Solutions for exercises, Algebra I (Commutative Algebra) — Week 3

Exercise 9. (Adjunction)
Let us define x : Homa (M, sAN) — Homp(M ®4 B,N) by ¢ — x(¢) = [m ® b+ bp(m)].
For ¢ € Homy (M, AN), x(¢) € Homp(M ®4 B, N): indeed for m,m’ € M and b,b',b" € B,

X(@) @' (meb+m' @b)) =x(e)(m@b"b+m'@b"V) = x(¢)(m @b"b) + x(p)(m' @b"b)
_ b"bap(m) + b”b’(p(m’)
=b"x(p)(m @b) +b"x(p)(m' @ V).

X is a group homomorphism: for ¢, € Homyu (M, 4N),

X(p =) = [m @b blp(m) —Y(m))] = [m b= bp(m) — byp(m))]
=[m®be x(p(m®b)) — x(¥(mb))]
= x(») = x(¥).

X is injective: if x(¢) = 0, then for m € M, we have 0 = x(p)(m® 1) =1 p(m) = p(m) so
e =0.

X is surjective: given ¢ € Homp(M ®4 B, N), let us define ¢ : M — N by m +— ¢p(m ® 1).
Then ¢ is clearly a group homomorphism and for a € A, and m € M, ¢p(am) = Y(am ®
1) = Yv(m® f(a)) = fla)p(m @ 1) = fla)p(m) so ¢ € Homy(M, 4N). Now, we have
X(p)=meb—=bp(m)|=Mmeb—bp(mx1)]=[Mmeb— Y(meDb)] =1.

So x is a group isomorphism.

The B-module structure on Homp(M ®4 B, N) is the structure seen in Exercise 7. For
any ¢ € Homy(M, A4N) and b € B let us define, using the structure of B-module on N,
by : m — bp(m); then by € Hom (M, 4N): for a € A and m,m’ € M,

bo(a(m + m')) = bp(am) + bp(am') = bf (a)p(m) + b (a)p(m')
— fla@)bo(m) + f(a)bp(m)
— a-bo(m) +a- bp(m')

Because of the structure of B-module on N, (it is easy to check that) the operation just
defined B x Homy (M, AN) — Homy (M, 4N) satisfies all the axioms required to give a B-
module structure on Hom 4 (M, 4N ).

Moreover, x(bp) = [m@b — V'bp(m)] = [mb +— bb'o(m)] = bjm@b" — b/p(m)] = bx(p) so
X is a homomorphism of B-modules (thus an isomorphism of B-modules) when Hom 4 (M, 4N)
is given B-module structure just defined.

The A-module structure on Homy (M, 4N) is the structure seen in Exercise 7. We give
Homp(M ®4 B, N) the A-module structure sHomp(M ®4 B,N). Then for a € A and
¢ € Homa(M, aN), x(a-¢) =[m@b— bla-p)(m)] =[m®b— bf(a)p(m)] =[mxb—
f(a)b(m)] = f(a)[m @b+ bp(m)] = a- x(¢) so x is a homomorphism of A-modules.

Solutions to be handed in before Monday April 27, 4pm.



Exercise 10. (Deducing exactness)
Let us start by proving that f o g = 0 i.e. that im(g) C ker(f): apply the assumption to
N = M3, we get that

0 — Hom(Ms, M3) 25 Hom(Ma, M) 2% Hom(M;, Ms)

is exact. In particular, idyz o f o g = 0 € Hom(M;, M3) ie. fog=0.
To prove the reverse inclusion i.e. ker(f) C im(g), apply the assumption to N = My /im(g):

0 — Hom(Ms3, My /im(g)) °of Hom(Ma, My /im(g)) =2 Hom(M;, My /im(g))

is exact. The exactness in the middle can be written ker(— o g) = im(— o f). Now, con-
sider the projection homomorphism 7 : My — Msy/im(g). We have m € ker(— o g) so
there is a ¢ € Hom(Ms, Ma/im(g)) such that @ = ¢ o f. Let mg € ker(f), we have
w(ma) = po f(ma) = ¢(f(ma2)) = ¢(0) = 0 i.e. mg € im(g). So we get ker(f) C im(g).
Hence ker(f) = im(g).

