Exercises, Algebra I (Commutative Algebra) — Week 8

Exercise 38. (Going-up property, 3 points) o

Let us begin by proving that for a prime ideal p € A the closure {p} of the point p € Spec(A)

is V(p):

By definition, we have {p} = N C. In Zariski topology, we get {p} = va(a)'
a

tr}cC,
CCSpec(A) closed

For any a C p, if ¢ € V(p) i.e. p C g, we have in particular a C q hence V( ) C V( ).
Thus V(p) C QpV(a). Obviously p € V(p) and V(p) is closed, so va(a) V(p) ie.
a a

Vip) = Vi) =Y.

(<) Assume ¢ is closed. Let q € Spec(B) and set p = q° = ¢(q). Then ¢(V(q)) is a clo-

sed subset of Spec(A) containing p. Thus V(p) = {p} C «(V(q)). In particular, for any
p C p’ € Spec(A), the 1nclus1on of ideals translates into p’ € V(p), which yields p’ € ¢(V(q))
i.e. there exists a q C ¢’ € V(q) such that ¢"“ = p’.

(=) We want to prove that ¢(V (b)) is a closed subset for any ideal b C B. First, if b = q is
a prime ideal, then setting p = ¢(q) = q¢, we have the easy inclusion ¢(V(q)) C V(p). For a
p’ € V(p) (i.e. p C p’), by the going-up property, we can find a ' € V(q) such that p’ = p(q').
So V(p) C p(V(q)) ie. (V(q)) = V(p). Thus ¢(V(q)) is a closed subset of Spec(A).

Let us prove that any Noetherian topological space can be written as a finite union of irre-
ducible closed subsets: Let X be a Noetherian topological space. Let us denote S the set of
closed subset of X not satisfying the property. If S # ), we can find a V' € S which is minimal
in S: indeed start with a V] not satisfying the property. If it is not minimal, we can find a
closed subset Vo C Vi not satisfying the property and if V5 is not minimal, we can repeat
the procedure to get a descending chain of closed subsets ---V,, C --- C Vo C V4. Since X is
Noetherian, the chain becomes stationary V,, = Vi for any k& > n. Then V,, is minimal.

Since V' cannot be written as a finite union of irreducible closed subset, it is itself not ir-
reducible so write it as V = 7 U (5 for two closed subsets satisfying C’l cV,i=1,2
As V' is minimal, C; ¢ S, i = 1,2 so we can write C; = Ukzlw,k where W; ;, C C; are clo—
sed irreducible subsets. But then V = Upl Wy ,UU2  Wa i, contradicting V € S. Thus S = 0.

In Spec(A) (for any ring A), V(a) is an irreducible closed subset if and only if v/a is a prime
ideal.

If \/a is a prime ideal, let aj, as be ideals such that = V(y/aa) = V(a) = V(a1) U V(az) =
V(ap Nag). Then we have a; Nay C /ag Naz = v/a. If a;\v/a # 0 and as\v/a # 0 then take
a; € a;\va # 0 and as € as\v/a # 0; we have ajas € a; Naz C +/a; contradicting v/a prime.
Thus either a; C /a (which yields \/a; C v/a) or az C y/a (which yields y/a; C v/a). Together
with V(a;) C V(a) (by assumption), we get /a = y/a; or v/a = \/az i.e. V(a) = V(ay) or
V(a) = V(ag).

Conversely, if \/a is not prime, take a,b ¢ \/a such that ab € \/a. As a ¢ \/& = Nacyp, primeP
there is a prime ideal a C p, not containing a. Thus (a) + a C p,, in particular V((a) + a) C
V(a). Likewise, V((b) +a) € V(a). But V((a) +a) UV ((b) +a) = V(((a) +a)-((b) +a)) =
V((ab) +a) =V (a). So V(a) is not irreducible.

Solutions to be handed in before Tuesday June 2, 4pm.



Putting things together, let V(b) C Spec(B) be closed subset. As B is Noetherian, B/b is
also Noetherian. So V(b) ~ Spec(B/b) is a Noehterian topological space and as such can be
written as a finite union of irreducible closed subsets, which, by the discussion above, are of
the form V'(q) for some prime ideal b C q. So we can find prime ideals q1, ..., q, containing b
such that V(b) = U,V (q;). Then p(V (b)) = (U, V(qi)) = Ul 1¢(V(q;)) which is closed
as finite union of closed subsets (by the first point) V'(qf).

