Solutions for exercises, Algebra I (Commutative Algebra) — Week 6

Exercise 27. (Basic open sets)
Let p € Spec(Ay), then a ¢ f~!(p) (otherwise, f(a) € p and since, by definition of the
localization, f(a) is invertible in A,, we would get p = (1); contradiction) i.e. f~*(p) € D(a).
So ¢ factorizes through i : D(a) < Spec(A) i.e. ¢ =io01 for a map 1 : Spec(A,) — D(a).
If q € D(a), then f(q)¢ € Spec(4,) and f~1(f(q)¢) = q (i.e. ¢ is surjective): indeed if
a’v % € f(q)¢ we can write

%i -4 in 4,

a®a™ a™
for some g € qi.e. a‘(a"bc— qak+”) =0 in A for aome £ > 0. So we have a/*™bc = a!Ft7q
q7 but since a gé q and q is prime, we have bc € q. Thus either b 6 q or c € q i.e. either
ak € f(q)¢ or % € f(q)°. Moreover if 1 € f(q)° then we can write 1 = - in A, for some

k>0and ¢ € qie af™ =a™q € q; but since ¢ is prime, we get a 6 q; contradiction. So
1 & f(a)°. Thus f(q)° € Spec(Aq).

Now, since f(q) C f(q)¢, we have ¢ C f~1(f(q)¢). Conversely if b € f~1(f(q)¢) then
f(b) € f(q)¢ ie. % = f(b) = J in A, Thus a**"h = a"q € q and since q is prime and
a¢q,beq. Soq=f""(f(a))

For any q € Spec(Ay), f(f71(q))¢ = q: indeed, we have by definition, f(f~1(q)) C q so that
f(f1(q)° c q. Conversely, take IL € q, we have ¥ = aka% € qie f(p) =% € q. Thus

p € f~(q), consequently L € f(f(q ))
The map 1 is injective: mdeed if f=Y(p1) = f~(p2) for p1,p2 € Spec(A,). Then by the
above discussion p1 = f(f~1(p )) =f(fXp )) = po2. Thus 9 is a bijection.

The open subset D(a) c Spec(A) is endowed with the induced topology (i.e. the open subsets
of D(a) are exactly of the form i~1(U) for an open subset U). By Lemma 9.9, ¢ is continuous
and ¢ = i01). So for an open subset V C D(a), write V = i~1(U) for an open subset U thus
V) =9y~ (i (U)) = ¢~ 1(U) is an open set i.e. 1 is continuous.

Now let D(a%) C Spec(A,) be an open set with b € A and k > 0. We have D(%) = D(a%)
since a” is invertible.

Then we have 1(D(%)) = D(b) N D(a) = D(ab): indeed, if 2 ¢ p then b ¢ f~1(p) so
¥(D(%)) ¢ D(b) and by definition of 1, ¥(D(2)) C D(b) N D(a). Conversely, if ab ¢ q then
if 2 € f(q)¢, we have 2 = -L for some ¢ € q and m > 0 i.e. a™ 4" = a"q € g. Since q is
prime and does not contain a, we get b € q; absurb. So aTb ¢ f(q)°. In particular % ¢ f(q)°.
Thus (D(%)) = D(b) N D(a).

As a conclusion % is a bijective and open continuous map so it is a homeomorphism.

Exercise 28. (Consecutive localization)
As A\py C A\py, for any t € A\py, * € Ay, is invertible. So let us define g : Ay, — Ay, by

¢ — ¢. It is a well-defined map: indeed if ¢ = %,/ in Ay,, we have t’(at’ — a’t) = 0 in A for
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some t” € A\pg; but since t,t',t" € A\pa C A\p1, the equality t"(at’ — a’t) = 0 in A tells us

that ¢ = &
t = v

We have g(14,,) = g(%) = % = lAp and it is easy to check the rest of properties to show

that g is a ring homomorphism

Moreover given a § ¢ p1Ap,, we can choose a representant such that s € A\p; and t € A\po,

then g(7) = 7 is invertible in Ay, by definition. Thus g(Ay,\p14p,) C A5,

Let us prove that g is in fact the localization Ap, — (Ap,)p;4,,. Consider a ring homo-

morphism f : Ay, = B (B # 0) such that f(APQ\plApQ) C B* ie. for any s € A\p; and

in Ap,.

