Solutions for exercises, Algebra I (Commutative Algebra) — Week 9

Exercise 43. (Noether normalization over rings, 3 points)

Notice that A, being a subring of an integral domain, is a integral domain.

By assumption there is a surjective homomorphism of A-algebras: f : A[z1,...,x,] - B. We
can localize f with respect to the multiplicative set S = A\{0} (i.e. tensor with Q(A)) to get
a surjective homomorphism of Q(A) algebras: S~1(f) : Q(A)[x1,...,z,] — S™1B. In particu-
lar, S~ B is a Q(A)-algebra of finite type. Thus by Noether normalization theorem there are
bi,...,bp € S7'B such that the homomorphism of Q(A)-algebras g : Q(A)[X1,..., Xi] —

S7IB, X; Z—i gives an isomorphism Q(A)[X1,..., Xk ~ Q(A)[Z,..., %] and S™'B is a

a1’’’ ) ag
finite Q(A)[%, e Z—i]—module. In particular S~!B is integral over Q(A)[%, e 2—2]
Set ¢; = f(x;) fori =1,...,n. As S71B is integral over Q(A)[(%, e Z—Z}, forany i, ¢ € S7'B
is annihilated by a (monic) polynomial P, € Q(A)[Z—ll, ce Z—i][x] If 0 # a € A is the pro-

duct of (aj---ax)? (where d = max;(deg(P.,))) by the product of all the denominators of
the coefficients of the P;’s, we have that 0 # aP, € A[bi,...,bg][z] and aP.,(¢;) = 0.
Then P., € Agbi,...,bg][z] for any i i.e. ¢; is integral over Ag[by,...,bg] for any i i.e.
Aglbr, ..., b][c1, ..., ] is a finite Agy[by,. .., bg]-module. Tensoring f with A,, we see that
Adlel, ... en) = B®y Ay ~ By a fortiori Aglby, ..., bgllc1, ... cn] =~ By. Thus B, is in-

tegral over A,[bi,...,bx] and since 2—11,...,2—’; were algebraically independent over Q(A),

b1,...,br are algebraically independent over A (indeed, because A is an integral domain,
ker(A[X1, ..., Xp] = Abr, .., b)) = ker(Q(A)[X1,. ., X¢] = QAL &]) = {0}).

7@

Exercise 44. (Finite type Z-algebras are Jacobson, 3 points)

Notice first that the quotient of a Jacobson ring is Jacobson: indeed the ideals of A/a corre-
spond exactly to the ideals of A containing a. So if q € Spec(A/a) then p = q° € V(a) can
be written p = NycmeMaxSpec(4)™; thus passing to the quotient we get 4 = NycmeMaxSpec(4)™
(since A/a/m/a ~ A/m a field).

Assume first that B is integral over A and (A Jacobson). By the above observation, we can
assume that A C B with A Jacobson and B integral over A. Let q € Spec(B) (not maximal)
and Spec(4) > p = q° = AN q (not maximal neither by the 4" step of the proof of the
Going-up theorem). By hypothesis p = NycmeMaxspec(4)M- Since B is integral over A, by the
Going-up theorem, for any p C m there is a ¢ C n € Spec(B) such that nN A = m. By the
first step of the proof the Going-up theorem, B/n is integral over A/m; and by the third
step of the same proof, since A/m is a field, B/n is also a field i.e. such a n is maximal. Set
b = mnEMaxSpec(B)7 qGn and pCnNAEMaxSpec(A)N = mneMaxSpec(B), ggnt (by the 4th'Step of the
Going-up theorem n N A is maximal). We have q¢ C b and b N A = NyepaxSpec(B), qcnl N A =
NpCmeMaxSpec(A)M = p = qNA. We adapt the proof of the 5t step of the proof of the Going-up
to conclude that q = b = NyepaxSpec(B), gcn- Thus B is Jacobson.

Let us prove this characterization of Jacobson ring: A is Jacobson if and only if for any prime
p C A for which there is a 0 # a € A/p such that (A/p), is a field, then A/p is a field:
assume A is Jacobson. Then A/p is an integral domain which is Jacobson (first remark). If
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(A/p), is a field we have (0) = Spec((A/p)a) = {q € Spec(A/p), a ¢ q} so if A/p contains a
non-zero prime ideal we have a € M(g)4q but since A/p is Jacobson (and an integral domain)
N(0)2£q9 = Nayp = (0) i.e. a = 0. Contradiction. So Spec(A/p) = (0) i.e. A/p is a field.
Conversely if p € Spec(A), denote a = NpcmeMaxspec(a)M- If p & @, pick a a € a\p; let us
consider a prime ideal g which is maximal among those containing p and not containing a. By
definition of a, q is not a maximal ideal of A but {a™, n > 0}~!q is a maximal ideal of 4,. So
Aa/{a™, n>0}"1q~ (A/q), is a field. Thus A/q is a field i.e. q is maximal. Contradiction.
Sop=a.