To prove that f is surjective, apply the assumption to N = M3/im(f):

0 — Hom(Ms, M3/im(f)) °of Hom(Ma, Ms/im(f)) 2% Hom(My, Ms/im(f))

is exact. Consider the projection 7w : M3 — Ms/im(f) € Hom(Ms, Ms/im(f)); we have of
course m o f = 0 € Hom(Mas, M3/im(f)) but since — o f is injective, we get m = 0 i.e.
M;/im(f) = 0 i.c. My = im(f).

Exercise 11. (Examples of exact sequences)

1. The map S is surjective: (my, —ma) € M) & Ms is a preimage of m; +mg € My + Mo.
The map « is injective: if a(m) = (0,0), then m = 0.
For m € My N My, we have S oa(m) = B((m,m)) =m —m =0 i.e. im(a) C ker(f).
Now, let (m1,mga) € ker(8), then m; — mg = 0 i.e. M; > m; = mg € My hence
m1 = mg € M N My. Thus (m1,ma) = a(my). So we get im(a) = ker(f).

We start by proving some properties of the sequence of the two last items that are
independent of f € k[z,y, z].

1 is surjective: by assumption, an element a € a can be written a = (x4 2)p+qy+rf
for some p,q,r € A so we have p1(p,q,7) = a.

We have @1 0 o3 = 0 i.e. im(p2) C ker(p1): for (p,q,7) € A3,

©10pa(per Aeg+qer Aes+rea Aeg) = o1((w + z)pez — yper + q(x + 2)es — qfer +yres —rfes)
=(@+2)py—yp(x+2)+(x+2)af —qf(x+2)+yrf —rfy
=0

We have @2 0 3 = 0 i.e. im(p3) C ker(yps): for p € A,

@2 0 p3(pe1 N ea Ae3) = pa((x 4 2)pea A ez — yper A ez +pfer Aes)
= (v + z)pyes — (z + 2)pfea — yp(z + 2)es + ypfer + pf(x + 2)ea — pfyer
=0

3 is injective: we have A3A3 ~ Ae; A eg A eg and the image of the generator is not 0
and A is an integral domain.



2. Let us show that ker(¢1) C im(p2): By a direct calculation (0, —z,¥), (—2,0,z+ 2z) and
(—y,z+2z,0) belong to ker(p;). By a direct calculation, we also see that (taking the basis
(e1 Aeg,e1 Aes,ea Aes) for A2A3) ¢9(1,0,0) = (—y, 2+ 2,0), v2(0,1,0) = (—2,0,z+ 2)
and 2(0,0,1) = (0, —z,y). So to prove the claim, it is sufficient to prove that (0, —z,y),
(—2,0,x 4 z) and (—y,x + z,0) generate ker(p1).

So let (p,q,r) € ker(yy) then

plz+2)+qy+rz=0. (*)
(Partially) evaluating @ at (x,y,0), we get p(x,y,0)x + q(x,y,0)y = 0 in k[z,y]. In
particular y|p(z,y,0) and z|q(x,y,0). So we can write p = yp + 2zp2 and ¢ = zq1 + zq2

for some polynomials p1,q1 € k[z,y] and pa, g2 € A. Looking back to the evaluation at
(x7y;0), we have xy(pl + Q1) =0so P1=—q in k[.’E,y]

Now, evaluating @ at (z,0, z), we get in k[x, 2],
0=p(z,0,2)(x +2) +7(x,0,2)z = 2((x + 2)p2(x,0, 2) + r(x,0, 2))

So (x+2)|r(x,0,2) i.e. we can write r = (z+2)r; +yry for some polynomials 7, € k[z, z]
and rp € A. Looking back to the evaluation at (z,0, z), we get 0 = z(z + 2)(p2(z, 0, 2) +
r1) in klz, z]. Thus py = —r1 + yps for some p3 € A.

