on the right hand side are two ways. This is because, for the

primes ` 6= 2, 3, mod ` modular forms all come by reduction from characteristic 0.
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3.1.4 A Consequence of Serre’s Conjecture

We now describe a corollary of Serre’s Conjecture that we generalize later.

Let ρ be an irreducible, odd, continuous representation ρ : GQ → GL2(F`) that is

unramified away from `. Then by definition, N(ρ) = 1. Thus Serre’s Conjecture says

that there should be a cuspidal eigenform with level 1 giving rise to ρ. It is known that

a suitable twist ρ⊗ χi of ρ should come from a level 1 cusp form of weight ≤ `+ 1, see

[15] for a proof. Here χ is the mod ` cyclotomic character.

It is well known that there are no cusp forms with level 1 and weight less than 12.

Thus the above mentioned Galois representations should not exist for ` = 2, 3, 5, 7.

Theorem 3.2. For ` = 2, 3, 5, 7, there is no irreducible, odd Galois representation

ρ : GQ → GL2(F`) that is unramified away from `.

For ` = 2, this was proved by Tate [54]. Then Serre proved it for ` = 3 [47]. Later

Brueggemann [9], assuming GRH, proved it for ` = 5. Moon and Taguchi [35] obtained

partial results for ` = 7. With the recent proof of Serre’s Conjecture, all cases are proved

unconditionally.

3.2 Over Imaginary Quadratic Fields

It this thesis, we are concerned with the picture where we replace Q with an imaginary

quadratic field K. The very first question is what replaces the modular forms? An

answer comes from the classical theorem of Shimura and Eichler [50, Chapter 8].

Theorem 3.3. Let Γ < SL2(Z) be a congruence subgroup preserved by the involution
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(
a b
c d

)
7→
(

a −b
−c d

)
. There is an isomorphism of Hecke modules

H1(Γ, Ek−2(C)) ' Sk(N)⊕ Santi
k (N)⊕ Eisk(N)

where Sk(N), Santi
k (N), Eisk(N) are the weight k level N spaces of cuspidal, anti-holomorphic

cuspidal and Eisentein modular forms respectively.

By Borel’s Conjecture and Franke’s proof of it (see Section 2.5), we know that the

space

H1(Γ, Vk−2) ' H1(Γ\H2, Ṽk−2)

can be described in terms of automorphic forms. The Eichler-Shimura theorem above

tells us that the automorphic forms that appear in this description are the classical

modular forms. So we decide to replace the classical modular forms with the automorphic

forms that appear in the cohomology of the arithmetic quotients of (the global symmetric

space in this setting) hyperbolic 3-space H. These are the Bianchi modular forms that

we discussed in Section 2.5.

Here is a comparison of the algebraic groups and the global symmetric spaces for the

classical modular forms and Bianchi modular forms.

Table 2: The relevant algebraic groups
G := SL2 G := ResK/Q(SL2)
G(R) = SL2(R) G(R) = SL2(C)
G(Q) = SL2(Q) G(Q) = SL2(K)
G(Z) = SL2(Z) G(Z) = SL2(OK)
G(R)/K ' H2 G(R)/K ' H3
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3.3 Conjectures

We now state the main conjectures. Let K = Q(
√
−d) be an imaginary quadratic field

with ring of integers O. Let Γ = Γ1(a) be a congruence subgroup of PSL2(O) of level a

for some ideal a of O. Let F be a coefficient field of characteristic `. If we do not want

to specify the weight k, l, we just write E(F). Recall that we have a commuting algebra

of Hecke operators acting on H1(Γ, Ek,l(F)). An eigenform will mean a simultaneous

eigenvector for the Hecke operators.

Definition 3.4. A mod ` Galois representation ρ : GK → GL2(F) is modular if there is

a mod ` Bianchi modular form v in some H1(Γ1(a), E(F)) which is an eigenform for all

Hecke operators such that

tr(ρ(Frobλ)) = aλ and det(ρ(Frobλ)) = bλN(λ)

for all primes λ 6 |`a at which ρ is unramified. Here aλ, bλ are the eigenvalues of v under

the Hecke operators Tλ and Sλ respectively. Here N(λ) is the norm of λ over Q.

In this case, we say that “ρ comes from v” or that “ρ is attached to v”.

Conjecture 3.5. Every eigenform in H1
cusp(Γ, Ek,l(F)) has a Galois representation ρ :

GK → GL2(F) attached to it.

The mod ` eigenforms which are reductions of the torsion-free part of the integral

cohomology H1(Γ, Ek,l(O)) are called automorphic. This is because the torsion-free part

of the integral cohomology embeds into the complex cohomology where the automorphic

forms live, see Section 2.5. Langlands’ philosophy dictates that such forms should be

related to Galois representations of K. In accordance, results of Taylor and others (see

[56, 24, 5]) confirm that they do have attached `-adic Galois representations. So our
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conjecture above goes further and says that the mod ` eigenforms which are reductions

of the torsion part of the integral cohomology also are related to Galois representations.

Of course, these forms have nothing to do with automorphic forms and hence they are

outside the scope of Langlands’ philosophy. See Ash [1] for the same conjecture in the

GLn(Z) (n > 2) context.

Conjecture 3.6 (The Bridge Conjecture). An eigenvalue system attached to some

non-automorphic eigenform in some H1(Γ, E(F)) also arises attached to some automo-

prhic eigenform in some H1(Γ′, E ′(F)) for some congruence subgroup Γ′ < Γ.

In Conjecture 3.5, we are saying that the non-automorphic mod ` eigenforms should

give us Galois representations just like the automorphic mod ` eigenforms are expected to

under Langlands’ philosophy. Are these representations new? Conjecture 3.6 says that

they are not. It says that a mod `-Galois representation coming from a non-automorphic

mod ` eigenform should also arise from an automorphic mod ` eigenform, of possibly

higher level.

It was communicated to us by Avner Ash that the name ”Bridge Conjecture” was

coined by Barry Mazur.

Conjecture 3.7 (Weak Serre Conjecture). An absolutely irreducible mod ` Galois

representation ρ : GK → GL2(F) comes from some eigenform in some H1
cusp(Γ, E(F)).

Conjecture 3.8 (Intermediate Serre Conjecture). An absolutely irreducible mod

` Galois representation ρ : GK → GL2(F) of Serre conductor N / O comes from an

eigenform in H1
cusp(Γ1(N), E(F)).

This last conjecture is intermediate in the sense that we are predicting the level but
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not the weights (k, l) where one can find an eigenform the Galois representation that we

start with is attached to.
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Chapter 4

Theoretical Results

Now we present some of our results and discuss their relevance to the conjectures above.

4.1 Weight Reduction

A result of Ash and Stevens [3] for the classical modular forms says that an eigen-

value system (mod `) occuring in Mk(Γ1(N)) with k > 2 also occurs, up to twist, in

M2(Γ1(N`)). In particular, one sees that there are only finitely many systems of eigen-

values (mod `) occurring in the infinite dimensional space M≥2(Γ1(N)). In joint work

with Seyfi Turkelli [44], we prove an analogue in our case. The proof is presented in

Chapter 6.

Theorem 4.1. Let K be an imaginary quadratic field of class number one and O be

its ring of integers. Let a be an ideal of O that is prime to the ideal (`) where ` is

a rational prime that is split in O. Let Φ be a Hecke eigenvalue system occurring in

H1(Γ1(a), E) where E is a finite dimensional F`[SL2(O/(`))]-module. Then Φ occurs in

H1(Γ1(a`),F`).

Notice that E(0,0)(F) ' F for any field F. Basically, this theorem is saying that if we

work mod `, an eigenvalue system occurring in some level a and weight (k, l) appears

also with weight (0, 0) if we raise the level to a(`). In particular, we get the following.
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Corollary 4.2. Let K be an imaginary quadratic field of class number one and O be

its ring of integers. Let a be an ideal of O that is prime to the ideal (`) where ` is a

rational prime that is split in O. The set of systems of eigenvalues coming from all mod

` Bianchi modular forms of level a is finite.

We note that this corollary also follows from [2, Thm. 2.2].

4.2 Nonexistence of Certain Representations

The following is the main result of our paper [43] which has been accepted for publication

in the Proceedings of the AMS. We give its proof in Chapter 7. We start with some

terminology to simplify the statement.

Let K be a number field and p be a rational prime. We say that the pair (K, p)

satisfies (†), if there is no irreducible continuous representation of GK into GL2(Fp) that

is unramified away from {p,∞}.

Theorem 4.3.

A. For d = 6, 5, 3, 2,−1,−2,−3,−5,−6, the pair (Q(
√
d), 2) satisfies (†).

B. The pair (Q(
√
−3), 3) satisfies (†).

This result is an analogue of Theorem 3.2. We note that part A of this theorem has

been proved also by Moon-Taguchi [36]. See their recent article [37] for certain finiteness

results for other quadratic fields using GRH.

In the language of Galois representations, (K, p) satisfies property (†) if there is no

absolutely irreducible level 1 mod p Galois representation of K.
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Corollary 4.4. Assume that 3.8 is true. Then for the pairs (Kd, p) listed in Theorem

4.3, there should be no eigenforms in H1
cusp(PSL2(Od), Ek,l(F p)) for any (k, l).

We have produced computer programs to compute these cohomology spaces and

the Hecke operators on them. We verified for Q(
√
−1) and Q(

√
−2) that the mod

2 cohomology spaces mentioned in the above Corollary are indeed trivial (see Section

5.1.2). This is supporting evidence for the Intermediate Serre Conjecture of Section 3.3.

