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Overview

e Grassmannians and their totally nonnegative parts Grj,"

Combinatorial description of Gri?" in terms of networks

Itnn

Flag varieties and their totally nonnegative parts F

e Momentum-twistor diagrams (the combinatorial model for F

|tnn)



Grassmannians

The Grassmannian Gry, is the space of k-dimensional subspaces of C".

X111 X12 ... Xin
1 X2 X2n

X = rowspan
Xkl Xk2 Xkn

Any full rank k x n matrix gives a point in Gry,.

Two matrices M and M’ give the same point in Gry, if M’ = gM for
some g € GL,. So, Gry, = GLx\Maty,.

For | € ([Z]), the Pliicker coordinate is

A(X) = (k x k) minor of X using columns /.



Example: The Pliicker coordinates of the 2-plane

X = rowspan L 0ab
01 ¢ d

are Alz = 1, A13 = C, A14 = d, A23 = —a, A24 = —b, and
A34 = ad — bc.

They satisfy the Pliicker relation A3 = A15A34 + A14A03.

4/26



Example: The Pliicker coordinates of the 2-plane

X = rowspan L 0ab
01 ¢ d

are Alz = 1, A13 = C, A14 = d, A23 = —a, A24 = —b, and
A34 = ad — bc.

They satisfy the Pliicker relation A3 = A15A34 + A14A03.

In general, a collection of numbers ((A;),_w1y), not all zero,
k

defines a point in Gry, if and only if the Plicker relation with

r =1 index swapped is satisfied:

n

E SA. . . . P . =
( 1) A’l7’27---7’/(—17./5Ajl,...,_[},ldg,jg*,l,...,_]k 0

s=1

where js denotes omission.



The totally nonnegative Grassmannian Gr{?" is the set of elements

in the Grassmannian Gryg, with all nonnegative Pliicker coordinates.
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Combinatorial description of Gr})" (by Postnikov)

A plabic graph G is a planar bipartite graph in a disk.
e vertices are either black or white, and every edge connects a black
and a white vertex
e n boundary vertices on the boundary, labeled clockwise

e all boundary vertices have degree one, and there are no edges
joining boundary vertices.

G with positive edge weights will be
called a network.




There is a “boundary measurement” map BM : {Networks} — Gr}?"

An almost perfect matching I is a subset of edges of N such that
(1) each interior vertex is used exactly once,
(2) boundary vertices may or may not be used.

1

3

Almost perfect matchings I, and [15.
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The boundary subset /(M) C {1,2,...,n}
/(M) = black vertices used by I and white vertices not used by 1.

Almost perfect matchings ['1; and 1, such that
I(MNy) ={2,4} and /(Ny) = {1,2}.
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For | € ([Z]), the boundary measurement is

A(N) = > wi(M)

I(my=1

wt(IM) is the product of the weights of the edges in T1.
Example: Gr(2,4) and | = {2,4}
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For | € ([Z]), the boundary measurement is

A(N) = > wi(M)

I(my=1

wt(IM) is the product of the weights of the edges in T1.
Example: Gr(2,4) and | = {2,4}
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Boundary Measurements map BM

{Networks} =M Grimn
N [ (A/(N))IG([Z]).

Theorem (Postnikov)

1) Well-definedness: given a network, its boundary measurements
land in Gri) (i.e., they satisfy Pliicker relations).

2) Surjectivity: every point in Gri?" comes from some network.

In fact, something stronger can be said here.



Stratification of Gr}"

Gri?" can be stratified into positroid cells:
given by which A,'s are zero and which A,’s are positive.

These positroid cells

e are disjoint.

e closure of one is union of smaller ones.

e make up all of Gr}?".

Let BM(G) = {BM(N) | N is a choice of edge weights for G}.

Theorem (Postnikov)

3) Characterizing the image: {BM(G)} IR {positroid cells}.

- stronger statement of surjectivity: “cell by cell” surjectivity.



BM(G) = {BM(N) | N is a choice of edge weights for G}

Theorem (Postnikov)

4) Disjointness of images: for two graphs G and G', we have either
BM(G) = BM(G’) or BM(G) NBM(G’) = .

tnn

The cell decomposition of Gry)" is “induced” by the graphs.
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Poset of Gr;3"
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Is there a combinatorial description for partial flag varieties?