Let us prove that if A is Jacobson then any ring which is generated by one element as a
A-algebra (i.e. a quotient of A[x]) is also Jacobson: let C' = A[z]/a be such a ring and let
p € V(a) C Spec(A[z]), and consider the quotient homomorphism f : C — C/p ~ Alz]/p.
We must show that if 0 # a € A[z]/p is such that (A/p), is a field then (A/p) is also a field.
Let us denote B = f(A) C A[x]/p. By the first remark B is Jacobson and an integral domain
(as subring of an integral domain) so Nmenmaxspec(ByM = (0). Look at Blz] — Alx]/p (z — 7).
If it is an isomorphism, and if 0 # a € A[z]/p is such that (A/p), is a field, then B[zl is a
field. But then Q(B)[z]z is also a field. But looking at the description of the prime ideals of
the principal ideal domain Q(B)[z] we see that it is Jacobson; thus the fact that Q(B)[z]g is
a field implies that Q(B)[z] is a field. Contradiction. So B[z] — A[z]/p is not an isomorphism
and A[z]/p ~ Blz]|/q for a non-zero prime ideal (q = ker(B[z] — A[z]/p) and A[z]/p is an
integral domain). If 0 # a € B[z]/q is such that (B[z]/q), is a field.

If ¢ € q is a non-zero polynomial with leading coefficient d € B, then T is integral over
By. So B[z]/q is integral over By. In particular as a € B[x]/q, there is a monic polynomial
h=y"+hiy" L+ + hy_1 € Byly] (with h(0) # 0 because B is an integral domain) such
that h(a) = 0. So dividing by h,_1a™ we find a™" + %cf("—l) +- 4+ ﬁl_l =0ie alis
integral over By, 4. So (B[x]/q), is integral over By, _,4. By the 3" step of the proof of the
Going-up theorem, By _,q is also a field. But since B is Jacobson, (and (0) is prime) B is a
field. In particular B = Bpy,—14. So Blz]/q C (B[z]/q)s (since B[z]/q is an integral domain)
is integral over the field B. Again by the 3" step of the proof of the Going-up theorem,
Blz]/q is a field. So Blx]/q =~ Alx]/p is Jacobson. In particular (0) = NmeMaxSpec(Afz]/p)™ i-€-

]J/Cl = m)J/aCmEMaXSpeC(C)n"'

For an A-algebra generated by finitely many elements, we proceed by induction.

Exercise 45. (Finite fields, 3 points)

Assume £k is a field which is a finitely generated Z-algebra. If the natural homomorphism is
injective Z — k then by the universal property of localization with have a field extension
Q < k and k is a fortiori a (Q-algebra of finite type. By Noether normalization, there are a
¢ > 0 and an injective homomorphism Q[z1, ... x¢] < k such that k is a finite Q[x1, ..., xy].
By Corollary 11.11 k is integral over Q[z1, ..., z/]. By the 3™ step of the proof of the Going-
up theorem Q|zq,...,z/] is a field i.e. £ = 0. Thus k is a finite field extension of Q (i.e. a
number field).

Let us prove that a number field cannot be a finitely generated Z-algebra: let f : Z[z1,. .., x,] —
k be a ring homomorphism and let us denote «; = f(x;) € k. Let £ € Z~( be the product of
all the denominators of the minimal polynomials of a; over Q. Then the minimal polynomials
of the a;’s are in Zy[x] i.e. k is integral over Z,. So by the 37 step of the proof of the Going-
up theorem Z, is a field; which is impossible (any prime not dividing ¢ is not invertible in Zj).

So the homomorphism Z — k is not injective; thus there is a prime number p > 0, such that
the homomorphism factors through F,. So £ is in particular a [Fp-algebra of finite type. By
Noether normalization £ is a finite module over a polynomial ring over [F,, in particular it is
integral over a polynomial ring. Again by the 3"¢ step of the proof of the Going-up theorem,
k is a finite field extension of [, i.e. a finite field.



Exercise 46. (Family of polynomials without common zeros, 3 points)

Using Remark 12.11: since Z((f1,..., fx)) = 0 we have \/(f1,..., fx) = I(Z((f1,---, fx))) =
C[{L‘l,...,l'n]. Sole \/(fl,...,fk) ie. 1" =1¢ (fl,...,fk)®(c.

If (fi,..., fx) =Zlxy,...,z,] we are done. So we can assume that (f1,..., fr) € Z[z1,..., T,
there is a maximal ideal (fi,..., fx) C m containing it. We have an exact sequence:
0—>m—Zz,...,2p] > k—0

where k is the quotient field. The sequence also shows that k is finitely generated Z-algebra
hence, by the previous exercise, k is a finite field, of characteristic, say p > 0.

Since C is a flat Z-algebra (we have seen that Q is a Z-algebra and C is a Q-vector space
(i.e. a free Q-module)), we have Clzy,...,2,] = (f1,...,fr) ® C € m ® C. So we get
(f1, -, fx) ®Q =m® Q thus any element of m/(fi,..., fx) is annihilated by an integers.