4.2.1 Some Existence Results

Table 3: Sym(3)-extensions only ramified over 2
d f(x) ramification
−13 x6 + x4 + 4x3 + 36x2 − 24x+ 4 only over 2
−19 x6 − 8x5 + 23x4 − 24x3 + x2 + 14x+ 4 only over 2
−22 x6 − 2x5 + 5x4 + 8x3 + 47x2 + 90x+ 47 only over 2
−37 x6 + 4x5 + 23x4 − 4x3 + 71x2 − 288x+ 293 only over 2
−38 x6 + 6x5 + 33x4 + 60x3 + 89x2 − 258x+ 207 only over 2
−46 x6 + 6x5 + 21x4 + 52x3 + 291x2 + 326x+ 271 unramified
−58 x6 + 8x5 + 40x4 + 60x3 + 261x2 + 380x+ 382 only over 2
−62 x6 + 6x5 + 45x4 + 132x3 + 179x2 + 246x+ 423 unramified
−74 x6 + 6x5 + 41x4 + 32x3 + 101x2 − 654x+ 691 only over 2
−79 x6 − 3x5 + 14x4 − 4x3 + 40x2 + 64x+ 64 only over 2

We also investigated the pairs (K, 2) for which (†) fails, that is the pairs (K, 2)

for which there exist irreducible continuous representations of GK into GL2(F2) that is

unramified away from {2,∞}. The simplest case is a GL2(F2) w Sym(3) extension L/K

that is ramified only over {2,∞}. Using group theory with MAGMA, we have searched

the number fields database of J.Klüners and G.Malle [31] for Sym(3) extensions of

quadratic fields with little or no ramification. In Table 4.2.1, we list some of our findings

for imaginary K. In each case, L is the splitting field of the given polynomial over Q
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and the third column is ramification of finite places in L/K.

4.2.2 An Application to Elliptic Curves

We now present a straightforward corollary of our Theorem 4.3 to the theory of elliptic

curves. We explain the proof in Section 7.4.

Corollary 4.5. For d = 5, 3, 2,−1,−2,−3,−5,−6, there is no elliptic curve with good

reduction everywhere over Q(
√
d).

Kagawa and Kida proved the nonexistence of elliptic curves with good reduction

everywhere over many small quadratic fields , including the ones listed in this corollary

(see [27, 26]). One may try to use our approach on the several other small ones quadratic

fields not covered by their methods.
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Chapter 5

Computational Results

To be able to investigate modularity over imaginary quadratic fields, one has to be able

to effectively compute the modular forms and the Hecke action on them. In joint work

with Fritz Grunewald, we produced MAGMA programs to do this task for the fields

K1 and K2. Our code can be easily adapted to the other three Euclidean imaginary

quadratic fields K3, K7 and K11. We will report on this algorithm in Chapter 8. In

this section, we present some of the results of our computations for the field K2. In

particular, we give supporting evidence to some of the conjectures we listed in Section

3.3.

The earliest calculations were done by Grunewald-Mennicke, see [16, 21]. They

considered H1(Γ,Z) and H1(Γ,C). For the former, they employed an algebraic approach

using the fact that Γab ' H1(Γ,Z). For the latter, they used the modular symbols

method which uses the geometry of the hyperbolic 3-space H. Later Cremona [12]

extended their methods to other imaginary quadratic fields. The only higher weight

calculations have been carried out by Priplata [42] where she computed the cohomology

with level 1 and weight (2k, 0).
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5.1 Dimension Tables

We present dimensions of various subspaces ofH1(Γ, E) over C and F2. A very important

subspace is the space of so called plus-forms that we define now.

Let ε be a generator of O∗. Then conjugation by the element
(

ε 0
0 1

)
∈ PGL2(O)

leaves Γ invariant and induces an involutory automorphism ε̃ on H1(Γ, E(F)). We put

H1(Γ, E(F))±

for the ±1 eigenspaces of ε̃. If F is of char. 2, we denote by H1(Γ, E(F))+ the subspace

that is invariant under ε̃.

Remark : Note that taking ε̃ invariants equals to working with PGL2(O) instead of

PSL2(O). One sees by the inflation-restriction sequence that

H1(PGL2(O), E) ' H1(PSL2(O), E)+.

5.1.1 Complex Cohomology

In Table 4, we give the dimensions of the cohomology group H1(Γ0(a), E(k,l)(C)) and its

cuspidal part for small primes a /O of residual degree 1 and weights (k, l).

The pairs in square brackets were computed with the mod ` cohomology. In general,

the mod ` dimension is an upperbound for the char.0 dimension, that is dimH1(Γ, E(C)) ≤

dimH1(Γ, E(F`)). We actually know that these upperbounds in Table 4 are equal to the

actual complex dimensions via base change calculations and known facts about the di-

mension of the Eisenstein cohomology. We will not go into these here and merely use

square brackets.
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Table 4: Dimensions for char.0 cohomology
(k, k) Γ(1) Γ(3) Γ(11) Γ(17) Γ(19) Γ(41) Γ(43) Γ(59) Γ(67)

0 1,0 2,0 2,0 2,0 2,0 3,1 2,0 2,0 2,0
1 1,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
2 1,0 2,0 2,0 [ 2, 0 ] [ 2, 0 ] [ 2, 0 ] [ 2, 0 ] [ 2,0 ] [ 2,0 ]
3 2,1 4,2 [ 4, 2 ] [ 4, 2 ] [ 4, 2 ] [ 4, 2 ] [ 4, 2 ] [ 4,2 ] [ 4,2 ]
4 1,0 2,0 [ 2, 0 ] [ 2, 0 ] [ 2, 0 ] [ 2, 0 ] [ 2, 0 ] [ 2, 0 ] [ 2, 0 ]
5 3,2 [ 6, 4 ] [ 6, 4 ] [ 6, 4 ] [ 6, 4 ] [ 6, 4 ] [ 6, 4 ]
6 2,1 [ 4, 2 ] [ 4, 2 ] [ 4, 2 ] [ 4,2 ] [ 4,2 ]
7 4,3 [ 8, 6 ] [ 8, 6 ] [ 8, 6 ] [ 8,6 ]
8 2,1 [ 4, 2 ] [ 4, 2 ] [ 4, 2 ]
9 5,4 [ 10, 8 ] [ 10, 8 ] [ 10,8 ]
10 3,2 [ 6, 4 ] [ 6,4 ] [ 6,4 ]
11 6,5 [ 12,10 ] [ 12,10 ] [ 12,10 ]
12 3,2 [ 6,4 ] [ 6,4 ] [ 6,4 ]
13 7,6 [ 14,12 ] [ 14,12 ]
14 4,3 [ 8,6 ] [ 8,6 ]
15 8,7 [ 16,14 ] [ 16,14 ]
16 4,3 [ 8,6 ] [ 8,6 ]
17 9,8 [ 18,16 ]
18 5,4 [ 10,8 ]
19 10,9
20 5,4

5.1.2 Mod 2 cohomology

Next we give dimensions for the mod 2 cohomology groups. Here the irreducible weights

are Ek,l(F2) with 0 ≤ k, l < 2. It is explained in Lemma 2.8 that these weights are

sufficient if one is interested only in computing the eigenvalue systems. So we will

consider only such weights.

In Table 5, for each level and weight, we give two pairs of integers. The first pair gives

the dimensions ofH1(Γ0(a), Ek,l(F2)) andH1
cusp(Γ0(a), Ek,l(F2)) respectively. The second

pair gives the dimensions of H1(Γ0(a)), E)+ and H1
cusp(Γ0(a), Ek,l(F2))

+ respectively. See

Sections 2.5 and 3.3 for the definitions.
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Table 5: Dimensions for mod 2 cohomology
(k, l) Γ0(1) Γ0(3) Γ0(11) Γ0(17) Γ0(19)

(0,0) (2,0);(2,0) (2,0);(2,0) (2,0);(2,0) (4,2) ; (4,2) (2,0);(2,0)
(1,1) (3,0) ; (2,0) (4,0) ; (2,0) (4,0) ; (2,0) (8,3) ; (5,2) (4,0) ; (2,0)
(2,2) (9,0) ; (6,0) (10,0) ; (6,0) (10,0) ; (6,0) (18,7) ; (13,4) (10,0) ; (6,0)
(0,2) (4,0) ; (3,0) (4,0) ; (3,0) (4,0) ; (3,0) (7,3) ; (6,2) (4,0) ; (3,0)
(2,0) (4,0) ; (3,0) (4,0) ; (3,0) (4,0) ; (3,0) (7,3) ; (6,2) (4,0) ; (3,0)

(k, l) Γ0(41) Γ0(43) Γ0(59) Γ0(67) Γ0(73)

(0,0) (5,3) ; (5,3) (2,0);(2,0) (2,0);(2,0) (4,2) ; (3,1) (5,3) ; (4,2)
(1,1) (11,7) ; (8,4) (4,0) ; (2,0) (4,0) ; (2,0) (10,6) ; (6,2) (9,5) ; (6,2)
(2,2) (24,14) ; (19,7) (10,0) ; (6,0) (10,0) ; (6,0) (22,12) ; (15,3) (22,12) ; (16,4)
(0,2) (9,5) ; (8,3) (4,0) ; (3,0) (4,0) ; (3,0) (8,4) ; (6,1) (9,5) ; (7,2)
(2,0) (9,5) ; (8,3) (4,0) ; (3,0) (4,0) ; (3,0) (8,4) ; (6,1) (9,5) ; (7,2)

Theorem 4.3, in conjunction with the Intermediate Serre Conjecture of Section 3.3,

implies that there should be no cuspidal mod 2 Bianchi eigenforms of level 1 for K2. We

see from Table 5 that this is indeed the case, that is, H1
cusp(PSL2(O), Ek,l(F2)) is trivial

for all 0 ≤ k, l ≤ 2. Thus we obtain supporting evidence for the conjecture. We made

the same verification for the field K1.

