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1. Introduction

The purpose of this paper1 is to prove an arithmetic Siegel�Weil (ASW) formula for the
non-singular Fourier coe�cients in a unitary central simple algebra (CSA) setting. More
precisely, we adapt the unitary ASW formalism of Kudla [12] and Kudla�Rapoport [16] to
unitary Shimura varieties that are de�ned by a CSA with involution of the second kind
over an imaginary-quadratic �eld. We de�ne arithmetic 0-cycles on the integral models of
such varieties and relate their degrees to the Fourier coe�cients of the �rst derivative of an
incoherent Eisenstein series.

Our result is purely global in the following sense: The 0-cycles we consider are supported
over the supersingular locus at non-split primes, which is completely analogous to the situation
in [16]. A theorem of Landherr states that the CSA in question is split at such a place. Using
Morita equivalence, this implies that the local theory of our setting is identical with that of
Kudla�Rapoport [15]. In particular, the theorem of Li�Zhang [20] (formerly KR Conjecture)
as well as its variants (see below) apply and express the degrees in question in terms of
derivatives of local Whittaker functions. Our main addition is then a Siegel�Weil formula (for
the non-singular coe�cients) that allows to relate these quantities to Eisenstein series.

The initial motivation for our article came from [22, �8]. There, Madapusi introduces a
general formalism for generating series of special cycles on Shimura varieties. These series are
indexed by the symmetric or hermitian elements in central simple algebras with involution.
Moreover, he formulates a modularity conjecture for such series [22, Conjecture 8.4]. Our
setting is a special case of his formalism, and our main result, which we next describe in more
detail, is closely related to his conjecture.

Date: March 30, 2024.
1This is still a draft version. Sections 1�5 are already �nished, Sections 6 and 7 will be �nalized soon.
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1.1. The Siegel�Weil formula. Let E be a number �eld, let D/E be a central simple
algebra, and let ∗ : D → D be an involution of the second kind. Denote by F = E∗=id

the �xed �eld of ∗|E and by n = dimE(D)1/2 the degree of D. Consider a hermitian right
D-module V and denote by G = UD(V ) its unitary group. We assume that V is free of rank
m as D-module. Also consider the quasi-split skew-hermitian left D-module W = Dℓ ⊕ Dℓ

and set H = UD(W ). Then (G,H) forms a Howe dual pair in Sp(V ⊗D W ) and there is the
H(A)-equivariant Rallis map

λ : S(V (A)ℓ) −→ I(s0, χ), s0 =
n(m− ℓ)

2
(1.1)

from Schwartz functions on V (A)ℓ to an induced representation of H(A). Assume that V is
free of rank m as D-module and that D is of degree n over E. Attached to a standard section
Φ ∈ I(s, χ), there is an Eisenstein series E(h, s,Φ), where h ∈ H(A) and s ∈ C. It has a
Fourier expansion of the form

E(h, s,Φ) =
∑

ξ∈Hermℓ(D)

Eξ(h, s,Φ) (1.2)

where Hermℓ(D) denotes the hermitian (ℓ × ℓ)-matrices with values in D. Further assume
that ξ ∈ Hermℓ(D) is invertible, i.e. ξ ∈ GLℓ(D). Then there is also the theta integral (when
convergent)

Iξ(h,Φ) =
1

2

∫
[G]

∑
x∈V ℓ, (x,x)=ξ

ω(h)Φ(g−1x)dg, h ∈ H(A). (1.3)

If V ℓ does not represent ξ, then we simply have Iξ(h,Φ) = 0. The following is our main result
in the current setting.

Proposition 1.1. Assume that m ≥ ℓ and that ξ ∈ Hermℓ(D) is invertible. Then Eξ(h, s,Φ)
is holomorphic at s = s0, and Iξ(h,Φ) is absolutely convergent. Moreover,

Eξ(h, s0,Φ) = κIξ(h,Φ) (1.4)

with κ = 1 if m > ℓ and κ = 2 if m = ℓ.