Exercise 39. (Cusp, 4 points)

First y?—a? is irreducible in k(x)[y]: indeed assume we can write y? —z% = (y—p(z))(y—q(x));
then p(x) + q(z) = 0 and p(x)q(z) = —23 ie. p(z) = —q(x) and ¢(x)? = 2> € k(x); but
23 is not a square in k(z). So y? — 2? is irreducible in k(z)[y], a fortiori in k[z,y]. Thus
A = klx,y]/(y? — 23) is integral.

Since z ¢ (y* — 2®) (for degree reasons), T # 0 in A thus £ € Q(A). A direct calculation

72 — — —
shows that £° — 7T = yQ,Q = 0so T? — x € A[T] annihilates £ i.e. £ is integral over A.

Assume % € A; then there is a p € k[z,y] such that p € A satisfies p?> — Z = 0 i.e.there is a
q € k[z,y] such that p?> — z = (y?> — 23)q. Looking at (0,0), we see that p has zero constant
term.

Let us define, now f : k[x,y] — k[t], by o + t2, y +— 3 (extend by k-algebra rules). By direct
calculation (y? — %) C ker(f). So that f(p)? —t? = 0 in k[t]; which gives f(p) = t. But im(f)
contains no element of degree 1. So there is no such p i.e. % ¢ A. Thus A is not normal. In
particular, we cannot have A ~ k[t] as rings.

Now, let p € ker(f), and let us write the division of p by 3? — 2 (in fact in k(z)[y] and
use that y* — 2® is monic), p = (y* — 2°)g + r in k[z,y], with deg,(r) < 1. So we can write
r = ri(x)y + r2(z). Taking the image by f, we get 0 = f(p) = f(r ) = r1(£2)t3 + ro(t?); but
any monomial of 71(¢?)t3 has odd degree and any monomial in r(¢?) has even degree. Thus
r2(t?) = 0 and r1(t?) = 0 so (writing down the coefficients) 71 = 0 = 73 i.e. ker(f) = (y* —23).
Thus there is an induced injection f : A < k[t].

We get from that and the universal property of localization (look at the composition A <
klt] < E(t)), a field extension (by abuse of notations, let us denote it the same way)

T Q(A) = k(). In k[t] — k(t), we have ¢t = §<y> F(Z). Thus 2 — F(T) = 0 in k(t)

i.e. t is algebraic over Q(A). But since T? — f(z) € f(A)[T], the identity says that ¢ is integral
over A ~ f(A), so A < klt] is integral (Prop 11.6).

We get a map ¢ : Al — Spec(A) =V (y* — 23) € MaxSpec(k[z, y]).

Assume from now on, that k is algebraically closed.

For A € k, v — X2,y — A3 € f71((t = \)) since 2 — X2 = (t — A\)(t + A) and t2 — \3 =
(t—N)(t2 =M+ A2). Thus (z — X2,y — A3) € f~1((t = N)). But (z — A2,y — \?) is a maximal
ideal in k[z,y] so (x — A2,y — A3) = f~1((t — \)). Thus the restriction of ¢ to the MaxSpec
is given by ¢’ : MaxSpec(k[t]) — MaxSpec(k[z,y]), A = (A2, A\3). It is easy to see that the
fibers of ¢ (once (A2, A3) given, A = A3/\?) consist of one point when they are not empty.
So we get a bijection ¢’ : MaxSpec(k[t]) ~ MaxSpec(A) but as we have seen by the failure of
A to be normal A is not isomorphic to klt].

Exercise 40. (Ring of invariants, 3 points)

1. It was part of the solution of Exercise 35. Let us quickly repeat the argument (see
last week’s solutions): for a € A, set f = Ilyeq(r — g(a)) € Afz] and is monic; it is
a degree |G| polynomial and f(a) = a (as one of the g € G is the identity). As A is
commutative, the coefficients of f are the evaluation of elementary symmetric functions
in |G|-variables at (g(a))gec. Fora go € G, tg, : G — G, g — go- g is a bijection because
injective (G is a group) self-map of a finite set (thus surjective by cardinality). Since
go is a ring homomorphism (and as such respects sums and products), the coefficients
of f are left invariant by gg; and it is so, for any gg € G so the coefficients of f are, in
fact, in A%, which means f € A%[z]. Thus a is integral over A,