5.2 Elliptic Curves Over K

Let E be an elliptic curve over K and let ` be a rational prime. The absolute Galois

group GK of K acts on the group E[`] of `-torsion points of E(K). The group E[p] is free

of rank two over Z/pZ. Thus, after fixing a basis, we get a mod ` Galois representation

ρ̄E,` : GK → GL2(F`)

Let ∆(E) be the discriminant of E. It is known that for any prime λ such that λ 6 |∆(E)`,
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we have

tr(ρ̄E,`(Frobλ)) = N(λ) + 1−#E(F`) (mod`)

and

det(ρ̄E,`(Frobλ)) = N(λ) (mod`)

We made a computer search for elliptic curves E over K with the property that the

norm of the its conductor is of the form pk` where p = 2, 3. In all the cases we checked

where the associated mod ` Galois representation ρ̄E,p was absolutely irreducible, we

found an eigenform in H1
cusp(Γ0(`), E(Fp)) which numerically seemed like matching ρ̄E,p.

We present one such example.

Set ω =
√
−2. Let E be the elliptic curve over K given by the equation

E : y2 = x3 + (−3− ω)x2 + 2x− 4 + 2ω.

Our computations with the computer algebra system MAGMA shows that the conductor

of E is (1 − ω)(3 + 2ω). Thus the norm of the conductor is 3 · 17. Let Φ(x) be the 3-

division polynomial of E. Thus the roots of Φ(x) are the x-coordinates of the 3-torsion

points of E(K). MAGMA tells us that the degree of the splitting field of Φ(x) over K

is 24. This means that the image of ρ̄E,3 contains SL2(F3) since it is the only order 24

subgroup of GL2(F3). The determinants of the Frobenius elements are not always 1 mod

3, thus the image is bigger than SL2(F3), thus it must be GL2(F3) itself. Finally, the

Serre conductor of ρ̄E,3 can be calculated to be (3 + 2ω).

According to the Intermediate Serre Conjecture stated in Section 3.3, there must be

an eigenform in H1
cusp(Γ1(17), E(F3)) that matches our representation in the sense given

in Definition 3.4. We verify this using the programs we produced.
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In Table 6, we give two ordered pairs of integers. The first pair gives the dimensions

of H1(Γ0(17), Ek,l(F3)) and H1
cusp(Γ0(17), Ek,l(F3)) respectively. The second pair gives

the dimensions of H1(Γ0(17), E)+ and H1
cusp(Γ0(17), Ek,l(F3))

+ respectively.

Table 6: Dimensions for H1(Γ0(17), E(F3))
(k, l) (0,0) (1,1) (2,2) (3,3)

(2,0);(0,0) (2,0);(1,0) (3,1);(0,0) (8,0);(1,0)

(k, l) (0,2) (2,0) (1,3) (3,1)

(2,0);(0,0) (3,1);(0,0) (4,0);(1,0) (4,0);(1,0)

We see from Table 6, at level 17, the only cuspidal cohomology occurs at weights (2, 2)

and (2, 0), both 1 dimensional. We compute the Hecke action on both of these spaces

and find that the eigenvalues are the same for all the Hecke operators we computed.

In support of the Intermediate Serre Conjecture, this eigenvalue system matches our

representation ρ̄E,3. We note that both of the cuspidal spaces are inside the minus-space

(see Section 5.1).

In the next table, we list the eigenvalues and the traces of the Frobenius elements

for the first few primes of residue degree 1.

Table 7: Comparison of eigenvalues and traces of Frobenius elements
prime 3 + ω 3− ω 1 + 3ω 1− 3ω 3 + 4ω 3− 4ω

norm 11 11 19 19 41 41
eigenvalue 2 1 0 2 1 1

trace 2 1 0 2 1 1

prime 5 + 3ω 5− 3ω 3 + 5ω 3− 5ω 7 + 3ω 7− 3ω

norm 43 43 59 59 67 67
eigenvalue 1 1 0 2 1 0

trace 1 1 0 2 1 0
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Chapter 6

Proof of the Weight Reduction

Result

In this chapter, we present the proof of the weight reduction result that we announced

in Theorem 4.1. We follow closely our preprint [44] that is prepared jointly with Seyfi

Turkelli.

Elstrod-Grunewald-Mennicke [16] were the first investigators of the connection be-

tween mod ` Bianchi modular forms and mod ` Galois representations of imaginary

quadratic fields. In his paper [18], Figueiredo considered an analogue of Serre’s conjec-

ture in this setting but he only considered mod ` Bianchi modular forms in cohomology

spaces with trivial coefficients. Motivated by a result of Ash and Stevens [3] for the

classical modular forms, he assumed that a Hecke eigenvalue system attached to a mod

` Bianchi modular form, after increasing the level, would be attached to another form

with trivial weight.

In this paper, we prove that what Figueiredo assumed is true using the ideas of Ash

and Stevens [3]. More precisely;
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Theorem 6.1. Let K be an imaginary quadratic field of class number one and O be

its ring of integers. Let a be an ideal of O that is prime to the ideal (`) where ` is

a rational prime that is split in O. Let Φ be a Hecke eigenvalue system occurring in

H1(Γ1(a), E) where E is a finite dimensional F`[SL2(O/(`))]-module. Then Φ occurs in

H1(Γ1(a`),F`).

As an immediate corollary, we get

Corollary 6.2. Mod `, there are only finitely many eigenvalue systems with fixed level.

Once and for all, fix a quadratic imaginary field K of class number one and an ideal a

of O = OK . Let ` = λλ̄ be a rational prime that splits in O which is coprime to a. For

the rest of the paper, we use the following notation:

Mat2(O)6=0 : 2× 2 matrices of non-zero determinant with entries in O

Γ0(a) :
{(

a b
c d

)
∈ SL2(O) : c ≡ 0 mod a

}
Γ = Γ1(a) :

{(
a b
c d

)
∈ SL2(O) : c ≡ d− 1 ≡ 0 mod a

}
Γ1 : Γ1(a · λ)

Γ2 : Γ1(a · λλ̄)

∆ :
{(

a b
c d

)
∈ Mat2(O)6=0 : c ≡ 0 mod a

}
Recall that a system of eigenvalues of H with values in a ring R is a map of sets

Φ : H→ R. We say that an eigenvalue system Φ occurs in the RH-module A if there is

a nonzero element a ∈ A such that Ta = Φ(T )a for all T in H.

The following lemma is proved in [2, Lemma 2.1].

Lemma 6.3. Let F be a field and V be a F∆-module which is finite dimensional over

F . If an eigenvalue system Φ : H→ F occurs in Hn(Γ, V ), then Φ occurs in Hn(Γ,W )

for some irreducible F∆-subquotient W of V .
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Thus it is enough to investigate the cohomology with irreducible coefficient modules

if we are only interested in the eigenvalue systems. In the next two sections, we discuss

the irreducible F`[SL2(O/(`))]-modules.

6.1 The Irreducible Modules

For a nonnegative integer k, let Ẽk be the right representation of GL2 on Symk(A2).

Given a commutative a ring R, we have Ek(R) ' R[x, y]k where the latter is the space

of homogeneous degree k polynomials in two variables over R. Note that {Xk−iY i : 0 ≤

i ≤ k} is an R-basis of Ek(R).

Let ∆ be the semi-group of 2× 2 matrices of nonzero determinant with entries in O.

We can give Ek(O) a right ∆-module structure as follows. For a polynomial P (X, Y ) in

Ek(O) and a matrix
(

a b
c d

)
in ∆, we set

(
P ·
(

a b
c d

))(
X, Y

)
= P

((
a b
c d

)(
X
Y

))
= P

(
aX + bY, cX + dY

)
.

∆ acts on Ek(F`) in two different ways: through reduction by λ and by λ̄. In this

note, we are interested in the (absolutely) irreducible representations of SL2(O/(`)) =

SL2(O/λ) × SL2(O/λ̄) over F`. Results of Steinberg [52] and Brauer-Nesbitt [8] show

that these are of the form

Er,s(F`) := Er(F`)⊗ Es(F`) where 0 ≤ r, s ≤ `− 1.

Here, SL2(O) acts on the first module through reduction by λ and on the second through

reduction by λ̄.

Let I be the set of F` valued functions on F2
` which vanish at the origin. Again, ∆
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acts on I both by reduction by λ and by λ̄. The action is given by

(f ·M)(a, b) = f((a, b)M t)

for f ∈ I, (a, b) ∈ F2
` and M ∈ ∆.

For each integer n, let In be the ∆-submodule of I consisting of homogeneous func-

tions of degree n, that is, the collection of functions f ∈ I such that f((xa, xb)) =

xnf((a, b)). The degree is well-defined modulo ` − 1. A function f ∈ In is determined

by its values on the set {(1, 0), ..., (1, `−1), (0, 1)} , which we identify with P1(F`). Thus

every In is `+ 1 dimensional. We have the decomposition

I '
`−2⊕
n=0

In.

We will need the following two facts, see [3][Section 3].

Lemma 6.4. For 0 ≤ r ≤ `− 1, there are SL2(O)-invariant perfect pairings

(1) Er × Er → F`

(2) Ir × I`−1−r → F`

Let 0 ≤ r ≤ ` − 1. As in [3], we consider the following SL2(O)-invariant maps.

Each polynomial in Er can be seen as a function on F2
` . This gives us a morphism

αr : Eg → Ir. Let βr : Ir → E`−1−r(r) be given by

βr(f) =
∑

(a,b)∈F2
`

f(a, b)(bX − aY )`−1−r.

Here we mean by E`−1−r(r) the ∆-module E`−1−r where the action is twisted as

P ·M := det(M)r(P ·M)

Lemma 6.5. For 0 ≤ r ≤ `− 1, we have the following exact sequence of ∆-modules

0 // Er
αr // Ir

βr// E`−1−r(r) // 0
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6.2 Proof of the Theorem

In this section, we will investigate the eigenvalue systems occurring in H1(Γ(a), Ek,l(F`)).

We first give a characterization of the induced module IndΓ
Γ2

(F`).

Lemma 6.6. There is a map M 7→ (1, 0)M t mod (`) is a bijection between the right

cosets Γ2\Γ and the set

S := {(a, c) ∈ (O/(`))2| < a, c >= O/(`)}

where (`) is the ideal of O generated by `.

