
Solutions for exercises, Algebra I (Commutative Algebra) – Week 12

Exercise 61. (Graded rings and modules, 3 points)

1. If the (ai)i∈I generate A as a A0-algebra, then they generate A+ as ideal since any
a ∈ A+ ⊂ A = A0[(ai)i∈I ] is a polynomial in some (finitely many) ai1 , . . . , ain with
coefficient in A0 and with 0 constant term (as a ∈ A+ is a sum of homogeneous elements
in graded pieces > 0).
Conversely if (ai)i∈I generate A+ as an ideal, then elements in A0 are certainly in
A0[(ai)i∈I ] (constant polynomials). If a ∈ A1 ⊂ A+ = (ai)i∈I then a =

∑n
k=1 αkaik

for some aik ∈ A1 and necessarily αk ∈ A0 for grading reason. So a ∈ A0[(ai)i∈I ]
i.e. A1 ⊂ A0[(ai)i∈I ]. So we can proceed by induction: let n ≥ 1 be such that Ak ⊂
A0[(ai)i∈I ] for any k ≤ n; then for any a ∈ An+1 ⊂ A+ = ((ai)i∈I), we can write
a =

∑n
k=1 αkaik for some aik ∈ A+ = ⊕j≥1Aj and necessarily αk ∈ ⊕0≤j≤n−1Aj for

grading reason. By induction hypothesis the αk’s are in A0[(ai)i∈I ]. So a ∈ A0[(ai)i∈I ]
i.e. An+1 ⊂ A0[(ai)i∈I ]. Thus by induction An ⊂ A0[(ai)i∈I ] for any n and taking sums
A = A0[(ai)i∈I ].

2. Let m1, . . . ,mn ∈ M be a set of generators of M as A-module, with mi ∈ Mdi . Let
a1, . . . , am ∈ A+ be a set of generators of A as A0-algebra, with ai ∈ Ari . By the first
question we have A = A0[a1, . . . , am]. Any element in M , a fortiori in Mk can be written∑n

`=1 b`m`, with b` ∈ A. For any 1 ≤ i ≤ n, bmi ∈ Mk if and only if b ∈ Ak−di . But
there are only finitely many monomials aα1

1 · · · aαm
m of total degree

∑
rjαj = k − di. So

Mk is generated over A0 by the aα1
1 · · · aαm

m mi, i = 1, . . . , n and
∑
rjαj = k− di; which

then form a finite set of generators.

Exercise 62. (Homogeneous ideals, 2 points)

1. Let us denote ai = a ∩ Ai for any i ≥ 0; by assumption a = ⊕iai and assume that a
is proper i.e. 1 /∈ a i.e. a0 ( A0. The group ⊕i≥0Ai/ai is a A0-algebra: 1 ∈ A0/a0 is
its unit since for any a ∈ Ai, 1a = (1 + a0)(a + ai) = a + aa0︸︷︷︸

∈a∩Ai=ai

+ai = a. For any

a ∈ Ai, b ∈ Aj , (a+ ai)(b+ aj) = ab+ aaj︸︷︷︸
∈a∩Ai+j=ai+j

+ bai︸︷︷︸
∈a∩Ai+j=ai+j

so a · b is well-defined

and in Ai+j/ai+j . Associativity and distributivity follows from the rules of A. So ⊕Ai/ai
is a ring; the A0-algebra structure is given by A0 � A0/a0.
Let us define f : A → ⊕i≥0Ai/ai, by