Now, p € Z[z1,...,x,] is sent to 0 in k i.e. p € m. As m/(f1,..., fr) is torsion, there is a
d € Z\{0}, such that 0 # dp € (f1,..., fr); which proves the result.

The result does not hold if C is replaced by R: for example 22 + 1 € Z[x] has no real zero but
the principal ideal (2 + 1) does not contain a non-zero integer (for degree reason).

Exercise 47. (Noether normalization via linear projections, 4 points)

We notice that when z is fixed = a, the system of equations y — 22 = 0; az — 3% = 0
transforms into y — 22 = 0; (a — 2%)z = 0 which admits finitely many solutions. So let us
consider the projection on the z-axis.

Let us denote A = k[x,y, z]/a and consider the composition f : k[z] — A of the inclusion
k[x] < k[x,y, z] and the canonical projection k[x,y, 2] — k[z,y, z]/a.

If P € ker(f) then P € (y — 2%, 2z — y?) ie. P = (y — 2H)p(z,y,2) + (x2 — y?)q(z,y, 2) for
some p, q € k[z,y, z]. But looking at y = 0 = z we get P =0 i.e. f is injective.

We claim that 1, z, 22, 23 generate A as a k[z]-module: because of the surjection k[z][y, 2] - A,
y, z generate A as a k[x]-algebra. In A, 7 = Z? thus Z generates A as a k[z]-algebra. Moreover
z* = 7z in A; thus any polynomial p € k[x,y,2] is in the class modulo a of a polynomial
whose monomials are of the form z*2%, k € N, i € {0, 1,2, 3}; which proves the claim.

So A is a finite k[z]-algebra and as such it is integral over k[z] (Corollary 11.11). So by the
Going-up theorem (Theorem 11.33), ¢ : Spec(A) = V(a) — Spec(k[z]) = A}, is surjective and
by Remark 11.35 (i) it is closed (alternatively remark that ¢ has the going-up property by
going-up theorem and since A is Noetherian (as quotient of the Noetherian ring k[, y, z]),
Exercise 38 yields that ¢ is closed).

For p € Spec(k[z]), we have seen in (the solution of) Exercise 37 (ii) that the fiber ¢ ~1(p)
of ¢ over p is isomorphic to Spec(A ®y(y) Q(k[z]/p)). Since A is a finite k[r]-module (i.e.
there is a surjective homomorphism of k[z]-modules k[z]* — A), A ® Q(k[z]/p) is a finite
Q(k[x]/p)-algebra in particular A ® Q(k[z]/p) is a finite-dimensional Q(k[x]/p)-vector space.

Any prime ideal of A ® Q(k[z]/p) is maximal: a prime ideal q € Spec(A ® Q(k[z]/p)) is
in particular a Q(k[z]/p)-vector subspace of A ® Q(k[z]/p) so the integral domain B =
A ® Q(k[z]/p)/q is also a finite-dimensional Q(k[x]/p)-vector space (as quotient of finite-
dimensional vector space). Now take z € B\{0} and consider the Q(k[x]/p)-linear map
mg : B — B, b+ bx. Since B is an integral domain, m, is injective and since B is finite-
dimensional, the linear map m, is also surjective. In particular 1 € im(m,) i.e. there is a
y € B such that yr =1 1i.e. x is a unit. So B is a field i.e. q is maximal.

As A®Q(k[z]/p) is a finite-dimensional Q(k[z]/p)-vector space (and ideals of ARQ(k[z]/p) are
in particular Q(k[z]/p)-vector subspaces), A®Q(k[z]/p) is Noetherian. So as seen in (solution



for Exercise 38) Spec(A ® Q(k[x]/p)) can be written as a finite union Spec(4A ® Q(k[z]/p)) =
U,V (q;) where q; € Spec(A®Q(k[z]/p)). Since any prime ideal in A® Q(k[z]/p) is maximal
we get Spec(A ® Q(k[z]/p)) = {q1,...,qn} i.e. any fiber of ¢ is finite.

Exercise 48. (Valuation rings, 3 points)

1. Since A is a subring of a field, it is an integral domain and since A C K the universal
property of localization gives the inclusions A C Q(A) C K. Now let a € K C L; then
either a € B, in which case « € BNK = A, or a~!' € B, in which case a~' € BNK = A.
Since Q(A) C K, this proves that the same property holds for Q(A) i.e. that A is a
valuation ring. It also proves that Q(A) C K is surjective (hence an isomorphism) since
if a € K\Athena™! € A;s0a=(a"1)"! € Q(A).

2. Assume A is a field and L/K is algebraic. By the first question we get A = Q(A) = K.
In particular K C B. Let b € B; as b~! € L is algebraic over K, take f(z) = 2™ +
a1z 4 4a,_1 € K[z]\{0} such that f(b~!) = 0. Taking the product of the equality
b = —(arb" V4. fa, 1) € Lby b" ! we get b~' = —(a1 +agb+- - +a, 10" 1)
i.e. (K C B) b~! € B. Therefore B is a field.