Proof. The proof is the same as the proof of the analogue statement for SL2(Z), see [51,

p.127].

We identify O/(`) ' O/(λ)×O/(λ̄) with F`×F`. Then we can describe the set S as

S = (F` × F`)
2\{((a, 0), (c, 0)), ((0, a′), (0, c′))}.

It follows that |S| = `4 − 2`2 + 1 = (`2 − 1)(`2 − 1).

Let J be the set of F`-valued functions on (F` × F`)
2 that vanish outside of S. As

the map in Lemma 6.6 commutes with the action of ∆, we can identify the ∆-module

IndΓ
Γ2

(F`) with the module J . The action of ∆ on J is given by

(f ·M)(a, b) = f((a, b)M t)

where M is reduced modulo (`) on the right hand side. We have showed the following.

Lemma 6.7. As ∆-modules, IndΓ
Γ2

(F`) ' J .

Recall the definition of the ∆-modules I from Section 6.1 We now consider the ∆-

module I⊗I where ∆ acts on the components through reduction by λ and λ̄ respectively.
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Lemma 6.8. As ∆-modules, we have I ⊗ I ' J.

Proof. Define the map Λ : I ⊗ I −→ J as

ϕ⊗ ψ 7−→
(
(a, c) 7→ ϕ(a1, c1)ψ(a2, c2)

)
where a = (a1, a2) and c = (c1, c2). One can easily check that the image of Λ is in J .

Given M ∈ ∆, let M1,M2 denote its reduction modulo λ and λ̄ respectively. Then a

direct computation shows that

Λ
(
(ϕ⊗ ψ) ·M

)
(a, c) = Λ

(
(ϕ ·M)⊗ (ψ ·M))(a, c)

= ϕ((a1, c1)M
t
1))ψ((a2, c2)M

t
2) =

(
Λ
(
ϕ⊗ ψ

)
·M
)
(a, c)

Hence Λ is ∆-invariant. Given a nonzero ϕ, one sees that Λ(ϕ⊗ ψ) = 0, only when

ψ = 0. Thus Λ is injective. As they have the same cardinality, I⊗I and J are isomorphic

as ∆-modules.

Definition 6.9. For given nonnegative integers r, s, we define the following ∆-modules

where ∆ acts on the components of every tensor product through reduction by λ and λ̄

respectively.

1. Er,s := Er ⊗ Es;

2. Ir,s := Ir ⊗ Is;

3. Ur,s := [E`−1−r(r)⊗ Is]⊕ [Ir ⊗ E`−1−s(s)];

4. Vr,s := E`−1−r(r)⊗ E`−1−s(s).

Recall from Section 3 that Er,s is an irreducible representation of SL2(O/(`)) over F`

when 0 ≤ r, s ≤ `− 1. We note that under the map Λ of Lemma 6.8, the submodule of

functions f in J such that f(xa, yc) = xrysf(a, c) is isomorphic to Ir,s as ∆-modules.
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By Section 3, we have ∆-module morphisms

π : Ir,s → Ur,s defined by π := [βr ⊗ id]⊕ [id⊗ βs]

and

π′ : Ur,s → Vr,s defined by π′ := id⊗ βs − βr ⊗ id.

Lemma 6.10. Let the notation be as above. Let 0 ≤ r ≤ `− 1 and 0 ≤ s ≤ `− 1. We

have the following exact sequence ∆-modules:

0 // Er,s
ι // Ir,s

π // Ur,s
π′ // Vr,s

// 0 .

Proof. Note that ∆-modules in question are flat since they are also F`-vector spaces.

So, by Lemma 6.5, ι is injective. One can easily see that Im(ι) ⊆ Ker(π) and π′ is

surjective. Thus, in order to complete the proof, it suffices to show that dim(Im(π)) =

(`+ 1)2 − (r + 1)(s+ 1); this is what we do below.

Identifying Er with its image in Ir, we can write the decomposition Ir = Er⊕E ′
`−1−r

(note that we have E ′
`−1−r

∼= E`−1−r). Now, it is evident that dim(π(Er ⊗ Is)) = (r +

1)(`−s) and that dim(π(E ′
`−1−r⊗Is)) = (`−r)(`+1). Elementary linear algebra shows

that these images have trivial intersection and this gives us the desired dimension.

Setting Wr,s := ker(π′ : Ur,s → Vr,s), by Lemma 6.10, we get two short exact se-

quences

0 // Er,s
ι // Ir,s

π // Wr,s
// 0 (6.1)

and

0 // Wr,s
i // Ur,s

π′ // Vr,s
// 0 . (6.2)



45

As in [3], given a prime α ∈ O such that (α, a) = 1, we define an action of the Hecke

algebra H on the g-fold twist F`(g) of the trivial ∆-module F` by

Tα(v) = N(α)g(N(α) + 1)v.

Note that N(α)+1 is the index of Γα in Γ. Recall that Γα = Γ∩α̃−1Γα̃ where α̃ =
(

α 0
0 1

)
.

Proposition 6.11. For any nonnegative integers r, s, we have the following isomorphism

as H-modules:

H0(Γ, Ir,s) ∼=
{ F`(`− 1) if r ≡ s ≡ 0 (mod `− 1)

0 otherwise

Proof. By the discussion above, one can identify Ir,s with the set of maps ϕ : F2
`×F̄2

` → F`

satisfying

ϕ(x, 0) = ϕ(0, y) = 0 and ϕ(cx, dy) = crdsϕ(x, y)

for all x, y ∈ F2
` and c, d ∈ F`.

One can show that Γ acts transitively on S = (F`×F`)
2\{((a, 0), (c, 0)), ((0, a′), (0, c′))}.

This implies that for any such map ϕ ∈ IΓ
r,s = H0(Γ, Ir,s), there exists a c ∈ F` such that

ϕ(x, y) = c for all (x, y) ∈ S.

When r ≡ s ≡ 0 (mod ` − 1), any given c ∈ F` induces an element of H0(Γ, Ir,s) as

above and this implies that H0(Γ, Ir,s) ∼= F` as F`-vector spaces. One can easily check

that the action of the Hecke algebra on F` is as prescribed above.

Suppose that r 6= 0 (mod ` − 1) or s 6= 0 (mod ` − 1). Assume H0(Γ, Ir,s) 6= 0 for

a contradiction. Let ϕ ∈ H0(Γ, Ir,s) be a nonzero element. Again, by the transitivity

of the action of Γ, ϕ(x, y) = c 6= 0 for all (x, y) ∈ S and for some nonzero c ∈ F`. In

particular, for all a, b ∈ F` we have

arc = arϕ(x, x) = ϕ(ax, x) = ϕ(x, x) = ϕ(x, bx) = bsϕ(x, x) = bsc.
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This gives a contradiction, and the vanishing of H0(Γ, Ir,s).

One can check that the action of the Hecke algebra on the cohomology is as described

above.

Lemma 6.12. Assume 0 ≤ r, s ≤ `− 1. Then, we have (as H-modules)

H0(Γ, Er,s) =
{ F` if r = s = 0

0 otherwise

Proof. The claim is obvious when (r, s) = (0, 0). Assume (r, s) 6= (0, 0) and (r, s) 6=

(`− 1, `− 1). Then, the exact sequence (6.1) induces the following exact sequence

0→ H0(Γ, Er,s)→ H0(Γ, Ir,s).

By Proposition 6.11, H0(Γ, Ir,s) = 0 and so is H0(Γ, Er,s).

Assume (r, s) = (` − 1, ` − 1). We have the isomorphism E`−1,`−1
∼= (O/`)[x, y]`−1.

On the other hand, in [14], Dickson showed that Γ invariants of Ẽ∗ are generated by

X`Y −XY `and
∑`

i=0(X
`−iY i)`−1. This implies that H0(Γ, E`−1,`−1) = 0.

Lemma 6.13. Let 0 ≤ r, s ≤ `− 1. Then, we have (as H-modules)

H0(Γ, Ur,s) =
{ F`(`− 1)⊕ F`(`− 1) if (r, s) = (`− 1, `− 1)

F`(`− 1) if (r, s) = (0, `− 1) or (`− 1, 0)

0 otherwise

Proof. Set U1 := E`−1−r(r) ⊗ Is and U2 = Ir ⊗ E`−1−s(s). Then, Ur,s = U1 ⊕ U2 and

H0(Γ, U1)⊕H0(Γ, U2).

Assume (r, s) is not of (` − 1, ` − 1), (0, ` − 1) and (` − 1, 0). Then, tensoring the

exact sequence in Lemma 6.5 with E`−1−r(r), we get the following short exact sequence

0 // E`−1−r(r)⊗ Es
// U1 // Vr,s

// 0 .
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This induces the following long exact sequence

0 // H0(Γ, E`−1−r(r)⊗ Es) // H0(Γ, U1) // H0(Γ, Vr,s).

Since Vr,s
∼= E`−1−r,`−1−s as Γ-modules, by Lemma 6.12, H0(Γ, Vr,s) = 0. On the other

hand, by Lemma 6.12, H0(Γ, E`−1−r(r) ⊗ Es) = 0 and H0(Γ, U1) = 0. Likewise, one

tensors the exact sequence in Lemma 6.5 with E`−1−s(s) and gets H0(Γ, U2) = 0, hence

the vanishing of H0(Γ, Ur,s).

Now, assume (r, s) = (`− 1, 0). Then, by Lemma 6.12, H0(Γ, E`−1−r(r)⊗ Es) ∼= F`

and H0(Γ, Vr,s) = 0. Using the exact sequence of cohomology groups above, we conclude

that H0(Γ, U1) ∼= F` as vector spaces. Likewise, one gets H0(Γ, U2) = 0.

In case (r, s) = (0, `− 1), one proceeds exactly as above and gets H0(Γ, U1) = 0 and

H0(Γ, U2) = F`.