IfD =Mn(E) with standard involution, then Proposition 1.1 is a special case of the unitary
Siegel�Weil formula of Ichino [10]. Our proof follows closely his ideas. In general, the case of
reductive dual pairs for central simple algebras has already been considered by Weil [29, 30]
and he proves an identity of the form (1.4) when m > 2n (see Theorem 4.1 in the text).

1.2. The Arithmetic Siegel�Weil formula. We now set k = E and assume it is an
imaginary-quadratic �eld. We also assume that the involution on D is positive, and that
V is free of rank 1 and of signature (n − 1, 1). Then, the unitary group G = UD(V ) is a

(form of a) unitary group in n variables. Let G̃ = Resk/Q(Gm) × G be its RSZ variant as

introduced by Kudla�Rapoport [16]. There is a natural way to de�ne a Shimura variety for

G̃, which is an (n−1)-dimensional varietyM over k. Our case of interest is when D ̸∼=Mn(k).
Then UD(V ) is anisotropic so M is proper. Let d be the order of D in the Brauer group.

Concretely, if D ∼= Mm(D0) for a division algebra D0/k, then d = dimk(D0)
1/2. Then there

are natural special cycles in all codimensions which are a multiple of d.
With suitable choices of integral data, this Shimura variety has an integral model M →

SpecOk that parametrizes pairs (E,A) consisting of an elliptic curve E with CM by Ok, and
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a polarized abelian variety A with action by a �xed maximal order OD ⊂ D. For every such
pair,

L(E,A) := Q⊗Z HomOk
(E,A)

is a hermitian D-module. Thus for every hermitian element ξ ∈ D, there is a cycle Z(ξ) → M
that parametrizes triples (E,A, x) where x ∈ L(E,A) with (x, x) = ξ. Note that ifD =Mn(k)
with standard involution, then the de�nition specializes to that of [16].

We only consider the situation when ξ is invertible. In this case, the expected dimension of
Z(ξ) is 0 but its actual dimension might be strictly larger. Recall from [16] that if D =Mn(k),
then one may give a de�nition of a 0-cycle class [Z(ξ)] as successive intersection of special
divisors. When D ̸∼= Mn(k) however, then there are no such divisors. We instead de�ne
[Z(ξ)] through basic uniformization as indicated at the beginning of the introduction.

Our de�nition of M is tailored such that the local results of Li�Zhang in [20] (unrami�ed
self-dual case), Li�Liu in [19] (even-dimensional exotic smooth case), He�Li�Shi�Yang in
[7] (Krämer model case), Cho�He�Zhang in [4] (certain unrami�ed maximal parahoric level
cases), and H. Yao in his upcoming work (odd-dimensional exotic smooth case), as well as
Y. Liu in [21] and independently Garcia�Sankaran in [6] (archimedean place), give a full
description of the arithmetic degree of [Z(ξ)] in all situations.

Consider the case ℓ = 1 of �1.1, i.e. I(s, χ) now denotes the induced representation of
H = UD(D⊕D). The cited works provide a place-by-place de�nition of two speci�c standard
sections Φ,Ψ ∈ I(s, χ) whose local Whittaker functions can be used to express the degrees
of all Z(ξ). Using the Siegel�Weil formula (1.4), it is then not di�cult to deduce our main
result:

Theorem 1.2. There exists a constant c > 0 such that for all positive hermitian invertible
elements ξ ∈ D,

d̂eg
(
[Ẑ(ξ)]

)
= cE′

ξ(1, 0,Φ) + cEξ(1, 0,Ψ). (1.5)

Assume that D is a division algebra. Then every non-zero hermitian ξ ∈ D is invertible.
Thus the only missing Fourier coe�cient in Theorem 1.2 is the 0-th coe�cient. The arithmetic
degree of [Z(0)] should essentially be the arithmetic volume of M. If D = Mn(k), then a
recent result of Bruinier�Howard [1] expresses this volume in terms of logarithmic derivatives
of L-functions and it would be interesting to consider this problem also when D ̸∼= Mn(k).
Since the proof in [1] relies on the modularity result of [2], and since there are no special
divisors on M when D is non-split, new arguments are needed.