2. Let us first prove (by induction) the result stated as (corrected) hint: the case of one
prime is obvious. Let k£ > 1, such that for any pi,...,ps prime ideals and an ideal a,
a ¢ p;, Vi implies a ¢ Ulepi. Let pi1,...,pr+1 be prime ideals (none being contained
in another otherwise the induction hypothesis gives the result) and a an ideal such that
a ¢ p; for any i. By induction hypothesis, there is a z € a\ Ule p;. We claim that there
isay € (a-II'pi)\Prt1; otherwise a - II7" ;p; C pr41 but since no p; is contained in
pre1 for any i < k, we can find p; € p;\pgs1; then for any a € a, a-py -+ - pg € pr11 thus
a € Piy1 i.e. a C pgy1 contradiction.
So we can choose y € a-II7_;p;\pr+1. Then  +y € a and if for some i <k, x+y € p;,
then = € p; contradiction. Thus x,z +y € a\ U¥_; p;. If ¢ pj41 then we have found

an r € a\ Ul?+11 pi; otherwise x € piry1 but then x +y ¢ pryy (otherwise y € priq;

1=
contradiction) i.e. we have found x 4+ y € a\ Ufill P

Now let q1,92 € ¢ (p). For a a € qi1, set b = lyeqg(a); as ida € G, b € qq and for
any g € G, g(b) = Hpeqg o hla) = Myegh’(a) =bso b€ A% ie. b€ qyNA® = qf =
¢(q1) = p. But we also have p = ¢(q2) = q2 N A® thus b = Ieqgla) € g2 ie. (g2
prime) gq(a) € p2 for some g, € G. Thus q1 C Ugegg '(q2). The g7'(q2) are prime
ideals so by the above discussion, there is a g such that q; C ¢~ !(q2). But we have
q1NAY =p =qaNA% = g71(g2) N AY so that by the 5! step of the proof of the Going-
up theorem (Thm 11.33), we get q1 = g~ '(q2), proving transitivity of G on ¢~!(p).

So we have a surjective map G — o~ !(p), proving that o~ !(p) is finite.

Exercise 41. (Circle as a spectrum, 4 points)

When k& = C. We can define the ring automorphism C[z,y] — C|z,y] given by x — = — iy,
y — x + iy (the inverse being defined by = — (z 4+ y)/2, y — (z — y)/2i) by which we can
see that we can take 2’ = z + iy and ¢y = x — iy as indeterminates (i.e. C[z/,y] ~ C[z,y]).
Under this change of variable, we have 22 +y> — 1 = (z +iy)(z —dy) — 1 = 2’y — 1 so
A~Cl2,y]/(2"y —1).

Let us define g : C[z'] — C[2/,y']/(2'y — 1) the composition of the natural ring homo-
morphisms. Then g(2) is invertible since g(z')y’ = 1. Now for a f : C[z/] — B a ring
homomorphism such that f(z') € B*, define f : C[2/,y']/(2'y' — 1) — B by 2’ — f(2') and
Y — f(2')71 (extend by ring rules). It is well defined because it is induced by the corre-
sponding map f' : C[2/,y/] — B for which we see that (2'y’ — 1) C ker(f’). It is easy to
check that it is a ring homomorphism through which f factorizes /(f = f o g). Moreover
if h: Cl2’,y']/(2’y’ — 1) — B is another ring homomorphism such that f = h o g, we have
h(z') = h(g(2")) = f(2') = f(a'). Since 2’ € C[z',y']/(z'y' — 1) is invertible (y' being its
inverse), we have h(y') = h(z'~1) = h(2/)1 = f(a/)~! = f(ar:’)_1 = f(2'Y = f(y'). Thus
h = f proving uniqueness of the factorization of f through g. As a conclusion g : Cl2/] —
C[2',y']/(z'y’ — 1) is the localization of C[2'] with respect to {z'%, k > 0}.

So we have a ring isomorphism A ~ C[z'],s. But C[2/] is factorial and the localization of a
factorial ring is factorial.