Finally assume (r, s) = (` − 1, ` − 1). In this case, H0(Γ, E`−1−r(r) ⊗ Ēs) = 0

and H0(Γ, Vr,s) ∼= F` by Lemma 6.12. One can easily see that π′|U1 : U1 → Vr,s is

surjective and so H0(Γ, U1) ∼= F` as vector spaces. Exactly in the same way, one gets

H0(Γ, U2) ∼= F` (as vector spaces). One checks the action of the Hecke algebra and

completes the proof.

Proposition 6.14. Let 0 ≤ r, s ≤ `− 1. Then, we have (as H-modules)

H0(Γ,Wr,s) =
{ F` if (r, s) = (`− 1, `− 1), (0, `− 1) or (`− 1, 0)

0 otherwise

Proof. First of all, the exact sequence (6.2) above induces the following long exact se-

quence of H-modules in cohomology

0 // H0(Γ,Wr,s)
i∗ // H0(Γ, Ur,s)

π′∗ // H0(Γ, Vr,s) // H1(Γ,Wr,s) .
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Assume (r, s) = (0, `− 1) or (`− 1, 0). Then, by Lemma 6.12, H0(Γ, Vr,s) = 0. The

proof immediately follows from Lemma 6.13.

Assume (r, s) = (`−1, `−1). Then, by Lemma 6.12, H0(Γ, Vr,s) ∼= F` and, by Lemma

6.13, H0(Γ, Ur,s) ∼= F` ⊕ F`. Using the definition, one can easily see that π′∗ is surjective

and gets the desired result using the exact sequence of cohomology groups above.

Finally, assume (r, s) is not equal to one of (0, `−1), (`−1, 0) and (`−1, `−1). Then,

by Lemma 6.13, H0(Γ, Ur,s) = 0 and, using the exact sequence above, we complete the

proof.

We are now ready to prove our main result:

Theorem 6.15. Let Φ be a Hecke eigenvalue system occurring in H1(Γ, E) where E is

a finite dimensional F`[SL2(O/(`))]-module. Then Φ occurs in H1(Γ2,F`).

Proof. Let 0 ≤ r, s ≤ `− 1. We first claim that there exists an injection of H-modules

H1(Γ, Er,s) ↪→ H1(Γ2,F`).

Exact sequence (6.1) induces the following long exact sequence of H-modules

0 // H0(Γ, Er,s)
ι∗ // H0(Γ, Ir,s)

π′∗ // H0(Γ,Wr,s) // H1(Γ, Er,s) // H1(Γ, Ir,s) .

On the other hand, by Lemma 6.7 and Lemma 6.8, I ⊗ I ∼= IndΓ
Γ2

F`, and the natural

injection Ir,s ↪→ I ⊗ I with Shapiro’s lemma induces the following injective morphism of

H−modules

H1(Γ, Ir,s) ↪→ H1(Γ, I ⊗ I) ∼= H1(Γ2,F`).

Therefore, it suffices to show that the map H1(Γ, Er,s)→ H1(Γ, Ir,s) is injective; this is

what we do below.
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Assume that (r, s) is equal to one of the tuples (0, `−1), (`−1, 0) or (`−1, `−1). Then,

by Lemma 6.12, H0(Γ, Er,s) = 0; by Lemma 6.11, H0(Γ, Ir,s) ∼= F` and, by Proposition

6.14, H0(Γ,Wr,s) ∼= F` (as vector spaces). By the definition, π′∗ is surjective and thus we

get the claim. Otherwise, by Proposition 6.14, H0(Γ,Wr,s) = 0 and this completes the

proof of the claim.

Now, by Lemma 6.3, we can assume thatE is an absolutely irreducible F`[SL2(O/(`))]-

module. Since absolutely irreducible F`[SL2(O/(`))]-modules are the ones Er,s with

0 ≤ r, s ≤ `− 1, we are done.

For congurence subgroups of SL2(Z), the following result is first proved by Tate-

Serre for level 1 (unpublished), by Jochnowitz [25] for prime levels less than 19 and for

arbitrary level by Ash-Stevens [3].

Corollary 6.16. The set of Hecke eigenvalue systems occuring in H1(Γ1(a), E) for fixed

a and varying E, where E is a finite dimensional F`[SL2(O/(`))]-module, is finite.

It is natural to ask whether increasing the level by (`) is optimal. In other words,

are there eigenvalue systems with nontrivial weight that do not occur with trivial weight

when the level is increased by (λ) or (λ̄). Now we present an example of such an

eigenvalue system.

Example 6.17. Let K = Q(ω) where ω =
√
−2. Using the algorithms explained in

Chapter 8, we find an eigenform v in H1(Γ0(1), E10,10(F11)). The following table gives

eigenvalues Φα of v for the first few Hecke operators Tα.

Note that we have 11 = (3 + ω)(3− ω). The spaces H1(Γ0(3 + ω),F11) and H1(Γ0(3 −

ω),F11) are isomorphic and they are two dimensional. Our eigenvalue system Φ does

not occur in these spaces. Next, we want to examine H1(Γ0(11),F11). Our programs



50

Table 8: An eigenvalue system in H1(Γ0(1), E10,10(F11))
α ω 1 + ω 1− ω 3 + 2ω 3− 2ω 1 + 3ω 1− 3ω 3− 4ω 3− 4ω
Φα 9 10 10 9 9 0 0 5 5

are not written for composite levels. Looking at the tables of Cremona [12], we find an

eigenvector in H1(Γ0(11),OK) with the following eigenvalues Ψα.

Table 9: An eigenvalue system in H1(Γ0(11),C)
α ω 1 + ω 1− ω 3 + 2ω 3− 2ω 1 + 3ω 1− 3ω 3− 4ω 3− 4ω
Ψα -2 -1 -1 -2 -2 0 0 -6 -6

Reducing these eigenvalues mod 11, we get an eigenvalue system in H1(Γ0(11),F11) that

matches our level 1 weight (10, 10) eigenvalue system Φ.
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Chapter 7

Proof of the Nonexistence Result

In this chapter, we present a proof of Theorem 4.3 following very closely our paper [43].

Let K be a number field and p be a rational prime. We say that the pair (K, p) sat-

isfies (†), if there is no irreducible continuous representation of Gal(K/K) into GL2(Fp)

that is unramified away from (p,∞).

A natural problem related to the conjectures we listed in Chapter 3 is to know which

pairs (K, p) satisfy (†) and which pairs do not.

Let ρ : Gal(K/K) → GL2(Fp) be continuous and unramified away from {p,∞}.

Then the field L corresponding to Ker(ρ) is a finite extension of K unramified away

from {p,∞} and we get an embedding of Gal(L/K) into some GL2(Fpa). In this paper

we investigate the case where K is quadratic and p = 2, 3.

In Section 7.1, we look at the case where p = 2 and the extension L/K is nonsolvable.

Let dK/Q denote the discriminant of K over Q.

Theorem A. Let K = Q(
√
d) be a quadratic field and let L/K be a nonsolvable Ga-

lois extension unramified over every odd prime whose Galois group embeds into some

GL2(F2a). If d = 6, 5, 3, 2,−1,−2,−3,−5,−6 then no such L exists.

Brueggeman [10] proved Theorem A for d = −2,−1, 2. In Section 7.2, we treat the

case where p = 2 and L/K is solvable for the fields reported in Theorem A.
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Theorem B. Let K = Q(
√
d) be a quadratic field and let L/K be a solvable Ga-

lois extension unramified over every odd prime. Assume that there is an embedding

ρ : Gal(L/K) ↪→ GL2(F2a) for some a. If d = 6, 5, 3, 2,−1,−2,−3,−5,−6 then the

embedding ρ is reducible.

Putting these two theorems together, we get the following result.

Corollary. For d = 6, 5, 3, 2,−1,−2,−3,−5,−6, the pair (Q(
√
d), 2) satisfies (†).

In Section 7.3, we focus on p = 3.

Theorem C. The pair (Q(
√
−3), 3) satisfies (†).

We follow ideas of Tate [54] to prove the theorems. The proof of Theorem A is based

on comparing upper and lower bounds of discriminants. Using a discriminant upper

bound of Moon [34], one proves Theorem A for fields d = 5, 3, 2,−1,−2,−3. To also

get the fields d = 6,−5,−6, we use part of a sharp upper bound calculation of Moon

and Taguchi who studied the same problem for p = 2 in their article [36] which was a

preprint at the time we proved this result. For Theorem B, we use class field theory and

the computer algebra system MAGMA. In Section 4, we prove Theorem C by applying

the methods of the first two theorems to p = 3. In Section 7.4, we use Theorem B to

show the nonexistence of elliptic curves with good reduction everywhere over certain

quadratic fields.

7.1 Nonsolvable Case, p = 2

We start with the discriminant upper bound of Moon [34].



53

Lemma 1. Let F be a finite extension of Qp with ramification index e. Suppose E/F is

a finite extension with an elementary p-abelian Galois group of order pm where m ≥ 1.

Then the different DE/F of E/F divides (p)c where

c ≤
(

1 +
α

e

)(
1− 1

pm

)
and α =

[
e

p−1

]
+ 1. (here [x] denotes the maximal integer ≤ x)

Observe that for p = 2, the above upper bound takes a simple form: c ≤
(
2+1/e)(1−

1/2m).

Corollary 1. Let F be the unramified extension of Q2. Let E/F be a finite Galois

extension with ramification index e2m with e odd and m ≥ 1. Assume that the Galois

group G of E/F embeds into GL2(F2a) for some a. Then the different DE/F of E/F

divides (2)c where

c ≤ 3− 1

2m−1
− 1

e2m

Proof. Let E1 (resp. E0) be the maximal tamely ramified (resp. unramified) subex-

tension of E/F . Normalize the valuation so that v(2) = 1. It is well known that

v(DE1/E0) = (e− 1)/e. As the 2-Sylow subgroups of GL2(F2a) are elemantary 2-abelian,

so is the Galois group of the extension E/E1. Now by Lemma 1 we have

v(DE/E1) ≤
(

2 +
1

e

)(
1− 1

2m

)
Combining the two differents we get

v(DE/F ) ≤
(

2 +
1

e

)(
1− 1

2m

)
+

(
e− 1

e

)

≤ 3− 1

2m−1
− 1

e2m
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For ramified case, we will use the following upper bounf from [36].