Evaluating @ at (x,y,—x), we get in k[z, y],

0= q(l‘? Y, —.%‘)y - CC’I”(.’E, Y, —[L‘) = Iy(Ql(xv y) - QQ(xv Y, _1") - TQ(‘T’ Y, —SC))

so we can write g2 = q3 + (x + 2)q4, T2 = @1 — g3 + (x + 2)r3 for some g3 € k[z,y] and
q4,73 € A. At this point, we have:

p=p1y — 2r1 +yzps

¢g=-pix+z23+ (x+2)zq4
r=(x+z2)r1—(p1+a@)y+ylx+z2)rs

Now plugging it into (ED, we get p3 + g4 + 13 = 0.

p —y —2 0
Now check that [ ¢ | = —p1 |z +2 | —(yp3s—71) 0 —(p+a+(z+2)qa) | —2
r 0 T+ z Y

proving that ker(¢1) C im(p2).

Let us show that ker(ps) C im(p3): let (p,q,r) € ker(y2) then we have

0 D —py — qz
0] = o q =|(z+2)p—rz
0 r q(x+z)+ry

Looking at the first line: we get z|p and y|g; so let us write p = zp; and ¢ = yq;. Looking
again at the first line, we get p1 = —qi.
Looking at the second line, we get (x + z)|r so we can write r = (x 4 z)r. The second

b1z p
line again, gives p; = r1. So 3(p1) = —yp1 = [ ¢ | proving ker(y2) C im(p3).
p1(z+ 2) r

3. It is immediate to check that (1,—y,—1) € A3 (i.e. e — yea — e3) is in the kernel
of ¢y since (x + z) + (—y)y + (=1)(x — y* + 2) = 0. Suppose that the sequence is
exact. Then we have a (p,q,7) € A2A3 (i.e. pe1 A ea + ge1 A ez + rea A e3), such that
©2(p,q,7) = (1,—y,—1). On the first component, we get 1 = py — q(z — y*> + 2). But
evaluating the equality at (0,0,0) € k®, we have 1 = p(0,0,0) -0 — ¢(0,0,0) - 0 which is
absurd so the inclusion im(¢py) C ker(ipq) is strict i.e. the sequence is not exact.



Exercise 12. (Flat, free, projective)

1. Since A is an integral domain, the principal ideal (a) is a free module A L Aa = M as
A module (if ax = ¢(x) = 0 then = 0 and by definition an element = € M can be
written = = ay, with y € A, so z = ¢(y)).

2. Let us prove that k(x) is a flat k[x]-module. Let o : N < N’ be an injective homomor-
phism of k[z]-modules; we want to see that a @ idyy) @ N ®pjp) k(7) = N’ Qppy) k(2)

is injective [[[be careful; the proof in the previous version contained a mistake]]]. Let
20 ® L€ N @y k() such that @ idy) (32, ni ® B) = 0, then:

. Di . Di
D=a® ldk:(a:)(z n; & ;) =a® 1dk(x)(z n; ®k[a:] g)

. pi
a® ldk(x)(z ni Qklz] ﬁqkﬂk#q;ﬂ)

1
I qs

= a @ idye) (O piMerigr)ni Oyl )

1
= a(z Pi(Hpziqr)ni) ®pa Toar

i

Now look at the homomorphism of k[z]-modules p : k[z] — N given by f — f> . pi(Ip£iqx)n.
If oo p is injective, it gives an isomorphism of k[zx]-modules k[x] ~ im(a o p) =
(a(>>; pi(Mgziqr)ng)) (ie. im(a o p) is a free submodule of N'). Then im (a0 1) ®pa

k(x) >~ k[z] @y k(2) = k(z). In particular (D, pi(Mrxiqr)ni) @pla) Hqu =% 0; contra-
diction. So « o i is not injective and since « is injective, we get that u is not injective.

Its kernel is a k[z]-submodule of k[z] i.e. an ideal (the annihilator of ), p;(I1xiqr)n;)

and since k[x] is a principal ideal domain, ker(p) = (g) for some g € k[z]\{0}. Then we

have in N @, k(z):

Z Nj O[] an Ok[x] gp%

= Z n; ®k[x Hk’;ﬁszz

1
911k gy

1
91l qy

= gpi(Mpriqr)ni Qg

i

= 90> piMiriqr)ni) @iz

i

=0

el g

S0 a ® idy(y) 1s injective.