When k£ = R. One idea is to use again a polynomial ring with one variable. Euclidean division
by the monic polynomial 2% + y? — 1 yields that for any f € Rgx] [y] (C R(z)[y]) there is a
unique (f1, f2) € R[z]? such that f = fi(z)y + f2(z) mod(z? + y? — 1). Define N : A — R[z]
by f+ (22 — 1) f1(2)? + f2(x)%. By the above uniqueness it is a well-defined map (not a ring



homomorphism at all). Moreover

N((fr(@)y + fa(2))(91(2)y + g2(2))) = N(frory® + (frg2 + f291)y + faga)

N(fig(y* +2° = 1= 2% + 1) + (fig2 + fog1)y + f292)
N(

2

(fige + f291)y + (1 — 22 frg1 + fago)
( —1)(fig2 + fog1)? + (1 — 2*) fig1 + fag2)°
= (@® = D((f192)> + (fag1)? + 2f1 fogr92 + (f191)* (2 — 1)
—2f1f29192) + (f292)°
= N(fi(x)y + f2(x))N(g1(z)y + g2(z))

So N is multiplicative.

We have in A, y? =1 — 22 = (1 —2)(1 + ). If y|(1 — 2) in A, then as N is multiplicative
22—1= N(y)|N(1—z) = (1—2)? in R[z] which is not true so y { (1 —z). Likewise y 1 (1+z),
(1—2) tyand (1+2) 1y

Let us prove moreover that y € A is irreducible: assume y = fg, then 22 — 1 = N(f)N(g) in
Rlz]. If deg(N(f)) = 2 then N(g) € R* i.e. there is a a € R* such that g =a in A i.e. g is in-
vertible. Likewise if deg(N(g)) = 2, f is invertible. If deg(N(f)) = 1 = deg(N(g)), then (R|x]
is factorial) N(f),N(g) € {x—1,z+1}. Assume N(f) = z+1 and write f = fiy+ fo; we have
(22 —1)f2 —i—f2 = N(f) = z+1in R[z]; thus 2 +1|f2 i.e. z+1|f2 (since x+1 is irreducible) so
either deg( f%) > 4 and its leading coefficient is positive or fo = 0. But the leading coefficient
of (x2 — 1) f# is also positive. But the sum (22 — 1) fZ + f2 has degree 1 = deg(z + 1) which
is not possible. Using similar arguments for the case N(f) = z—1, we get that y is irreducible.

Thus vy =(1—2)(z+ 1) gives two distinct (with distinct irreducible elements) decompositions
of y?; in particular A is not factorial.

Exercise 42. (Extending ring homomorphisms into fields, 3 points)

Since (0) € Spec(K), the ideal p := ker(f) = f~1(0) is prime; thus A/p is integral,
f:A/p — K is injective and f factorizes through f.

Since A — B is integral, by the Going-up theorem (Thm 11.33), Spec(B) — Spec(A) is sur-
jective so that there is a q € Spec(B) such that gN A = p. Now the kernel of the composition
A<— B — B/qis qN A = p so there is an induced injective ring homomorphism A/p < B/q
which, by the first step of the proof of the Going-up theorem, is integral.

Of course, B/q is integral so we can look at the natural injection B/q — Q(B/q). We have an
induced injection A/p — B/q — Q(B/q) which, by the universal property of the localization
(or of the fraction field) factorizes through A/p — Q(A/p). Let us prove that the field exten-
sion Q(B/q)/Q(A/p) is algebraic: Let & 7 € Q(B/q) then as B/q is integral over A/p, A/p[d]
is a finite A/p-module, hence Q(A/p)[d ] C Q(B/q) is a finite dimensional vector space. So
de Q(B/q)is algebraic over Q(A/p); thus d~! € Q(A/p)[d] (mimic the proof of step 3 of the
proof of the Going-up theorem). Thus & € Q(A/p)[b, d] = Q(A/p)[d][b] C Q(B/q) but since
b is integral over A/p it is in particular algebraic over Q(A/p), hence integral over Q(A/p)|d]
ie. Q(A/p)[d][b] is a finite Q(A/p)[d][b]-module hence Q(A/p)[b,d] is a finite dimensional
Q(A/p)-vector space. As a consequence g € Q(A/p)[b,d] is algebraic.

Now by the universal property of localization, the injective ring homomorphism f:Alp—=K

factorizes through A/p < Q(A/p) so we get a field extension f : Q(A/p) — K. Since K is
algebraically closed and Q(B/q)/Q(A/p) is algebraic, by a classical result on field extension,

there is a filed extension g : Q(B/q) — K extending f.



Thus we have a commutative diagram:

A A/pC QA/p)——=K

|

B B/q—— Q(B/q)

(where the the composition of the map in the first line is equal to f) which gives us the
extension.