Lemma 2. Let F be a ramified quadratic extension of Q2. Let E/F be a finite Galois

extension with ramification index e2m with e odd and m ≥ 1. Assume that the Galois

group G of E/F embeds into GL2(F2a) for some a. Then the different DE/F of E/F

divides (2)c where

c ≤ 9

4
− 1

2m−1

Proposition 1. Let K be a quadratic number field and L be a finite Galois extension

of K of degree n which is unramified over every odd prime with wild ramification index

2m with m ≥ 1. Assume Gal(L/K) embeds into GL2(F2a) for some a. Then |dL/Q| ≤

|dK/Q|n22cn where

(a) if 2 is ramified in K, then c ≤ 9

4
− 1

2m−1

(b) if 2 is inert K, then c ≤ 3− 1

2m−1
− 1

e2m

Proof. We take a place p of K over 2 and a place q of L over p. We complete K and

L at p and q respectively and get an extension of local fields. We apply Corollary 1

or Lemma 2 to this local extension depending on the ramification of 2 in K/Q. The

claim follows by passing from local to global discriminant and by the fact that dL/Q =

(dK/Q)[L:K] NormK/Q(dL/K). Note that NormK/Q(2) = 22 in both cases.

For lower bounds on discriminants we will use the Odlyzko-Poitou bounds [41]. Let

L/Q be of degree m. Then

γ + log (4π)− 6.860404m−2/3 ≤ 1

m
log (|dL/Q|)
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where γ is the Euler constant.

We compare these upper and lower bounds in the nonsolvable case now. Let K be a

quadratic field and let L/K be a nonsolvable Galois extension ramified only over {2,∞}

whose Galois group G embeds into GL2(F2a) for some a. Let n be the degree of L/K.

Note that the degree of L/Q is 2n.

Assume that 2 is ramified in K/Q. If L/K is at most tamely ramified, then dL/K

divides pn where p is a place of K over 2. Since the norm of p is 2, |dL/Q| ≤ |dK/Q|n2n .

Thus

2(γ + log (4π)− 6.860404(2n)−2/3) ≤ log |dK/Q|+ log 2

As G is nonsolvable, n ≥ 60. For |dK/Q| ≤ 2128, this inequality gives a contradiction for

all n ≥ 60.

Now assume that L/K is wildly ramified with ramification index 2m. Using Lemma

2, we have

2(γ + log (4π)− 6.860404(2n)−2/3) ≤ log |dK/Q|+ 2c log 2

where c = 9
4
− 1

2m−1 .

As Tate observes in [54], we have n
2m−1 ≥ 30 because 2m divides n and n is divisible

by at least three distinct primes as it is the order of a nonsolvable group. Now we get

2

(
.5772 + 2.53102− 6.860404

22/3n2/3

)
≤ log |dK/Q|+ 1.386295

(
2.125− 30

n

)

6.216448− 8.64356

n2/3
≤ log |dK/Q|+ 2.94587− 41.588

n
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3.27057 + f(n) ≤ log |dK/Q|

where f(x) = A−Bx1/3

x
with A = 41.588 and B = 8.64356. The function f(x) de-

creases until it reaches its minimum at x0 = ( 3A
2B

)3 ≈ 375.923 with minimum value

fmin = −A
2x0

and then it increases approaching 0 as x tends to infinity. So, if log |dK/Q| ≤

3.27057 + fmin ≈ 3.21525, the last inequality gives a contradiction for any n ≥ 60.

Thus we get |dK/Q| < 24.9, proving the claim for the fields K = Q(
√
d) with d =

6, 3, 2,−1,−2,−5,−6.

Now assume that 2 is inert in K/Q. As e2m is the order of the solvable local inertia

group, its index in nonsolvable G has to be at least 3, thus n
e2m ≥ 3. Using Corollary 1,

we get

6.216448− 8.64356

n2/3
≤ log |dK/Q|+ 1.386295

(
3− 30

n
− 3

n

)

2.057563 + g(n) ≤ log |dK/Q|

where g(x) = A−Bx1/3

x
with A = 45.7477 and B = 8.64356. The minimum value of g(x) is

attained at x0 ≈ 500.385. If log |dK/Q| ≤ 2.057563+ gmin ≈ 2.011863, the last inequality

gives a contradiction for any n ≥ 60. Thus we get |dK/Q| < 7.477, proving the claim for

the fields K = Q(
√
d) with d = −3, 5.

This completes the proof Theorem A.
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7.2 Solvable Case, p = 2

Let L/K be a solvable Galois extension with Galois group G that is ramified only over

{2,∞}. Assume that there is an embedding ρ : G ↪→ GL2(F2a) for some a. If we

show that G is a 2-group then a conjugate of the image of G will be inside the Sylow

2-subgroup T = {
(

1 x
0 1

)
| x ∈ F2a} of GL2(F2a). Thus ρ will be reducible.

Let S be a 2-Sylow subgroup of G. Then S is elementary 2-abelian as T is. Let G′ be

the commutator subgroup of G. To show that G is a 2-group, it is enough to show that

G/G′ and G′/G′′ are 2-groups. If they are, then G/G′′ is a 2-group and it is abelian as

it is a homomorphic image of S. Indeed, G/G′′ w SG′′/G′′ = S/S ∩G′′. Hence G′ = G′′.

Since G is solvable, we have G′ = 1 and thus G is a 2-group.

In the rest of this section, K = Q(
√
d) with d = 6, 5, 3, 2,−1,−2,−3,−5 or −6.

Observe that 2 is either inert (d = −3, 5) or ramified in K/Q. Let p denote the only

place of K above 2. We will prove that G/G′ and G′/G′′ are 2-groups.

Proposition 2. The ray class group of K with modulus pkm∞ is a 2-group for any k

where m∞ is the modulus of all the real archimedean places of K.

Proof. Let OK be the ring of integers of K and U be the group of units of OK . Let

Cl(K) be the ideal class group of K and let Cl(K, pkm∞) be the ray class group of K of

modulus pkm∞ with fixed positive integer k.

We have the following exact sequence from class field theory

(∗) U → (OK/p
k)∗ × |Z/2Z||m∞| → Cl(K, pkm∞)→ Cl(K)→ 1

It is known that the prime to 2 part of (OK/p
k)∗ is Z/(2f − 1)Z where f is the
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residue degree of p. Thus if 2 is ramified in K, then (OK/p
k)∗ is a 2-group. Since the

class numbers of K’s are all powers of 2, the result follows in this case. If 2 is inert,

there may be a non-trivial 3-part of the ray class group. Note that the 3-rank is the

same for every k. For the two inert fields, we verify with MAGMA that the ray class

group with modulus (2)m∞ has 3-rank zero for all d’s.

Let F be the fixed field of G′. Then F is an abelian extension of K that is ramified

only over {2,∞} and F is contained in a ray class field of K with modulus pkm∞ for

some k. By Proposition 2, such a ray class field has degree power of 2 over K. Thus

G/G′ is a 2-group.

The group G′/G′′ corresponds to an abelian extension of F that is only ramified over

{2,∞} and thus is contained in a ray class field of F with modulus (2)km∞ for some

k. Using MAGMA, we will verify for each possible F that these ray class groups are

2-groups and conclude that G′/G′′ is a 2-group. First, we use the following theorem of

Nakagoshi [38] to find a field A which contains all possible F ’s.

Theorem 1. Let N be a number field with ramification index e and residue degree f

over the rational prime p and let p be a prime ideal of the ring of integers O of N over

p. Set e1 =

[
e

p− 1

]
where [x] is the maximal integer ≤ x. Let Np denote the completion

of N at p. Then the p-rank Rn of (O/pn+1)∗ is given by

Rn =

(
n−

[
n

p

])
f, if 0 ≤ n < e+ e1

Rn = ef , if n ≥ e+ e1 and ζp 6∈ Np

Rn = ef + 1, if n ≥ e+ e1 and ζp ∈ Np

Combining this result with the exact sequence (∗), we see that the 2-ranks of ray

class groups of modulus (2)km∞ stabilize after k = 5 for every quadratic field. Thus
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there exists a maximal elementary 2-abelian extension A of K that is only ramified over

{2,∞}. As G/G′ is elementary 2-abelian (it is a homomorphic image of S), F is a

subfield of A. For every d, we list a defining polynomial of A over Q, class number h of

A and the decomposition (e, f, g) of 2 in A/Q.

Table 10: Maximal elementary 2-abelian extensions ramified only over {2,∞}
d A h e,f,g

6 x16 + 4x12 + 15x8 + 4x4 + 1 1 8,2,1
5 x16 − 12x14 + 58x12 − 29x8 + 58x4 + 12x2 + 1 1 8,2,1
3 x16 + 4x14 + 56x12 + 36x10 + 542x8 + 636x6 + 248x4 + 28x2 + 1 1 8,2,1
2 x16 + 4x12 + 40x10 + 104x8 + 112x6 + 56x4 + 16x2 + 4 1 16,1,1
−1 x8 + 4x6 + 22x4 + 4x2 + 1 1 8,1,1
−2 x8 + 4x6 + 10x4 − 20x2 + 9 1 8,1,1
−3 x8 − 10x6 + 31x4 − 6x2 + 9 1 4,2,1
−5 x8 + 32x6 + 248x4 + 512x2 + 16 1 4,2,1
−6 x8 + 24x6 + 248x4 − 288x2 + 2704 1 4,2,1

We compute the class numbers of all subfields of A for every d and see that they are

all powers of 2.