The k[z]-module k(z) is not projective. An easy way to see that is to use the following
fact:
Let P be a A—module. Then P is projective if and only if

*
dM ~ ®;c1A and an A—module N such that M ~ P& N ()

(i.e. P is a direct summand of a free module). To prove this, look at the surjective

morphism ®pepA 2 P given, on the component associated to p € P, by a — ap and
use the fact that P is projective to lift idp. Conversely, if P is a direct summand of
a free module ;A ~ P @ @, then the projection pp : ;A — P and the inclusion
ip: P — &®;Asatisfy ppoip =idp. Now let g : M — N be a surjective homomorphism
of A-modules, and f : P — N a homomorphism. Then fopp : A — N gives us



a homomorphism and since free modules are flat, there is a f’ : &;A — M such that
gof'=fopp. Now f'oip: P — M satisfies go f'oip = foppoip = f.

So if k(z) is projective, we should have, in particular, an injective homomorphism of
k[z]-module « : k(x) — @ierk[z] for some set I. Looking at one of its components
(compose « with the projection @;erk[z] — k[z]), we get a homomorphism of k[z]-
modules «; : k(z) — k[z]. Let us denote f = «;(1) € k[z]. If f # 0, it as finitely many
irreducible divisors so take g € k[z| irreducible not dividing f. We have gai(l) =

L

€klx]
ai(g%) = «;(1) = f so g|f. Contradiction. So «;(1) = 0. Thus (i was arbitrary), a = 0.
In particular there is no injection of k[x]-module from k(x) to a free k[z]-module. So
k(z) is not projective (in particular not free).

3. The injection M < A is a homomorphism of A modules. So (by definition of A), M is
a direct summand of the free A-module A and as such, it is projective (in particular it
is flat).

But M is not free: indeed M is a finitely generated non-zero A-module so if M is free,
there is an isomorphism of A-modules M ~ A? for a d > 0. But have dim;(A%) =
ddimy(A) = d(deg(f) + 1) > 1 = dimy M. Contradiction.

Exercise 13. (Long exact cohomology sequences)
Let us first prove that for any 4, the sequence

fi\ker(ai) Jilker(b;)
-

0 — ker(a;) ker(b;) ker(c;)

is exact. First, the sequence is well-defined:

For x € ker(a;), bi(fi(x)) = biofi(x) = fir10ai(x) = fi+1(0) = 0. Thus im(fijker(a,)) C ker(b;).
Similarly, using ¢; o g; = giy1 © b;, one sees that im(g;er(s;)) C ker(c;). So the sequence is
well-defined.

The restriction of an injective morphism to a subset is clearly injective (as composition of
two injective maps) so Jilker(a;) 18 injective.

As gi o fi = 0, by restriction gijker(v;) © fijker(a;) = 0 i-e. IM(fijker(a;)) € ker(giper(s;))- For
Y € ker(gijker(s;)) let z € M such that fi(z) = y (by exactness 0 — M’ — N* — P* — 0);
then fir1 0 ai(z) = bi(fi(x)) = bi(y) = 0 (y € ker(b)) so ai(x) € ker(fir1); but fir1 is
assumed to be injective so a;(r) = 0 i.e. € ker(a;) i-e. Im(fijker(a;)) = ker(Gijker(s;))-

Similarly, for any 4, the sequence:

M+ fim(a;) 75 N /im(b;) " P fim(e;) — 0
is exact. It is a well-defined since for # € M**! and 2/ € M?, firi(x + a;(z')) = fiy1(z) +
fiv1 0 ai(2') = fiy1(x) + bi(fi(2')). A similar calculation shows that g;17 is a well defined
——
eim(bi)

homomorphism of A-modules.

The surjectivity of g;+1 follows directly from the surjectivity of g;+1 so does the equality
Gir1 0 fir1 = 0 from g;11 o fiy1 = 0. The equality im(f;11) = ker(gi71) follows also from the
corresponding the corresponding equality before passing to the quotients.