2. Hermitian forms over central simple algebras

2.1. Hermitian D-modules. Throughout this section, E/F denotes a quadratic �eld ex-
tension and D/E a central simple algebra. We denote by σ = σE/F or by a 7→ ā the Galois

conjugation of E/F . We write NE/F : E× → F× for the norm map and set E1 = ker(NE/F ).
We denote by Trd,Nrd : D → E the reduced norm and the reduced trace. They satisfy
Trd(x∗) = σ(Trd(x)) and Nrd(x∗) = σ(Nrd(x)).

De�nition 2.1. An involution ∗ : D → D of the second kind (with respect to F ) is an
F -linear map such that

∗2 = id, (ab)∗ = b∗a∗ for all a, b ∈ D, ∗|E = σ.

For any ℓ ≥ 1, we extend ∗ to the matrix ring Mℓ(D) as

(xij)
∗ = t(x∗ij). (2.1)
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We call a matrix β ∈Mℓ(D) hermitian if β∗ = β, and we denote these elements by Hermℓ(D).
We also de�ne Herm(D) := Herm1(D) and Herm×

ℓ (D) := Hermℓ(D) ∩GLℓ(D).

Fix an involution ∗ of the second kind on D and let † be any other such involution. Then
† ◦ ∗ : D → D is an E-algebra automorphism of D. By Skolem�Noether, this means there
exists an element β ∈ D× such that x† = βx∗β−1. As † is an involution, any such β satis�es
β∗ = λβ for some λ ∈ E1. By Hilbert's Theorem 90, the map E× → E1, c 7→ c/c̄ is surjective.
This implies that we may choose such a β with β∗ = β. In this way,

Herm×(D)/F× ∼−→ {Involutions † : D → D of the second kind}. (2.2)

De�nition 2.2. A hermitian (right) D-module is a �nite right D-module V together with a
non-degenerate F -bilinear pairing ( , ) : V × V → D such that

(y, x) = (x, y)∗ and (xa, yb) = a∗(x, y)b for all x, y ∈ V, a, b ∈ D.

Note that we do not assume V to be free as D-module. The unitary group of (V, ( , )) is
de�ned by

U(V, ( , )) = {g ∈ AutD(V ) | (gx, gy) = (x, y) for all x, y ∈ V }. (2.3)

Assume that V and W are hermitian D-modules. Then there is an adjoint isomorphism

HomD(V,W )
∼−→ HomD(W,V ), f 7−→ f † (2.4)

where f † is the unique homomorphism that satis�es (x, fy) = (f †x, y) for all x ∈ V , y ∈ W .
As a special case, we may consider the endomorphism ring EndD(V ), which is again a CSA
over E. The adjoint map † : EndD(V ) → EndD(V ) is again an involution of the second kind.
In these terms, the unitary group of V may also be described by

U(V, ( , )) =
{
g ∈ EndD(V ) | g†g = 1

}
. (2.5)

It is moreover easily checked that there is a bijection

Herm×(EndD(V ), †) ∼−→ {D-hermitian forms on V }
β 7−→ (x, y)β := (x, βy).

(2.6)

Example 2.3. We write Dℓ for the right D-module of column vectors of length ℓ. Then
EndD(V ) = Mℓ(D) via matrix multiplication from the left. Moreover, there is the standard
hermitian form (x, y) := x∗ · y on Dℓ. Its adjoint is the involution ∗ : Mℓ(D) → Mℓ(D) from
(2.1). Identity (2.6) states that the D-valued hermitian forms on Dℓ are in bijection with
Hermℓ(D) via

(x, y)β := x∗βy, x, y ∈ V, β ∈ Hermℓ(D). (2.7)

The unitary group of ( , )β has the explicit description

U
(
Dℓ, ( , )β

)
= {g ∈ GLℓ(D) | g∗βg = β}. (2.8)

Our next aim is to formulate a Morita equivalence for hermitian D-modules. In this way,
the theory can always be reduced to hermitian modules over division algebras. First assume
that D =Mm(Q) for a CSA Q over E, and that ∗ preserves Q in the sense that (xij)

∗ = t(x∗ij)
where ∗ also denotes an involution on Q.