From Table 10, we see that residue degree f of 2 in A is either 1 or 2. We also observe

that each subfield of A has only one place over 2. By the exact sequence (∗), we see that

for the subfields of A with f = 1, the 3-rank of its ray class group with modulus (2)km∞

will be 0. For the subfields of A with f = 2 which contain K, we check the 3-rank of

their ray class groups with modulus (2)m∞ and see that it is 0 in all instances. This

shows that G′/G′′ is a 2-group for all the quadratic fields listed in Theorem B and thus

completes the proof of Theorem B.
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7.3 The Case p = 3

We apply Lemma 1 to the case p = 3 and get the following:

Proposition 3. Let K be a quadratic field ramified over 3 and L be a finite Galois

extension of K of degree n which is unramified away from {3,∞}. Let the ramification

index of L/K be e3m with m ≥ 1 and (e, 3) = 1. Assume Gal(L/K) embeds into some

GL2(F3a). Then |dL/Q| ≤ |dK/Q|n32cn where

c ≤ 2− 1

2 · 3m−1
− 1

2e · 3m

Proof. Just as in the proof of Proposition 1, we look at the local differents. We suitably

complete K and L over 3 to get the local extension E/F . Let E1 (resp. E0) be the

maximal tamely ramified (resp. unramified) subextension of E/F . Normalize the valu-

ation so that v(3) = 1. We have v(DE1/E0) = (e − 1)/2e. Gal(E/E1) is an elementary

3-abelian group and by Lemma 1, we see that DE/F divides (3)c where

c ≤
(

1 +
α

2e

)(
1− 1

3m

)
+
e− 1

2e

≤
(

1 +
1

2
+

1

2e

)(
1− 1

3m

)
+

1

2
− 1

2e

≤ 3

2
+

1

2
− 1

2 · 3m−1
− 1

2e · 3m

We pass to the local and then to global discriminant and get the desired result.

We follow Section 7.1 and Section 7.2 to prove Theorem C. Let L/K be an extension

satisfying the hypothesis of Proposition 3. Assume that L/K is nonsolvable. Using the

lower bound of Section 7.1, we get
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6.216448− 8.64356

n2/3
≤ log |dK/Q|+ 2.197225

(
2− 33

2n

)

1.82198 + h(n) ≤ log |dK/Q|

where h(x) = A−Bx1/3

x
with A = 41.36.254 and B = 8.64356. The minimum is attained

at x0 ≈ 249.041. For log |dK/Q| < 1.82198 + hmin ≈ 1.749, the last inequality gives a

contradiction for any n ≥ 60. Thus we get |dK/Q| < 5.7, only giving Q(
√
−3).

Now let L/Q(
√
−3) be a solvable extension satisfying the hypothesis of Proposition

3. Let G be the Galois group of this extension. We want to show that G/G′ and G′/G′′

are both 3-groups following Section 3. By the exact sequence (∗) of Section 3, we see

that any ray class group of Q(
√
−3) with modulus (3)km∞ is a 3-group because the

class number of Q(
√
−3) is 1 and it has no infinite places and residue degree of 3 is one.

Thus G/G′ is a 3-group. Now let A be the maximal elementary 3-abelian extension of

Q(
√
−3) that is unramified over {3,∞}. Using MAGMA, we find a defining polynomial

for A over Q : x18− 9x15 + 135x12 + 540x9 + 2673x6 + 1458x3 + 729. The decomposition

of 3 in A/Q is (18, 1, 1) which means for any subfield the residue degree of 3 is one as

well. We verify that all subfields of A containing K have class number 1 and have no

real infinite places. As in Section 7.2, we conclude that G′/G′′ is a 3-group. This proves

Theorem C.
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7.4 Application to Elliptic Curves over Quadratic

Fields

Let K = Q(
√
d) be a quadratic field. Assume that E is an elliptic curve over K that

has good reduction away from 2. Let G be the Galois group of the finite extension

K(E[2])/K where K(E[2]) is the extension of K obtained by adjoining coordinates of

points of E that are of order 2. It is well known that there is a continuous representation

ρ : G ↪→ GL2(F2)

which is ramified away from 2. If d = 6, 5, 3, 2,−1,−2,−3,−5,−6 then by the proof of

Theorem B, G must be a 2-group. This implies that G is either trivial or it is Z/2. This

is true only if E has a K-rational point of order 2. Thus we showed that

Proposition 4. For d = 6, 5, 3, 2,−1,−2,−3,−5,−6, if E is an elliptic curve over K

that has good reduction away from 2 then E has a K-rational point of order 2.

This extends results of Pinch [39] and Kida [30].

An elliptic curve E overK is called admissible if the following conditions are satisified:

(1) E has good reduction everywhere over K

(2) E has a K-rational point of order 2

Comalada [11] showed that for 1 < d < 100, there exists an admissible elliptic curve

over Q(
√
d) if and only if d = 6, 7, 14, 22, 38, 41, 65, 77, 86. Setzer [49] showed that for

d < 0, there exists an admissible elliptic curve over Q(
√
d) if and only if d = 65d1 where

d1 is a square modulo 5 and modulo 13 and 65 is a square modulo d1. Combining these

two results with Proposition 4, we get
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Corollary 2. For d = 5, 3, 2,−1,−2,−3,−5,−6, there is no elliptic curve with good

reduction everywhere over Q(
√
d).
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Chapter 8

The Algorithm

In this chapter, we discuss the algorithm that we used to compute the cohomology

groups and the Hecke operators on them. This is joint work with Fritz Grunewald.

Although our algorithm works for any of the five Euclidean imaginary quadratic fields

K1, K2, K3, K7, K11, we work specifically withK2 in this chapter and expose more details.

So set K = K2 = Q(
√
−2) and O = O2 = Z[

√
−2].

8.1 Congruence Subgroups

We will only work with congruence subgroups of prime level although this is not neces-

sary.

For a subgroup G of PSL(2,O)) and a nonzero element α in O , define

Gα =
{(

a b
c d

)
∈ G : α|c

}
and Gα =

{(
a b
c d

)
∈ G : α|b

}
For every prime element π inO, we define the congruence subgroup Γ(π) of PSL(2,O)

as PSL(2,O)π. We have Γ(1) = PSL(2,O).

If N(π) = p, a prime integer, then [Γ(1) : Γ(1)π] = [Γ(1) : Γ(1)π] = p+ 1. The set

R =
{(

0 −1
1 x

)
: 0 ≤ x ≤ p− 1

}
∪

{(
1 0
0 1

)}
is a complete set of representatives of coclasses modulo Γ(1)π and also modulo Γ(1)π.
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For a congruence subgroup Γ and a prime element π, one can check that

Γπ = Γ ∩ α−1Γα and Γπ = Γ ∩ αΓα−1

where α =
(

π 0
0 1

)
. Note that α, α−1 are not in PSL(2, K) but in PGL(2, K). It is easy

to see that

α−1Γπα = Γπ

8.2 Computing H1 for PSL2(O)

8.2.1 Finite Presentation

Recall that PSL2(O2) has the following presentation.

PSL2(O2) =

〈
A,B, U

∣∣∣∣ (AB)3 = B2 = AUA−1U−1 = (BU2BU−1)2 = 1

〉

where A =
(

1 0
1 1

)
, B =

(
0 −1
1 0

)
and U =

(
1 0√
−2 1

)
.

8.2.2 H1 for PSL2(O)

Let Γ = PSL2(OK) and let V = Ek,l(K). Take a cocyle c ∈ H1(Γ, V ). By definition,

c : Γ→ V such that

c(hg) = c(h) · g + c(g)

for all g, h ∈ Γ. If g = h1...hm, then by induction on m, we get

c(g) =
∑

1≤j≤m

c(hj) · h1...hj−1 (8.1)
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Also,

c(g−1) = −c(g) · g−1 (8.2)

Since any element g can be written as a product of A,A−1, B, U, U−1, a cocyle c can

be determined by its values c(A), c(B), c(U). So we identify a cocycle with the triple

(c(A), c(B), c(U)) inside V 3.

Any cocyle c satisfies the equations

c((AB)3) = c(B2) = c(AUA−1U−1) = c((BU2BU−1)2) = c(1) = 0 (8.3)

which are given by the relations that the generators A,B, U are satisfying.

Conversely, a function c defined on the generators A,B, U can be extended to whole

Γ if it satisfies these equations. Since these equations are linear in c(A), c(B), c(U), we

can identify the space of cocycles Z(Γ, V ) as the null space of the system of equations

(8.3). Using the identities (8.1) and (8.2) on the equations (8.3), we get the following

system

• c(B) · [B + 1] = 0

• c(A) · [B((AB)2 + AB + 1)] + c(B) · [(AB)2 + AB + 1] = 0

• c(A) · [A−1(1− U−1)] + c(U) · [(A−1 − 1)U−1] = 0

• c(B) · [(U−1BU + U)(BU−1BU + 1)] + c(U) · [(1− U−1BU)(BU−1BU + 1)] = 0

The subspace of coboundaries B(Γ, V ) inside the space Z(Γ, V ) of cocyles is given

as the image of the linear map from V to V 3

v 7−→ (v · (A− 1), v · (B − 1), v · (U − 1))

Finally the quotient Z(Γ, V )/B(Γ, V ) gives us H1(Γ, V ).
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8.2.3 Hecke Action Revisited

Now we want the describe the action of Hecke operators on the vector space H1(Γ, V )

that we computed in the previous section. Given a cocycle c, which is identified with

the triple (c(A), c(B), c(U)), and a Hecke operator T , we want to describe T (c), which

is identified with (T (c)(A), T (c)(B), T (c)(U)). So the goal of this section is to describe

T (c)(A), T (c)(B) and T (c)(U) in terms of c(A), c(B) and c(U).