For any 4, by assumption, we have: im(a;) C ker(a;41), im(b;) C ker(b;1+1) and im(¢;) C
ker(ci+1). So have the following commutative (follows from the commutativity b;o f; = fi+10a;,
¢i © gi = gi+1 o b;) diagram with exact rows:

0 Moo o2 po 0

T

f er(a g er
0 ——ker(ay) 1‘k—<>1)ker(bl) M>1)ker(cl)



Now go through the proof of the snake lemma and check that neither the surjectivity of
(what corresponds here t0) g;ker(s,) DO the injectivity of (what corresponds here to) fo were

used to construction of the boundary homomorphism § : ker(co) = HY(M®) — Coker(ag) =
ker(a1)/im(ag) = H'(M®) and neither were they used to prove the exactness of the induced
sequence; so the following sequence of A-modules is exact:

H(M®) — H°(N®) - H(P*) — HY(M®*) - HY(N*) — H(P*).
Moreover, we have also seen that H?(M*®) = ker(ag) — ker(by) = H°(N*®).

Using the preliminary discussion, and again that im(a;) C ker(a;+1), im(b;) C ker(b;+1) and
im(¢;) C ker(ciy1), we have, for ¢ > 1, the following commutative diagram with exact rows:

M fim(a;_) = N fim(bi_1) —%> P /im(ci_1) — 0

S 1]ker(

a;1) Gi+1lker(b;4 1)
0 —ker(ais1) — " ker(bipr) " ker(cit1)

By the previous remark (namely that the proof of the snake lemma presented in the lecture
requires less hypothesis than assumed in the statement) we get the following exact sequence:

HY(M®) — H'(N®) - HY(P*) — H"(M*) — HF(N®) = HTY(P*).

Exercise 14. (Direct limit)
Let us denote mps : &M; — hﬁMl the canonical projection.

1. For z € lim M;, take m € &;M; such that @ = mp(m). We can write m = >}, m;,
with m;, € M;,. By hypothesis, we can find a i1,i; < ¢ and next a i3, < ¢”. Then
i1, 12,13 < £”. So we see that by an elementary induction, we can find a £ € I such that
iy esdp < 0 Setm! =370 fie(mi,) € My. We have m—m/ = >0 mi, — fie(mi,);
in particular m — m’ € ker(my) so mp(m') = .

2. Let us begin by proving the following fact:
Let m € M; Nker(mys), then 35 > ¢ such that fi;(m) =0 ¢€ M; (*)

For such m € M; Nker(m), we can write m =Y, i, — fi, j. (ni, ) for some elements
ir < jr (k=1,...n)of I and n;, € M;, . Since we have a direct sum (@;M;), and
m € M;, in the previous sum, all the terms that are lying on a M; with [ # i have
to vanish. So let us reorganise the sum: m = >} ni, — fij.(ni,) = D wp, where
wp,, € My, , the p;’s are chosen among Uy_, {is, j¢} and wp, = 0 for pj, # i (so in the sum
there is just m = w;). Let us choose r € I such that r > ji > i for any k € {1,...,n}.

Then
fir(m) = fir(wi) = fir(wi) + > forr(wp,) .
PR g (0)=0

Now, each wy, is of the form Y n, — Y fop, (ng) for some n, € M, and ¢ < p; and

ng € My; 50 fpur(Wp,) = X foer(Ma) — D fprr © foqpe (Ng) 50 We can reorganize terms as
follow:

fig(m) = fir(w;) + Z Sorr(wp,,) = Z Sorr (Wpy,)

PrFl

= Z Jirr (M) = Fier © fir g (0,
k=1

= Z fiwr(niy) = fipr(niy,)
k=1

= 0 proving the fact.



Now, let (g; : M; — N)ier be a system of homomorphisms of A-modules, such that
gi = gj o fij for any ¢ < j. Define a map g : lim M; — N by z — gi(m) where m € M;
is such that 7/ (m) = = (which exists by the first question).

