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Exam solutions: Commutative Algebra (V3A1, Algebra I)

Exercise A. (Points: 34+2)
Assume A is a commutative ring such that for every element a € A there exists an integer n(a) > 1
such that a™® = a.

(i) Show that dim(A4) = 0.

(i) Describe an explicit example of such a ring that is not a field.

Solution:

(i) Let p € Spec(A). Then for any @ € A/p, we have a™® = @, i.e. a- (@~ —1) = 0. Thus,
as A/p is an integral domain, a = 0 or a- a2 = g@)~1 = 1 Hence, any non-zero element
in A/p is invertible, i.e. A/p is a field and p is a maximal ideal. (2) Hence, any chain of prime
ideals in A can contain only one element, so dim(A4) = 0. (1)

(i) Consider A = Z/(2) x Z/(2) which consists of four elements. Note (1,1)? = (1,1),
(1,0)2 = (1,0), (0,1)2 = (0,1), and (0,0)? = (0,0). Hence, a® = a for all @ € A and A is not
a field, it is not even an integral domain, as (1,0) - (0,1) = (0,0). (2)

Exercise B. (Points: 5)

Consider the ring A == k[z, y]/(z(y+1), (y+2?)) with char(k) # 2. Describe all connected components
of Spec(A), decide which ones consist of just one closed point and which ones have a non-empty
intersection with Spec(Az4y)-

Solution:
We have (1.5)

V() -+ Ly+a?))=V(@)uV(iy+1,2%-1)
Vi) U(Vy+1)n(V(z-1)uV(xz+1)))
V@) uV(y+1Lz—-1)UV(y+1,z+1).

V((@(y +1),2(y +2%)))

The ideal () C k[z,y] is prime and, therefore, V' (z) is irreducible and in particular connected.
(0.5) The ideals (y + 1,2 — 1) and (y 4+ 1,2 + 1) are maximal ideals so that V(y 4+ 1,2 — 1)
and V(y+ 1,2+ 1) are closed points (1) which are not contained in V(z) (as z ¢ (y+ 1,2 —
1), (y+1,2+1)). (0.5) Thus, the connected components of Spec(A) are V(x), V(y+1,z—1)
and V(y+ 1,z +1).

Recall that Spec(A;4,) can be identified with {p € Spec(A), v +vy ¢ p}. As z+y €
(y+1,2—1), we have V(y+ 1,z — 1) NSpec(Az4y) = 0. (0.5) Suppose z+y € (y+1,z+1).
Then one can write x +y = (y + 1) f + (x + 1)g, which by evaluating at x = —1 = y yields
—2 = 0 contradicting char(k) # 2. Hence, V(y+ 1,2+ 1) = {(y + 1,2 + 1)} C Spec(Az4y).
(0.5) Finally, we have (z) C (x,y + 1) so that the maximal ideal (z,y + 1) belongs to
V(z). As above, one checks that = +y ¢ (z,y + 1) (evaluate the corresponding equality at
z =0, y = —1) and, therefore, V(z) N Spec(Az1y) # 0. (0.5)



Exercise C. (Points: 2+4)
Consider the ring A = k[x,y, 2]/ (zyz, y?).
(i) Show that the ideals (Z) C A and (Z) C A are both primary ideals and determine their radicals.

(ii) Determine a primary decomposition of the zero ideal in A and decide which associated prime
ideals are isolated and which are embedded.

Solution:

(i) We have 4/(7) = K[z, y, 2]/ (@, 22,5%) =~ K[z, 3,1/ (,5%) = K[y, 1/ (5?). (0.5) As K[y, 2
is an integral domain, the only zero divisors in A/(Z) are the elements of the ideal generated
by 7, which are nilpotent as 2 = 0. So (Z) is a primary ideal. (0.5) Moreover, the nilradical
of A/(Z) is generated by § and, therefore, \/(Z) = (Z,y) in A. (0.5) Analogously, (z) C A is
a primary ideal with radical (g, ). (0.5)

(i) Let us prove that (zyz,%?) = (z,y?) N (z,9?) N (y) in k[z,vy, z]. The inclusion ‘C’ is clear.
(0.5) Conversely, take g € (z,y?) and write g = xf; + y%fo for some polynomials f, fo.
Then g € (y) if and only if zf; € (y) which means that f; = yf3 (as k[z,y, 2] is factorial).
Now g € (z,y?) if and only if zyfs € (2,9?), i.e. zyfs = zh1 + y*ho for some h; € klx,y, 2].
Hence, y|zh; and, thus, h; = yhs. Dividing by y yields x f3 = zhs + yho. Evaluating the later
at y = 0 = z yields f3(x,0,0) = 0, which shows that we can write f3 = yfs + zf5. Hence,
g=zy’f1+xyzfs +y> f2 € (xyz,y?), proving the other inclusion. (1.5)