Lemma 2.4. There is an equivalence of categories

{Hermitian (Q, ∗)-modules} ∼−→ {Hermitian (Mm(Q), ∗)-modules} (2.9)
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that takes a hermitian Q-module (V, ( , )) to the right Mm(Q)-module of row vectors V (m)

with hermitian form

(x⊗ ei, y ⊗ ej) := (x, y)eij .

This equivalence commutes with the adjoint involutions (2.4) on the two categories. In par-
ticular,

UQ(V )
∼−→ UMm(Q)(V

(m)).

Let Q, D = Mm(Q) and ∗ be as before. In general, given an involution of the second
kind † on D, it might not be possible to �nd an isomorphism (D, †) ∼= (D, ∗). For example,
consider Mm(C) and let † be the adjoint involution of a hermitian form h on Cm. Then
(Mm(C), †) ∼= (Mm(C), ∗) if and only if h is de�nite. For this reason, we now formulate a
second equivalence that allows to pass between ∗-hermitian and †-hermitian D-modules.

Lemma 2.5. Let ∗ and † be involutions of the second kind on D. Fix a ∗-hermitian element
β ∈ D× such that x† = βx∗β−1. Then there is an equivalence of categories

{∗-Hermitian D-modules} ∼−→ {†-Hermitian D-modules}
(V, ( , )) 7−→ (V, β( , )).

(2.10)

This equivalence commutes with the adjoint involutions (2.4) on the two categories. In par-
ticular,

UD(V, ( , )) = UD(V, β( , ))

as subgroups of GLD(V ).

We end this section with a de�nition of the Hasse invariant.

De�nition 2.6. Let (D, ∗) be a CSA over E with involution of the second kind and let V be
a free hermitian D-module. Choose any basis V ∼= Dℓ and let

χ(V ) := NrdMℓ(D)

(
(ei, ej)

)
∈ F×/NE/F (E

×). (2.11)

Then χ(V ) is independent of the choice of basis and is called the Hasse invariant of V .

2.2. Lifting forms along the trace. There is an equivalent perspective on hermitian D-
modules. Given (V, ( , )), consider the F -bilinear form

( , )E := Trd ◦( , ).
It is an E-valued hermitian form on V that it is compatible with the D-action in the sense
that

(x, ya)E = (xa∗, y)E for all x, y ∈ V, a ∈ D. (2.12)

Lemma 2.7. The map ( , ) 7→ ( , )E de�nes a bijection between D-valued hermitian forms
on V and E-valued non-degenerate hermitian forms that satisfy (2.12).

Proof. Consider the two E-vector spaces

HomD(V,D) and HomE(V,E).

Both are D-left modules; the �rst via (a · φ)(x) = aφ(x), the second via (a · ψ)(x) = ψ(xa).
The natural map

HomD(V,D) −→ HomE(V,E), φ 7−→ Trd ◦φ (2.13)

D-linear because for all x ∈ V ,

(Trd ◦(aφ))(x) = Trd(aφ(x)) = Trd(φ(x)a) = Trd(φ(xa)) = (a · (Trd ◦φ))(x).
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Moreover, (2.13) is an isomorphism. Indeed, this can be checked after base change to an
algebraic closure where it reduces to the statement that

HomMn(F )(F
(n),Mn(F ))

∼−→ HomF (F
(n), F ), φ 7→ Tr ◦ φ.