t € A\pa, f(2) € B*. Let us define f : Ay, — B by ¢ — f(%)f(¥)~". We know that f(%)
is invertible for any * € Ap,\p14p, and for ¢ = ‘;, in Ay, since t"(at’ — a't) = 0 in A for

some t” € A\py, we get f(%)(f/(%)f(tfll) — f(“T/)f(%)) = 0 in B which, as f(%) is invertible,

can be written f(%)f(%) = f(%)f(%) € B and since f(%) and f(%) are invertible in B, we

get f(4)f(5)~ = f(%/)f(%)*l in B; so f is well-defined. It is not difficult to check that f
is a ring homomorphism and for ¢ € Ap, (t € A\p2), f(9($)) = f($) = F($)f(E)~! but
since L € A,, is invertible we have 1= fGY = fhfi) ie f(3) = f(4)7! € B. Thus
() =fDFH " =f(§) e f=Ffog.

Now, if h : Ay, — B is a ring homomorphism such that h o g = f. Then for a € A,
h(%) = h(g(%)) = f(%) in particular since for ¢ € A\py, f(%) is invertible, h(L) = (%)
invertible (and £ € Ay, is invertible, so h(1) = f(£)71). Thus h(%) = f(9)f(L)~1 = f(2) ie
f factors uniquely through g.

So g : Ay, — Ay, satisfies the universal property of the localization Ap, — (Ap,)p, 4,,; thus
it is the localization.

Exercise 29. (Comparing basic open sets)

If ) # D(a) C D(b) then {p, a ¢ p} C {p, b ¢ p}. If © € A, is not a unit, it is contained in
a maximal (thus prime) ideal m C A,. Using D(a) ~ Spec(A,) we see that a ¢ m (or more
precisely the contraction of m in A) but b € m (or more precisely the contraction of m in A),
contradicting D(a) C D(b). Thus 2 € A, is a unit.

Conversely, assume 2 € A4, is a unit (and a ¢ 9N otherwise D( ) =0 C D(b) is trivial). Let

a ¢ p with p € Spec(A). If b € p, we get ‘llb € pA,. But since ¢ E A, is a unit by assumption

and § € A, is a unit by construction of the localization, “Tb € pA, tells that pA, is not

a prime ideal (and A, # 0 since a ¢ 1), contradicting Spec(A4,) ~ D(a). Thus b ¢ p ie.
D(a) = {p, a ¢ p} C D(b) = {p, b p}.

bf) L Tt is well-defined: if % = %

T
Y) =0 € A, but since 2 is a unit,

If € A, is a unit, define g : 4, — A, by & —
then br(bfx —bFy) =0 € A. In partlcular T(bT
£ k

Yo _ WU A, Thus 2(%)1 =¥(%)"1 € A,
It is a ring homomorphism: g(1,4,) = g(%) = % = 14, and check additivity and g respects
products.

Moreover g(§) = § € Aq is invertible in A,. Denoting f : A — Ay, a direct calculation shows
that go f: A — A, is given by x — 7.

z _
1

If D(a) = D(b) then ¢ € A, is invertible and 2 € A, is also invertible. Let us prove that g is

an isomorphism of rings. g injective: if F( f)’ = g(3%) = 0 € A, then since % is a unit in

Ag, £=0€ Ay ie. a®z =0 € A for some n > 0. Thus %2 =0 € Aj. But %% = (4)"2 and
1 is a unit in Ay, so 7 = 0 € Ap. In particular b% =0 € Ay i.e. g is injective.
a

g surjective: since ¢ € A, is invertible, we get 1 = g(1) = g((%)7'%) = g((%)"1)g(%) =
g((£)71)% as g is a ring homomorphism. Thus g((%£)~!) = g(¢)~' = (4)7! =1 € 4,. So for
= € Aq, we have g(((9)™HFL) = g((9) "Mk = aik% = “%. Thus g is surjective.



[the wording of the exercise should have been more precise: A, L Ay with f() = ¢ and

f74(%) = %] Now assume that there is such a ring isomorphism f : A, — A, We have

)y = f(9)f(L) = f(¢L) = f(1) = 1 thus ¢ is a unit in A,. By the first part of the
exercise D(b) C D(a

Likewise, 2 1(3) = f‘l(%)f_l(%) = _1(%%) = f~1(1) = 1 thus ? is invertible in A,. Using
again the ﬁrst part of the exercise D(a) C D(b).