Moreover, the decomposition is minimal, since zy € (z,y%) N (y) \ (zyz,3?), 2y € (z,¥?) N
(v) \ (zy2,9%) and 2z € (z,5%) N (2,9%) \ (zy2,9%). (0.5)

Passing to the quotient (notice that (y) is a prime ideal containing (xyz,y?) so () is a
prime hence primary ideal) we get (0) = (Z) N (z) N (y) in A, which is a minimal primary
decomposition by (i). (0.5)

Hence, Ass((0)) = 1(7.7), (7, 2), (7)}. We have (§) € (7,7) and (§) C (7, 2) so that (7) is an
isolated associated prime and the two others are embedded. (1)

Exercise D. (Points: 4+4)
Consider A = k[z,y, z]/(zy,xz) as a graded ring with deg(Z) = deg(y) = deg(z) = 1.

(i) Compute the Poincaré series P(A,t) and determine the dimension of A.
(ii) Is A(s,y,z) regular or Cohen-Macaulay?

Solution:

(i) We have the exact sequence 0 — a — k[z,y,2] - A — 0 with a := (zy,zz) a homoge-
neous ideal. So to compute dimy(A,,) it is sufficient to compute dimg(a,,) and the monomials
contained in a,, form a basis of a,,. We have dimy(ap) = 0 = dimg(a;) and az = (zy, x2).

For n > 3, the monomials of degree n which are in (zy) are of the form zy xmonomial of deg n—
2. Likewise, the monomials of degree n which are in (xz) are of the form xzxmonomial of degn—
2. Moreover, a monomial of degree n is contained in (zy) N (zz) if and only if it can be written
xyz X monomial of deg n — 3. As a consequence, for n > 3

and hence
2—|—n> _w =n+2. (2)

dimy,(A,) = ( 9 5



Thus

PAH) =143+ (n+2t" =1+3t+> (n+ 1"+ ¢
n=2

:1+3t+((1_1t)2—2t—1>+((1it)—t—l)

42
= w (0.5)

Localizing at (Z,7,%) we can form the graded ring

z@,g)) = @ (xv Y, Z)n/(xv Y, Z) = @(m,y, z)”/(an + (56, y,Z)n+1)

n>0 n>0

n+1

from which we see that the polynomial that have been computed is also P(AW t). (0.5)
As 1 is not a root of the numerator, we get that the degree of the Hilbert—Samuel polynomial
of (A(z oL , (z,y,2)), which is equal to the dimension of Ay is 2. (0.5)

Since any maximal ideal m of A is induced by a maximal 1deal m of k[z,y, 2] and the latter
(and its localization) is an integral domain and %¥ # 0, we get that

dim(Aw) < dim(k[z, y, 2]m/ ( )) = dim(k[z,y, 2]m) — 1 = 2.
Hence, dim(A4) = 2. (0.5)

(i) We have (2, y, 2)/ (2, y,2) =~ (2,9, 2)/((xy, 22)+ (2, y, 2)?). But since (zy, ) C (z,y,2)?,
we get dlmk((l‘,y, Z)/(.’E,y, 2)2) = dlmk((xvyv Z)/(1:7y) Z)Q) =3> dlm(A(w,y,z)) = 2. Therefo-
re, A(zy,2) and hence A is not regular. (1)

. T+Y - “ . . . x"‘yi_ﬂfl foQ.
We claim that =5 is not a zero divisor in A, .y. Indeed, if =5 g = i, T s n

klx,y, 2] (2,y,2)» then

(x+vy)g192f = vygfige + x2g9 fog

in k[z,y, z]. Note that g(0,0,0) # 0 # ¢;(0,0,0). Thus, z divides (z + y)g192f. However,
since the g; have non-zero constant term, z divides (z + y)f and hence f, i.e. f =

Dividing by x, we get (x + y)g192h = ygfig92 + 29f291. Evaluating at y = 0 = 2, we get
zg1(x,0,0)g2(z,0,0)h(x,0,0) = 0. Thus, using again ¢1(0,0,0) # 0 and g2(0,0,0) # 0, one

finds h(z,0,0) =0, i.e. h = yhy + zha. Hence, f = xyhy + xzha, i.e. 5 =01in Agy.- (1)