Now note that a D-valued hermitian form on V is nothing but a D-linear isomorphism

β : V
∼−→ HomD(V,D) (2.14)

such that

β∨ : V = HomD(HomD(V,D)) −→ HomD(V,D)

agrees with β. Here, β being D-linear means that β(xa) = a∗β(x). The lemma follows from
these statements. □

We mention a nice application of Lemma 2.7 which however will not be used in the article.
Let (W, ( , )) be a ∗-hermitian left Q-module. We also view it as a right EndQ(W )-module

and denote by f 7→ f † the adjoint involution. By de�nition of †, the form ( , )E satis�es

(x, yf)E = (xf †, y)E , x, y ∈W, f ∈ EndQ(W ). (2.15)

By Lemma 2.7, there exists a unique lifting ⟨ , ⟩ of ( , )E to an EndQ(W )-valued †-hermitian
form. The observation is that this constructions can be extended to generalizes the functors
from Lemmas 2.4 and 2.5: Let V be a ∗-hermitian right Q-module. Then V ⊗QW carries the
E-hermitian form

⟨v1 ⊗ w1, v2 ⊗ w2⟩E := TrdQ/E
(
(v1, v2)(w1, w2)

)
.

This form is compatible with † for the right action of EndQ(W ) on V ⊗QW in the sense of
(2.15). Thus Lemma 2.7 applies and show that there is a unique EndQ(W )-valued hermitian
form ⟨ , ⟩ on V ⊗QW such that

⟨ , ⟩E = TrdEndQ(W )/E ◦⟨ , ⟩.

This de�nes a functor

{∗-Hermitian Q-modules} −→ {†-Hermitian EndQ(W )-modules} (2.16)

which is compatible with adjoint involutions. Applying this construction when W = Q(m)

recovers the (composition of) the functors of Lemmas 2.4 and 2.5.

2.3. Local �elds. Assume that E/F is a separable quadratic extension of local �elds. Let
(D, ∗) be a CSA over E of degree n with involution of the second kind. A classical Theorem of
Landherr, see [27, Theorem 2.4], states that D is isomorphic to Mn(E). Fix an isomorphism

γ : D
∼→ Mn(E); this endows Mn(E) with the involution † = γ ◦ ∗ ◦ γ−1. Fix a hermitian

form β on E(n) such that x† = βx∗β−1. Then Lemmas 2.4 and 2.5 construct an equivalence
of categories {

Hermitian E-vector spaces
of dimension ℓn

}
∼−→

{
Hermitian D-modules

free of rank ℓ

}
V 7−→ V ⊗E (E(n), β).

(2.17)

It is immediate from de�nitions that the Hasse invariants of V (in the usual sense) and of

V ⊗E (E(n), β) (in the sense of De�nition 2.6) are related by

χ(V ⊗E (E(n), β)) = det(β)ℓ · χ(V ). (2.18)
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Corollary 2.8. (1) Assume that E/F is a quadratic extension of non-archimedean local
�elds. Two free hermitian D-modules are isomorphic if and only if they have the same rank
and Hasse invariant.

(2) Consider D =Mn(C) with standard involution x∗ = tx̄. Two hermitian D-modules are
isomorphic if and only if the signatures of their underlying C-valued hermitian forms (Lemma
2.7) have the same signature.

Proof. (1) follows from the 2.19 together with (2.18) and the classi�cation of hermitian forms
over non-archimedean local �elds. (2) follows from the equivalence in Lemma 2.4 and the
classi�cation of hermitian C-vector spaces by their signature. □

Assume from now on that E is non-archimedean. We are interested in the question of
whether there exists a ∗-stable maximal order OD ⊂ D. This depends on the isomorphism
class of (D, ∗): Via (2.2), the isomorphism classes of pairs (D, ∗) with D ∼= Mn(E) are in
bijection with the similitude classes of hermitian E-vector spaces of dimension n.

Lemma 2.9. Let † : Mn(E) → Mn(E) be the adjoint involution of a hermitian form β on
En. Let Λ∨ denote the β-dual of an OE-lattice Λ ⊂ En. Then Mn(E) contains a †-stable
maximal order if and only if there exists an OE-lattice Λ ⊂ En such that Λ∨ = aΛ for some
a ∈ E×.