Focus on two-step flag variety FI(k, k +2; n).
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We consider matrices of the form

X11 X12 000 X1n

X21 X22 S Xon

X = rowspan X31 X32 .. X3n
X(k+2)1  X(k4+2)2 -+ X(k+2)n

The Fl(k, k +2; n). Two matrices M, M’ € M(k + 2, n) give the same
point in FI(k, k +2; n) if M' = g.M for some g € GL(k;1), where

GL(k; 1) is the group of all invertible (k + 2) x (k + 2) matrices of the
form

_ Ao M2k
Okx2  Brxk
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The nonnegative part of Fi(k, k + 2; n).

X11 X12 X1n
X1 X22 Xon
X = rowspan X31 X32 X3n
X(k+2)1  X(k42)2 X(k+2)n
We say that a matrix M € Fl(k, k+2;n)""if M € GrEZ"ﬁ)n and
Mo € Gry)", where My denotes the matrix M with the first two rows

removed.

Both positivity conditions are invariant under GL(k;1) transformations.
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Momentum-twistor diagram

A plabic graph is a planar bipartite graph in a disk.
e vertices are either black or white, and every edge connects a black
and a white vertex.
e n boundary vertices on the boundary, labeled clockwise.

e all boundary vertices have degree one, and there are no edges
joining boundary vertices.
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Momentum-twistor diagram

A plabie-graph momentum-twistor diagram is a planar bipartite graph i
a-disk on an annulus.

e vertices are either black or white, and every edge connects a black
and a white vertex.
e n boundary vertices on the boundary, labeled clockwise.

e all boundary vertices have degree one, and there are no edges
joining boundary vertices.

20
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Momentum-twistor diagram

A plabie-graph momentum-twistor diagram is a planar bipartite graph i
a-disk on an annulus.

e vertices are either black or white, and every edge connects a black
and a white vertex.

n boundary vertices on the boundary, labeled clockwise.

e two puncture vertices on the inner boundary

all boundary vertices have degree one, and there are no edges
joining boundary vertices.
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A momentum-twistor diagram M is a planar bipartite graph on an
annulus.

e vertices are either black or white, and every edge connects a black
and a white vertex.

e n boundary vertices on the boundary, labeled clockwise.

e two puncture vertices on the inner boundary

e all boundary vertices have degree one, and there are no edges

joining boundary vertices.

5 1
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An almost perfect matching I is a subset of edges of M such that
(1) each interior vertex is used exactly once,

(2) boundary vertices may or may not be used,

(3) exactly one of the puncture vertex is used.

5 1 5 1

S 3

Almost perfect matchings [1; and [, such that /(M) = {1,3,5} and
I(Mz) = {5}
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For J € ([Z]), the boundary measurement is

A (M) = > wt()

1(My=J

wt() is the product of the weights of the edges in [1.

Theorem (Fraser-K-Matherne)

The boundary meas map {MTD with non-neg edge wts} — FI*™"
is well defined.

is surjective.

Surjectivity proved for FI(1,3; n) and FI(2,4; n).
In progress for Fl(k, k + 2; n).



tnn
Gryp

tnn
Fl(k,k+2;n)

BM is well defined

BM is well defined

BM is surjective

BM is surjective
proved for (1,3; n) and (2,4; n)

“cell by cell” surjectivity
{BM(G)} <% {positroid cells}

in examples

quadratic rel in plucker coords

disjointness of images:
BM(G) = BM(G') or
BM(G) N BM(G') =0

not true here
BM(G) # BM(G')
and BM(G) N BM(G’) # 0




tnn
Gryp

tnn
Fl(k,k+2;n)

BM is well defined

BM is well defined

BM is surjective

BM is surjective
proved for (1,3; n) and (2,4; n)

“cell by cell” surjectivity
{BM(G)} <% {positroid cells}

in examples

quadratic rel in plucker coords

disjointness of images:
BM(G) = BM(G') or
BM(G) N BM(G') =0

not true here
BM(G) # BM(G')
and BM(G) N BM(G’) # 0

Thank you!
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