∑n
i=0 ai 7→

∑n
i=0 ai where ai are homoge-

neous. We have f(1) = 1. It is a ring homomorphism: it is sufficient to check it
with homogeneous elements a ∈ Ai, b ∈ Aj , c ∈ Ak; (a + ai)(b + aj + c + ak) =

a(b + c) + ( aaj + aak︸ ︷︷ ︸
∈a∩Ai+j+a∩Ai+k

) + ai(b+ c)︸ ︷︷ ︸
∈a∩Ai+j+a∩Ai+k

+ ai(aj + ak)︸ ︷︷ ︸
∈a∩Ai+j+a∩Ai+k

thus a(b+ c) = a(b + c)

i.e. f is a ring homomorphism. It is readily seen to be surjective.
If a =

∑
i ai, with ai ∈ Ai and Ai 6= Aj for any i 6= j, is in ker(f) then ai ∈ ai, for any i

i.e. a ∈ a. Conversely, if a ∈ a, write a =
∑

i ai, with ai ∈ Ai and Ai 6= Aj for any i 6= j;
as a is homogeneous, ai ∈ ai for any i so that f(a) = 0 i.e. ker(f) = a. So A/a ' ⊕iAi/ai.

Solutions to be handed in before Monday July 6, 4pm.



2. Let x ∈
√
a and write x =

∑n
i=1 xi with xi ∈ Aki homogeneous and k1 < · · · < kn.

We want to show that xi ∈
√
a, ∀i. We have xN ∈ a for some N > 0; we can write

x = xNn + y where xNn ∈ ANkn is the term of highest degree and y ∈ ⊕i<NknAi. Since

a is homogeneous, xNn ∈ a i.e. xn ∈
√
a. So x− xn =

∑N−1
i=1 xi ∈

√
a (as

√
a is an ideal,

in particular a group). So by induction, xi ∈ a, ∀i.

Exercise 63. (Proj, 5 points)

1. If every element of A+ is nilpotent, then A+ ⊂ ∩p∈Spec(A)p; in particular for any homo-
geneous prime p, we have p ⊃ A+ i.e. Proj(A) = ∅.
Conversely if Proj(A) = ∅, then any homogeneous prime ideal contains A+. If A+ 6=⊂ N,
take a ∈ A+\N; then one of the homogeneous components of a, say ai0 , is not in N. We
have D+(ai0) ⊂ Proj(A) = ∅ and since D+(ai0) ' Spec(A(ai0

) we get A(ai0 )
= 0. So in

A(ai0 )
⊂ Aai0 , 1 = 0 i.e. aki0 = 0 in A for some k ≥ 0; i.e. ai0 ∈ N; contradiction. Thus

A+ ⊂ N.

2. For k[x] = ⊕i≥0k ·xi, we have k[x]+ = (x). We know that Spec(k[x]) = {(0)}∪{(f), f ∈
k[x] irreducible}. Let f =

∑d
i aix

i ∈ k[x] be an irreducible polynomial (d = deg(f)).
If (f) is an homogeneous ideal, then since f ∈ (f), for any i, aix

i ∈ (f), in particular
adx

d ∈ (f). Since ad 6= 0 is a unit, xd ∈ (f) and since (f) is a prime ideal x ∈ (f); but
then a0 = f−x(

∑
i≥1 aix

i−1) ∈ (f) which, as (f) is a proper ideal, means a0 = 0 i.e. x|f .

Since f is irreducible, we must have f = x (up to scaling); thus the only homogeneous
prime ideals in k[x] are (0) and (x) = k[x]+. So Proj(k[x]) = {(0)}.

3. Let p ∈ Pnk = Proj(k[x0, . . . , xn]) be a closed point; then k[x0, . . . , xn]+ ( p i.e. there is
a f ∈ k[x0, . . . , xn]+ such that f /∈ p. Since k[x0, . . . , xn]+ is generated by (x0, . . . , xn)

there is a i such that xi /∈ p i.e. p ∈ D+(xi) ' Spec(k[x0xi , . . . ,
x̂i
xi
, . . . , xnxi ]) and it is a

closed point; thus a maximal ideal of k[x0xi , . . . ,
x̂i
xi
, . . . , xnxi ] and since k is algebraically

closed there is a n-uple (a0, . . . , âi, . . . , an) ∈ kn such that p = (x0xi −a0, . . . ,
x̂i
xi
, . . . , xnxi −

an) ⊂ D+(xi). But the contraction of (x0xi − a0, . . . ,
x̂i
xi
, . . . , xnxi − an) by k[x0, . . . , xn]→

k[x0, . . . , xn](xi) is (x0−a0xi, . . . , xi−1−ai−1xi, xi+1−ai+1xi, . . . , xn−anxi). So associa-
ted to (a0, . . . , ai−1, 1, ai+1, . . . , an) 6= (0, . . . , 0) under the map of the exercise; showing
that it is surjective.