Let π be a prime element of O such that N(π) = p, a rational prime. Let c be a

cocyle in H1(Γ, V ). We will compute Tπ(c). We need to compute Tπ(c)(A), Tπ(c)(B)

and Tπ(c)(U). Let α =
(

π 0
0 1

)
. We fix the transversal R for Γπ in Γ

{
Ri =

(
0 −1
1 x

)
: 0 ≤ x ≤ p− 1

}
∪

{
R∞ =

(
1 0
0 1

)}
Then for every g ∈ Γ, we have

(Tπc)(g) =
∑

1≤i≤m

c(α−1hi(g)α) · αι ·R−1
i

where hi(g) = R−1
σg(i)gRi with Rσg(i) the unique element in R such that hi(g) ∈ Γπ.

Thus for g = A,B, U , we need to describe σg(i) and hi(g). This is done below.

(a) Tπ(c)(A)

We have

σA(i) =

{
i− 1 (mod p) , 0 ≤ i ≤ p− 1

∞ , i =∞

This gives
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hi(A) =

{ I , 1 ≤ i ≤ p− 2(
1 −p
0 1

)
, i = 0

A , i =∞

Since c(I) = 0, the middle p− 2 terms of Tπ(c)(A) vanish.

Tπ(c)(A) = c(α−1 h0(A) α) · αι ·R−1
0 + c(α−1 h∞(A) α) · αι ·R−1

∞

Note that

α−1
(

a b
c d

)
α =

(
a b/π
cπ d

)
Tπ(c)(A) = c(α−1

(
1 −p
0 1

)
α) · αι ·B + c(α−1

(
1 0
1 1

)
α) · αι

= c(
(

1 −p/π
0 1

)
) · αι ·B + c(

(
1 0
π 1

)
) · αι

= c(
(

1 −π̄
0 1

)
) · αι ·B + c(

(
1 0
π 1

)
) · αι

= c(B
(

1 0
π̄ 1

)
B) · αι ·B + c(

(
1 0
π 1

)
) · αι

Let a, b ∈ Z be such that π = a+ bω. Then

Tπ(c)(A) = c(BAaU−bB) · αι ·B + c(AaU b) · αι

= [c(B)AaU−bB + c(Aa)U−bB + c(U−b)B + c(B)] · αι ·B

+[c(Aa)U b + c(U b)] · αι

For an element g ∈ Γ,

c(gn) = c(g)(gn−1 + ...+ g2 + g + 1)
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Thus

c(g−n) = −c(gn)g−n = −c(g)(gn−1 + ...+ g2 + g + 1)(g−n)

For abbreviation, put

PM(n) =

{
Mn−1 + ...+M2 +M + 1 if n > 0

−(Mn−1 + ...+M2 +M + 1)(M−n) if n < 0

so that c(Mk) = c(M)PM(k) for all k ∈ Z and M ∈ Γ.

Then we have

Tπ(c)(A) = [c(B)AaU−bB + c(A)PA(a)U−bB + c(U)PU(−b)B + c(B)] · αι ·B

+[c(A)PA(a)U b + c(U)PU(b)] · αι

Putting like terms together, we get

Tπ(c)(A) = c(A) [PA(a)(U−bBαιB + U bαι)]

= + c(B) [(AaU−bB + 1)(αιB)]

= + c(U) [PU(−b)BαιB + PU(b)αι]

(b) Tπ(c)(B)

We have

σB(i) =

{ −1/i (mod p) , 1 ≤ i ≤ p− 1

∞ , i = 0

0 , i =∞

This gives
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hi(B) =

{ (
σB(i) 1 + iσB(i)

−1 −i

)
, 1 ≤ i ≤ p− 2

I , i = 0,∞

Observe also that Ri = A−iB for 0 ≤ i ≤ p− 1. Thus we have

(Tπc)(B) =
∑

1≤i≤p−1

c(α−1hi(B)α) · αι ·R−1
i

=
∑

1≤i≤p−1

c(

(
σB(i) 1+iσB(i)

π

−π −i

)
) · αι ·BAi

We need to write those matrices in terms of A,B, U and we can do this effectively as

our field is Euclidean. We describe a word decomposition algorithm to this effect in the

next section.

(c) Tπ(c)(U)

We have

σU(i) =

{
i− ω (mod π) , 0 ≤ i ≤ p− 1

∞ , i =∞

This gives

hi(U) =

{ (
1 (i− ω)− σU(i)

0 1

)
, 0 ≤ i ≤ p− 1

(
1 0
ω 1

)
, i =∞

We get
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(Tπc)(U) =
∑

0≤i≤p−1

c(

(
1 (i−ω)−σU (i)

π

0 1

)
) · αι ·BAi + c(

(
1 0

ωπ 1

)
)αι

=
∑

0≤i≤p−1

c(B

(
1 0

σU (i)−(i−ω)
π

1

)
B) · αι ·BAi + c(A−2bUa)αι

For every i, put (σU(i)− (i− ω))/π = Re(i) + Im(i)ω. Then

(Tπc)(U) =
∑

0≤i≤p−1

c(BARe(i)U Im(i)B) · αι ·BAi + c(A−2bUa)αι

Observe that

c(BARe(i)U Im(i)B) = c(B)ARe(i)U Im(i)B + c(ARe(i))U Im(i)B + c(U Im(i))B + c(B)

= c(A)[PA(Re(i))U Im(i)B] + c(B)[ARe(i)U Im(i)B + 1]

+c(U)[PU(Im(i))B]

Moreover

c(A−2bUa) = c(A)[PA(−2b)Ua] + c(U)[PU(a)]

Hence

(Tπc)(U) = c(A) [

( ∑
0≤i≤p−1

PA(Re(i))U Im(i)Bαι ·BAi

)
+ PA(−2b)Uaαι]

+ c(B) [

( ∑
0≤i≤p−1

(ARe(i)U Im(i)B + 1)(αι ·BAi)

)
]

+ c(U) [

( ∑
0≤i≤p−1

PU(Im(i))Bαι ·BAi

)
+ PU(a)αι]
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8.2.4 Word Decomposition

In this section we describe an effective algorithm to write a given element M of PSL2(O)

in terms of the generators A,B, U .

We first write M as product of lower triangular matrices.

Proposition 8.1. Given a matrix in PSL2(O), let M ∈ SL2(O) be a preimage of M .

There exists upper triangular matrices Q1, .., Qm such that

M = ±QmBQ2..BQ1 or M = ±BQmBQ2..BQ1.

Proof. Say M =
(

a b
c d

)
. Without loss of generality, we may assume that N(d) > N(b),

because if not, we can replace M with BM =
(
−c −d
a b

)
.

We will proceed by induction on the norm N(b) of b. If b 6= 0, using the Euclidean

algorithm we find q and r such that

d = qb+ r ,N(r) < N(b)

In the inductive step, set Q =
(

1 0
−q 1

)
and we take

M ′ = BQM =
(

c′ −r
a b

)
Since N(−r) < N(b), in a finite number of steps the top right corner will become 0,

forcing the diagonal entries to be units ±1. This gives the desired result.

To finish the word decomposition, we need the following straighforward observation.

Let z = a+ b
√
−2 ∈ O. Then we have

(
1 0
z 1

)
= AaU b
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8.3 Computing H1 for Γ < PSL2(O)

Let Γ = Γ0(µ) for some element µ of O with rational prime norm q and V = Ek,l.

To compute H1(Γ, V ), we will not use a presentation of Γ like we did for PSL2(O).

This is feasable but very inefficient. Instead, we will use Shapiro’s Lemma and express

cohomology of Γ as a cohomology of PSL2(O). More precisely, we have

H1(Γ, V ) ' H1(PSL2(O), Ind(V ))

where

Ind(V ) = {f : PSL2(O)→ V | f(gh) = f(g) · h for all h ∈ Γ}.

To compute H1(PSL2(O), Ind(V )), we first need to describe the action of the gen-

rators A,B, U of PSL2(O) on the induced module Ind(V ). We do this using another

description of Ind(V ) which is as follows.

Let f : PSL2 → V be an element of Ind(V ). As f is Γ-invariant by definition, f is

determined by its values on some (equivalently, any) transversal (that is, a set of coset

representatives) of Γ in PSL2(O). Thus, Ind(V ) can be seen as direct sum of copies of

V indexed by a transversal {γi} of Γ in PSL2(O). Then the action of PSL2(O) can be

dsecribed as follows. Let g ∈ PSL2(O) and vγi
∈ Ind(V ) be an element indexed by σi.

When v ∈ V is indexed by γi, let us use vi to denote this. We have

g · vi = vσ(i) · hi(g)

where gγi = γσ(i)hi(g) with hi(g) ∈ Γ. In other words, the element v ∈ V which is

contained in the copy indexed by γi goes to v · hi(g) that is contained in the copy of V

indexed by γσi.
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So we need to describe the action of A,B, U and αι =
(

1 0
0 π

)
on the induced module.

This is done below.

For convenience, we choose to work with the transversal

{
Rx =

(
1 0
x 1

)
: 0 ≤ x ≤ q − 1

}
∪

{
R∞ =

(
0 −1
1 0

)}
for Γ in PSL2(O).

(a) Action of A on the induced module

We have

σA(i) =

{
i+ 1 (mod q) , 0 ≤ i ≤ q − 1

∞ , i =∞

This gives

hi(A) =

{ I , 0 ≤ i ≤ q − 2

Aq , i = q − 1

BAB , i =∞

(b) Action of B on the induced module

We have

σB(i) =

{ −1/i (mod q) , 1 ≤ i ≤ p− 1

∞ , i = 0

0 , i =∞

This gives

hi(B) =

{
A−σB(i)BAi , 1 ≤ i ≤ q − 2

I , i = 0,∞
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(c) Action of U on the induced module

We have

σU(i) =

{
i+ ω (mod µ) , 0 ≤ i ≤ p− 1

∞ , i =∞

This gives

hi(U) =

{
A−σU (i)UAi , 0 ≤ i ≤ p− 1

BUB , i =∞

(d) Action of αι on the induced module

We have

σU(i) =

{
iπ (mod µ) , 0 ≤ i ≤ p− 1

∞ , i =∞

This gives

hi(U) =

{
αι , 0 ≤ i ≤ p− 1

α , i =∞
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