Proof. The maximal orders in Mn(E) are in bijection with the homothety classes of OE-
lattices in V via Λ 7→ End(Λ). Moreover, one checks that End(Λ∨) = End(Λ)† which then
implies the lemma. □

Finally, assume that there exists a maximal ∗-stable order OD ⊆ D. Then (OD, ∗) ∼=
(Mn(OE), †) for some involution † on Mn(OE). It is seen as in the case of �elds that there
exists a hermitian element β ∈ GLn(OE) such that x† = βx∗β−1. Then Lemmas 2.4 and 2.5
extend verbatim and provide a Morita equivalence

{Hermitian OE-modules} ∼−→ {†-Hermitian Mn(OE)-modules}

L 7−→ L⊗OE
(O

(n)
E , β).

(2.19)

2.4. Global �elds. Assume now that E/F is a quadratic extension of global �eld. Let
(D, ∗) be a CSA with involution of the second kind over E as before. We state now the
main results on the classi�cation of hermitian D-modules. By hyperbolic plane over D, we
mean a hermitian D-module that is isomorphic to (D(2), ( 1

1 ). We call a hermitian D-module
isotropic if it admits a direct summand that is a hyperbolic plane. If D is a division algebra,
then this condition is equivalent to the unitary group being isotropic as algebraic group over
F . The following theorem is due to Landherr [18].

Theorem 2.10 (Hasse principle, [27, �10, Theorems 6.1 and 6.2]). (1) Two hermitian D-
modules are isomorphic if and only if for all places v of F , their v-adic completions are
isomorphic hermitian Dv-modules.

(2) Assume that D is a division algebra. Then a hermitian D-module is isotropic if and
only if for every place v of F , its v-adic completion is an isotropic hermitian Dv-module.

De�nition 2.11. The involution ∗ is called positive if for every archimedean non-split place
v of F , there is an isomorphism (Dv, ∗) ∼= (Mn(C), x 7→ tx̄). Equivalently, for every such
place v and every x ∈ Dv, the trace Trd(x∗x) ∈ Fv is non-negative.
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Theorem 2.12 (Classi�cation, [27, �10, Theorem 6.9]). Assume that D is a division al-
gebra and that ∗ is positive. Then, for every integer ℓ ≥ 1, for every Hasse invariant
χ ∈ F×/NE/F (E

×), and for every family of signatures (pv, qv)v, pv + qv = ℓ, where v runs
through the archimedean non-split places of F , such that for every v

χ ≡ (−1)qv mod F>0
v ,

there exists a hermitian D-module V that is free of rank ℓ with χ(V ) = χ and sign(Vv) =
(pv, qv) for all v. It is unique up to isomorphism by Theorem 2.10.

3. Local reductive dual pairs and local Siegel�Weil formula

3.1. Local Siegel�Weil formula. In this section, we assume that F is a local �eld and that
E is an etale quadratic extension of F , i.e., E = F × F or E is a quadratic �eld extension
of F . We denote by ϵE/F : F× → {±1} the quadratic character of E/F . Let (D, ∗) be a
central simple algebra over E together with an involution ∗ of the second kind. We assume
that E∗=id = F and de�ne n = rkE(D)1/2. Let ψ be a non-trivial additive character of F ,
and let ψE = ψ◦TrE/F and ψD = ψ◦TrE/F ◦TrdD/E . We also set TrdD/F = TrE/F ◦TrdD/E .

Let (V, ( , )) be a (non-degenerate) free hermitian right D-module of rank m, and let G =
U(V, ( , )) be its automorphism group as in �2.1, viewed as topological group over F . We
also denote this group by UD(V ) for simplicity. Similarly, let (W, ⟨ , ⟩) be a (non-degenerate)
free skew-hermitian left D-module of rank m′ with automorphism group H = U(W, ⟨ , ⟩) =
UD(W ). Endow W = V ⊗D W with the F -symplectic form

≪ v1 ⊗ w1, v2 ⊗ w2 ≫ = TrdD/F (v1, v2)(w1, w2)
∗ (3.1)

and let Sp(W) = Sp(2m′mn2) be the symplectic group of W. The natural actions of G and
H on V and W provide a natural map