Assume that for (a0, . . . , an) ∈ kn+1\{(0, . . . , 0)} and (b0, . . . , bn) ∈ kn+1\{(0, . . . , 0)},
we have (aixj − ajxi)i,j = (bixj − bjxi)i,j . Then for i0 6= j0, ai0xj0 − aj0xi0 ∈ (bixj −
bjxi)i,j . For degree reasons, ai0xj0 − aj0xi0 =

∑
i λi,j(bixj − bjxi) for some λi,j ∈ k.

Evaluating at xi = 0 i 6= i0, j0, we get ai0xj0 − aj0xi0 = λi0,j0(bi0xj0 − bj0xi0) thus
ai0 = λi0,j0bi0 and aj0 = λi0,j0bj0 . It is so for any pair (i0, j0).
Since (b0, . . . , bn) ∈ kn+1\{(0, . . . , 0)} there is a bi 6= 0. For simplicity, we can assu-
me b0 6= 0. Then for any i, j > 0, looking at a0xi − aix0 and a0xj − ajx0 we have
λi,0 = a0

b0
= λj,0 thus ai = a0

b0
bi (and aj = a0

b0
bj) for any i. If a0 = 0 then we get

(a0, . . . , an) = 0 so a0
b0
6= 0 and (a0, . . . , an) = a0

b0
(b0, . . . , bn).

4. The map ϕ : Proj(A) → Spec(A0) is given by p 7→ p ∩ A0 (induced by the ring
homomorphism A0 → A). Let a ∈ A0, it is homogeneous and ϕ−1(D(a)) = {p ∈
Proj(A), a /∈ p ∩A0} = D+(a) so ϕ is continuous.

Exercise 64. (Numerical polynomials, 4 points)

1. Since deg(
(
T
r

)
) = r (with

(
T
0

)
= 1) the family (

(
T
r

)
)r≥0 is a basis of Q[T ]. So any
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P ∈ Q[T ] can be written
∑

i ci
(
T
i

)
with ci ∈ Q. We have the identity(

T + 1

r

)
−
(
T

r

)
=

∏r1
k=0(T + 1− k)

r!
−
∏r−1
k=0(T − k)

r!

=

∏r2
k=−1(T − k)

r!
−
∏r−1
k=0(T − k)

r!

=

∏r2
k=0(T − k)

r!
(T + 1− (T − (r − 1)))

=

(
T

r − 1

)
.

If the numerical polynomial P has degree 0, since P (n) ∈ Z for n >> 0, this constant
term is an integer. So let d ≥ 0 be an integer such that all numerical polynomials of
degree ≤ d are of the desired form. Now, let P ∈ Q[T ] be a numerical polynomial

of degree d + 1. Since (
(
T
r

)
)r≥0 is a basis of Q[T ], we can write P =

∑d+1
i=0 cd+1−i

(
T
i

)
with ci ∈ Q. Now look at Q(T ) = P (t + 1) − P (T ) ∈ Q[T ]. It is a numerical poly-

nomial (for n >> 0, P (n + 1), P (n) ∈ Z) and Q(T ) =
∑d+1

i=1 cd+1−i(
(
T+1
i

)
−
(
T
i

)
) =∑d+1

i=1 cd+1−i
(
T
i−1
)

so Q has degree d. So by induction hypothesis ci ∈ Z for any i ≤ d.

Now take n >> 0 of the form n = (d + 1)!k (i.e. k >> 0) then P (n) = cd+1 +∑
i i = 1d+1cd+1−i

(d+1)!k((d+1)!k−1)···((d+1)!k−i+1)
i! where we see that (d+1)!k((d+1)!k−1)···((d+1)!k−i+1)

i! ∈
ZZ since i ≤ d + 1. So cd+1 = P (n) −

∑d+1
i=1 cd+1−i

(d+1)!k((d+1)!k−1)···((d+1)!k−i+1)
i! ∈ Z

for k >> 0 i.e. cd+1 ∈ Z; concluding the induction step.