Now (A/(z + 7)) ~ (klz,y,2]/(z + y,2y,22))(zy,.) and let us show that in this ring

(z,y,2)

any element of (x,y, z)m is a zero divisor. Consider 5 € (z,y, )m and write 5 =
a‘cg—i+y£—§+2f3 Taking the product with & # 0, we get acf = x2 f1 . However, 22 € (z+y, 2y, x2)

and hence :Eg = 0. (1) As any regular sequence can be extended to a regular sequence of

maximal length depth(A,, )) (0.5) and (T +7%) C A, -) cannot be further extended, we
get depth(A(,, .y) =1 <2 =dim(A(,,.)). Hence, A, , .y is not Cohen-Macaulay. (0.5)

Exercise E. (Points: 4)
Consider the ring A := k[z] and the A-module M := coker (1)), where ¢p: A®2 — A®2 is given by the

matrix ¢ = ( :f:; }B ) Determine Ass(M) and Supp(M).



Solution:
Let us calculate the image of the canonical basis under v:

P(er) = (x—1)e1+(1—z)eg = (z—1)(e1—e2) and ¢(e2) = (1—z)e1+(x—1)ea = —(x—1)(e1—e2).
So that writing A%? ~ A(e; — e3) @ A(eq + e3), we get
M = coker(¢)) ~ k[z]/(z — 1) @ k[z]. (1.5)
Hence,
Ass(M) = Ass(k[z]/(x — 1)) U Ass(k[z]) = {(x — 1)} U{(0)}. (1.5)

As M is a finite A-module,

Supp(M) = Ass(M) = {(0), (z — 1)} = V((0)) = Spec(4). (1).

Exercise F. (Points: 2+2)
Describe explicitly Noether normalization for the k-algebras k[x,y, 2]/(zy) and k[z, z~1].

Solution:

(i) Assume A = k[z,y,z|/(xy) and consider the change of variables * = u + v and y =
u — v. Then k[z,y,2] ~ kf[u,v,z] and A ~ k[u,v,z2]/(u® — v?). Consider the natural ring
homomorphism i: k[u, z] = A. We claim it is injective. Indeed, if f € k[u, 2] is contained in
(u? — v?), then f(u,z) = (u? —v?) - g(u, v, z) and evaluating at v = u, we get f(u,z) = 0.
(1) Furthermore, ¥ € A is integral over i(k[u, z]), since 2 — @?> = 0. Thus, i(k[u, z])[0] ~ A
is finite over i(k[u, z]), which proves that k[u, z] < A is a Noether normalization of A. (1)

(ii) For A = k[x,27!] ~ k[x,y]/(xy—1): Consider the change of variables * = u+v, y = u—v
to get A ~ k[u,v]/(u? — v? — 1). Consider the natural ring homomorphism i: k[u] — A. We
claim it is injective. If f = Zj:o a;u’ € k[u] is contained in (u? — v? — 1), we can write
f = (u?—v?—1)-g(u,v). Evaluating at u = 0, we get ap = —(v? + 1) - g(0,v), which, for
degree reason, yields g(0,v) = 0. Hence, ag = 0 and g(u,v) = u - g1(u,v). Dividing by u,
we get 27:1 au™' = (u? —v% — 1)g1(u,v). Again evaluating at u = 0, we get a; = 0 and
g1 = ug2. By induction we get f = 0, i.e. i is injective. (1) Furthermore, v € A is integral
over i(k[u]) since 92 + (1 — @) = 0; thus i(k[u])[v] ~ A, which proves that k[u] < A is a
Noether normalization of A. (1)

Exercise G. (Points: 3)

Let a C Abeanideal and f: M — N an A-module homomorphism such that the induced A/a-module
homomorphism M/aM — N/aN is surjective. Assume that N is a finite A-module and show that
there exists an a € a for which M, — N, is surjective, where b = 1 + a.

Solution:

Let P = coker(f) and consider the exact sequence M LN P Tensoring with A/a

yields the exact sequence M/aM ENgY /aN — P/aP — 0, i.e. P/aP is isomorphic to the
cokernel of f: M/aM — N/aN, which is trivial by assumption. (1) Thus, P = aP. Hence,
by Nakayama lemma, there is a b = 1 + a, with a € a such that bP = 0. (1) Now, localizing

the first exact sequence with respect to b yields the exact sequence M, f# Ny, — P, — 0.
However, since % is a unit in Ay, the vanishing bP = 0 implies P, = 0, proving surjectivity of
Mb — Nb. (1)