Exercise 30. (Disconnected Spec(A) and idempotents)

If Spec(A) is disconnected, we can write it as disjoint union of two closed subsets Spec(A)

V(a)[IV(b) for a,b C A ideals such that V(a) # 0 and V(b) # (). So we have Spec(A)

V(a) UV (b) =V(anb) ie. for any p € Spec(A), anb Cpie anbcC N

We have ) = V(a) NV (b) = V(a + b) i.e. no prime ideal contains a + b; since any proper

ideal is contained in a maximal (thus prime) ideal, a + b = (1). So we can write 1 = a + b,

foraa € aand ab € b. We have ab € anb C M ie. (ab)” = 0 for some n > 0. Now,
n—1

1= (a+b)"=a"+0b"+ (ab) Z a'~1p"~"1 and as aby is nilpotent, 1 — aby is invertible. Let
i=1

=y
us denote z its inverse. We have

za" = (za™)(2(1 — aby)) = (2a")(z(a" + ")) = (za™)* + (2%a™D") = (za™)>.
=1
So za™ is idempotent.
As a € a C p for at least one prime p € Spec(A) (V(a) # 0), za™ € a cannot be a unit (in
particular cannot be 1). Moreover if za™ = 0, as z is invertible a™ = 0; thus 1 = "+ (ab)y and
aby is nilpotent. So ™ (in particular b) is a unit. Thus b = (1); contradiction with V' (b) # 0.
So za™ is an idempotent # 0, 1.

Conversely, if there is a e € A\{0, 1} idempotent, then (1—¢)? = 1—2e+e?=1—esol—eis
also idempotent. We also have (1—e)e = e—e? = 0. Let us denote p : A — A/(e) the quotient
by the principal ideal generated by e. Let us define s : A/(e) — A by T +— (1 — e)z where for
T € A/(e), © € A designates any element such that p(z) = Z. The map s is well-defined: if
p(y) = p(x) = T, we can write y — x = ez for some z € A; then

(I-ey=(1—-e)xz+(l—e)ez=(1—e)z+0-2=(1—e)z.
It is not difficult to check that s is a homomorphism of A-modules. Moreover

pos(@) =p((l —e)r) =p((1 —e)z +ex) =p(z) =7

as ex € ker(p). Thus s is a section of the surjective homomorphism of A-modules p i.e. the
exact sequence
0—()—>A—>A/(e) >0

splitsi.e. A = (e)®A/(e) as A-modules. Now, we see that s identifies A/(e) with the principal
ideal (1 —e) C A: by definition im(s) C (1 — e) and the equality p o s = id () shows that
P(1—e) : (1 =€) = A/(e) is surjective. If z € ker(p) N (1 —e) then x = (1 —e)y for some y € A
and p(x) =0 i.e. z € (e), so let us write = ez for some z € A. Then

(1—e)x=(1—e)ez=0and ex =e(l —e)y =0 thus z = (1 — e)x + ex = 0. (*)

So pj(1—¢) is injective i.e. induces an isomorphism of A-modules (1 —e¢)
(1—e) ~ (e) x (1—e) as A-modules. But for any 7,5 € A/(e), s(zy) = (1—e)zy = (1—e)?zy =
(1—e)z-(1—e)y=s(T)s(y) and in particular s(Z) = s(1-x) = s(1)s(Z) = (1 — €)s(T). So s



carries the ring structure of A/(e) to (1 —e) with 1 — e as the unity of (1 — e) (associativity
and distributivity are inherited from the corresponding properties for A/(e)).

The ideal (e) as also a ring structure, e being the unity: for any z,y € A, ex-ey = e“zy = exy
and in particular e - ex = e?z = ex (associativity and distributivity are inherited from the
corresponding properties for A).

Moreover, those ring structures are compatible with the ring structure of A:

zy=(1—-ez+ex)((1—ey+ey) =(1—ezy+2(1—eexy+eay= (1 —e)zy + exy.
=0

Thus the decomposition A ~ (e) x (1 — e) is actually a decomposition as rings.

Now looking at p : A — A/(e) we have Spec(A/(e)) ~ V(e). the projection on (e) is just
given by x — ex. Whose kernel is (1—e): if ez =0thenx = (1—e)z+ex = (1—e)z € (1—e).
On the other hand for any y € 4, e(1 —e)y =0-y = 0.