2. Let us write Q(T ) =
∑d

i=0 cd−i
(
T
i

)
with ci ∈ Z by the previous question. Set P =∑d

i=0 cd−i
(
T
i+1

)
∈ Q(T ). It is a numerical polynomial. A direct calculation shows that

P (T+1)−P (T ) = Q(T ) and deg(P ) = deg(Q). So ∆f(n) = Q(n) = ∆P (n) for n >> 0.
Let n0 ∈ N such that foralln ≥ n0, ∆(f)(n) = ∆(P )(n) i.e. (f−P )(n+1) = (f−P )(n)
so ∀n ≥ n0, Z 3 (f − P )(n) = (f − P )(n0). Since P is a numerical polynomial P ′ =
P + (f − P (n0)) ∈ Q[T ] is also a numerical polynomial and f(n) = P ′(n) for n >> 0.

Exercise 65. (Grothendieck group, 5 points)

1. Notice first that for any additive function λ : C → Z, λ(0) = λ(0) + λ(0) since the
sequence 0→ 0→ 0→ 0→ 0 is exact so λ(0) = 0.
Notice also that if M ' N , λ(M) = λ(N) and [M ] = [N ] ∈ K(C) since then the iso-
morphism sits in the exact sequence 0→M → N → 0→ 0 (and we have seen λ(0) = 0).

If λ : K(C) → Z is a group homomorphism. Define λ : C → Z, C 7→ λ([C]). Since for
any short exact sequence 0 → M ′ → M → M ′′ → 0, [M ] − [M ′] − [M ′′] = 0 ∈ K(C),
we get additivity of λ.

Conversely, given an additive function λ : C → Z. We can naturally extend by additivity
λ to a group homomorphism from the free abelian group λ′ : ⊕M∈Obj(C)Z ·M → Z,
nM 7→ nλ(M). Then as λ is additive, M −M ′ −M ′′ ∈ ker(λ′) for any M,M ′,M ′′

appearing in an exact sequence 0→M ′ →M →M ′′ → 0. So the subgroup K generated
by such sums is contained in ker(λ′). So there is an induced group homomorphism
λ : K(C) ' ⊕M∈Obj(C)Z · M/K → Z. Moreover it is easy to see that the additive

function associated to λ is λ.

2. Define the group homomorphism ϕ : Z→ K(Vecfd(k)), 1 7→ [k]. Notice that for n > 0,
by induction and decomposing M⊕n into short exact sequence, [M⊕n] = n[M ] in K(C).
Like wise [M ⊕N ] = [M ] + [N ] in K(C).
Notice that for any M ∈ V ecfd(k), M ' k⊕d where d = dimk(M); thus [M ] ' [kd] =
d[k] in K(C). So ϕ is surjective.
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We can define a group homomorphism φ : ⊕M∈Obj(Vecfd(k))Z · M → Z, by (extend
linearly) M 7→ dimk(M). Then the subgroup K generated by the M ′ −M + M ′′ for
M,M ′,M ′′ appearing in an exact sequence 0 → M ′ → M → M ′′ → 0 is contained
in the kernel of φ. So there is an induced group homomorphism K(C) → Z. We have
φ ◦ ϕ = idZ so ϕ is injective.

3. C = mod(A0). The proof goes exactly as in the lecture notes; the only difference is the
use of C → K(C) instead of C → Z.

The exact sequence 0→ Kn →Mn
aN ·→ Mn+d → Cn+d → 0 can be broken in two exact

sequences : 0 → Kn → Mn
aN ·→ im(aN ·) → 0 and 0 → im(aN ·) → Mn+d → Cn+d → 0.

So [Mn] − [Kn] = [im(aN ·)] = [Mn+d] − [Cn+d] in K(C) which gives [Mn] − [Mn+d] =
[Kn]− [Cn+d] in K(C) (as with the additive function in the lecture notes).
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