Let us first prove that it is well-defined. For x € li_ngMi, let m € M; and m’ € M; such
that mar(m) = & = mpr(m'). Pick a i,j < k then by definition m — fir(m) € ker(mar),
m/ — fi(m') € ker(mps) and by assumption m —m' € ker(mar) so fir(m) — fin(m') €
ker(mpr) N My. By (), there is a £ > k, such that fie(fir(m)— fjr(m’)) = 0 € M, which
can be written fjo(m) = fj/(m’). So we get

gi(m) = ge o fie(m) = ge(fie(m)) = ge(fje(m")) = g;(m)

so the map g is well-defined. Now for x,y € hﬂMZ and a € A, pick m € M; and n € M;
such that mps(m) = 2« and mpr(n) = y. Choose k > i, j. We have a( fix(m)+ fjr(n)) € My,
and

T (a(fir(m)+fik(n))) = mar(a(m+n))+mar (al fi(m)—m+ fir(n)—n)) = ma(a(m+n)) = a(z+y)

so g(a(z+y)) = gr(al(fir(m)+ fjk(n))) = agko fir(m)+agio fix(n) since gy and f, fik
are homomorphism of A-modules and since m(fir.(m)) = x, Ty (fju(n)) = y, the pre-
vious equality can be written g(a(z +y)) = ag(z) + ag(y). So g is a homomorphism of
A-modules.

Let h : lim M; — N be another homomorphism of A-modules through which the system
(g:) factorizes. For x € lim M;, take m € M; lifting = i.e. f;(m) = mpr(m) = x; we have
h(z) = h(f;(m)) = g;(m) since h factorizes (g;); but by definition of g, g;(m) = g(z)
thus h = g hence the uniqueness of the homomorphism factorizing (g;).

Now, let (g; : M; — N);er be a system of homomorphisms of A-modules, for which there
are ig < jo such that g;, # gj, © fiyjo- Assume there a homomorphism g : thz - N
factorizing (g;). By assumption, there is a m € M;, such that g;,(m) # g, © fiyjo(Mm).
Then for z = mp(m) = fi,(m), we have on one hand g(z) = g(fi,(m)) = gi,(m) and
on the other, z = 7"-]\4(fi0j0(7n) +m — fiojo(m)) = WM(fiojo(m)) = fio (fiojo(m)) S0
9(z) = g(fio(fiogo(m))) = gjo (figjo(m)). Thus g(z) = gi,(m) # gj (finjo(m)) = g(z). So
there is no such map g.

. The sequence exists because the homomorphisms in each exact sequence commute with
the homomorphisms in the directed systems. For example, denoting «; the homomor-
phism M; — N, for each ¢, and @; : M; — ligNk the composition 7wy o a; = fZN o oy,
we have for any ¢ < j,
— M N M N
ajofij =fi oajofiy =[f; o

N _ N
ij O —TFN\NJ- Of” O

N . .
=nano( fij —iday, +idag)oaq;
N——
im(—)Cker(mn)
=TN|M; © %

N _
:fi Oy = Qy

So by the universal property there is a unique homomorphism of A-modules « : hﬂ M; —
lim V;.

[%t us denote ; the homomorphism N; — P; for each ¢, and (3 : liﬂNi — lignPi the
homomorphism given by the universal property.

o is injective: let x € lim M;, such that a(r) = 0. Take m € M; (by item 1) lifting
z. Then 0 = a(z) = a(fM(m)) = 7n o a;(m). By , there is a j > ¢ such that
fg(az(m)) =0 but a; o fz.]}./[ = sz\f o a; by hypothesis; so a; o fy(m) = 0. But since a;
is injective (exactness of the j"-sequence), we get fy(m) = 0. So projecting to hﬂMi,
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we get x = 0.

im(a) C ker(B): let z € lim M; and m € M; lifting x. Then a;(m) € N; lifts a(z) and
B; o aj(m) = 0 by assumption (exactness of the i*"-sequence). So we get S(a(x)) = 0.
ker(8) C im(«): let € ker(8) and n € N; lifting x. We have wp(8;(n)) = 0. By
, there is a j > 4 such that llj(ﬁl(n)) = 0 € Pj; using the commutativity we get
Bi( l]]V(n)) = 5(51(”)) = 0. By exactness of the j'-sequence, there is a m € M;, such
that aj(m) = ,L]]V(n) Since my(n) = 7 ( zjjv(n)), we get a(y) = x for y = mpr(m).

B is surjective: let y € lignPZ- and p € P lifting y. By exactness of the i*"-sequence,
there is a n € N; such that 8(n) = y. Then S(z) =y for x = mn(n).