Thus Spec((e)) ~ V((1 — e)). Since by @, (e)N(1—e) =0 C MNyespec(a)p; we get V(e) U
V(1—e)=V((e)N(1—-e)) = Spec(A).

Moreover, V(e)NV(1 —e) = V((e)+ (1 —e)) and 1 = e+ (1 —¢€) € (e) + (1 — e). Thus
(e)+(1—e)=Aie V((e)+ (1 —e)) =0. As a conclusion: V(e) [[V(1 — e) = Spec(A).

Exercise 31. (Irreducible Spec(A))

< Since (D(a))qeA is a basis of the Zariski topology, it is sufficient to see that D(a)ND(b) #
() for any pair of non-empty D(a), D(b). So let D(a) # 0 and D(b) # 0. If D(a)ND(b) =
(), we have D(ab) = ) i.e. ab € p for any p € Spec(A) i.e. ab € MNpespec()P = . By
assumption, either a € M or b € N i.e. either D(a) = 0 or D(b) = . Contradiction.
Thus D(a) N D(b) # (.

= If ab € M = Nycgpec(a)h, then V(ab) = Spec(A) i.e. D(ab) = . But D(ab) = D(a) N
D(b). Since the Zariski topology on Spec(A) is irreducible, D(a) = ) or D(b) = @) which
means a € MNyespec(A)P = N or b € Nyegpec(a)p = N. Thus N is prime.

Exercise 32. (Idempotent ideals)

(i)=(ii) As A/a is projective, it is in particular flat. We have the exact sequence

0—sabAB A/a—0 (*)
and since A/a is projective, the exact sequence splits Ala
Ve
e \LidA/u
#
0 a A Ala 0

ie. A~a® A/a as A-modules. So there is a (projection) surjective homomorphism of
A-modules 7 : A — a. Thus a is finitely generated (by m(1)).

(ii)=(iii) By assumption a is a finite A-module and since a is an ideal, a> = a - a C a. Now since
A/a is flat, tensoring the exact (ED with A/a gives the exact sequence

0 awA/a— A/a’2 AJaws AJa— 0.

Now using the tensor identity (4) M ® A/a ~ M/aM, we get a ®4 A/a ~ a/a® and
Ala®q A/a ~ A/a. Moreover p®id : AJa ~ A® AJa — AJa ~ A/a® A/a is the
identity a ® p(b) = 1 ® a - p(b) = p(a)p(b) = p(ab) — 1 ®@ p(ab) = p(ab). In particular
its kernel is 0. But the exactness of the above sequence tells us that a/a? = ker(p ®id);

thus a/a? = 0i.e. a = a’



(i) = (iv)

(iv)=(v)

Since the finite A-module, a satisfies a-a = a, Nakayama lemma (ii) givesusab € 1+a
such that ba = 0. Write b = 1 — o with a € a. For any a € a, we have (1 —a)a =0 i.e.
a = aa. Hence a C (o). But since a € a, (o) C aie a=(a).

Moreover, we have in particular (since o € a) @ = a - a = o? i.e. a is idempotent.

We have the inclusion i : a C A so we only have to define a projection 5 : A — a such
that 8 o = id, to prove that a is a direct summand. Let us define §: A — a = (e) by
a +— ea. It is obviously a homomorphism of A-modules and poi(ea) = p(ea) = e%a = ea.
So 3 shows that a is a direct summand.

Let us denote 8 : A — a a projection (i.e. foi = idq for i : a — A the natural
inclusion) exhibiting a as direct summand. Then the exact sequence @ splits: define
a:Ala— Aby ar— a—i(S(a)) where for @ € A/a, a € A designates any element such
that p(a) = @. It is well-defined: if a, A" € A satisfy p(a) = p(a’) then a — o’ € a so we
can write a — a’ = i(a — a); thus

a—ad —i(Bla—d))=a—ad —iofoilfa—d)=a—d —i(a—d)=0€ A
-

ie.a—1i(B(a)) =d —i(B(d)).
It is easy to prove that « is a homomorphism of A-modules. Moreover for @ € A/a,
poa(a) =pla—i(B(a))) = p(a) =@ thus poa = id,.

——

€a
So A~ad A/a as A-modules. Thus A/a is a direct summand of the free module A, as
such it is projective.