ι : G×H → Sp(W), (3.2)

which realizes (G,H) as a reductive dual pair in Sp(W). Let χ be a character of E× such that
χ|F× = ϵmnE/F , then there is a Weil representation ω = ωV,χ,ψ of G×H, which can be described

explicitly when W is split. Assume from now on that W = X ⊕ Y is split with both X and
Y totally isotropic, and let P be the stabilizer of X in H. Then the Weil representation is
on the space S(V ⊗D X) of Schwartz functions. To use coordinates, let Write m′ = 2l, and

let {e1, · · · , el, f1, · · · fl} be a standard D-basis of W with gram matrix J =
(

0 Il
−Il 0

)
and

ei ∈ X, fj ∈ Y . With respect to this standard basis, we have concrete realization (we will
also write U((l, l), J) and UD((l, l)) instead of UD(X ⊕ Y ) in the following)

UD(l, l) = {g ∈ GL2l(D) : gJg∗ = J}.
Moreover, P has the decomposition P = NM with

N =
{
n(b) =

(
Il b
0 Il

)
: b∗ = b

}
M =

{
m(a) = Diag(a, (a∗)−1) : a ∈ GLl(D)

}
Here we wrote (aij)

∗ = t(a∗ij) for matrices (aij) ∈Ml(D) which is the standard extension of ∗
to matrices. It de�nes an involution of the second kind on Ml(D). Let I(s, χ) = IndHP (χ| |sE)
be the induced representation whose sections (elements) are given by smooth functions Φ on
H such that

Φ(n(b)m(a)g, s) = χ(a)|a|s+ρn,l

E (3.3)
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with ρn,l =
nl
2 . Here we also introduced the notations χ(a) = χ(NrdMl(D)/E(a)) and |a|E =

|NrdMl(D)/E(a)|. For any T ∈ Herml(D), its T -th Whittaker function (with respect to ψ) is
de�ned to be

WT (h, s,Φ) =

∫
Herml(D)

Φ(Jn(b)h, s)ψD(−bT )db, (3.4)

where db is the self-dual Haar measure on Herml(D) with respect to ψD.
We identify V ⊗D X with V l via the basis {e1, · · · , el}. Then the Weil representation ω of

G×H can be realized on S(V l) with G acting as

ω(g)ϕ(x) = ϕ(g−1x), (3.5)

and UD(l, l) acting as

ω(n(b))ϕ(x) = ψD(b(x, x))ϕ(x),

ω(m(a))ϕ(x) = χ(a)|a|
mn
2
E ϕ(xa), (3.6)

ω(J)ϕ(x) = γ(V )

∫
V l

ϕ(y)ψD((x, y)) dy,

where γ(V ) is the local Weil index (an 8-th root of unity). Here db is the self-dual Haar

measure with respect to ψD. Setting s0 =
n(m−l)

2 , there is an H-linear map�the Rallis map:

λ : S(V l) −→ I(s0, χ), λ(ϕ)(h) = ω(h)ϕ(0). (3.7)

This map does not depends on the choice of the basis and only depends on the choice of X
(we need X to de�ne P ). Let R(V ) denote the image of this map. Then it is known that
R(V ) is the largest quotient of S(V l) such that G acts trivially. For its properties, such as
irreducibility, we refer to [17].

Let HD = D2 be the right D-hyperplane with hermitian form (x, y) = x∗1y2 + x∗2y1. For
an integer r ≥ 0, let Vr = V ⊕ Hr

D. For a function ϕ ∈ S(V l), let ϕr = ϕ ⊗ char(O2rl
D ) ∈

S(V l
r ). Denote by Φ = Φϕ(h, s) the standard section in I(s, χ) with Φ(h, s0) = λ(ϕ)(h), then

Φ(h, s0 + r) = ω)h)ϕr(0). We denote

WT (h, s, ϕ) =WT (h, s,Φ).

Then we have

WT (h, s0 + r, ϕ) =

∫
Herml(D)

Φ(h, s0 + r)ψD(−bT )db

= γ(V )

∫
Herml(D)

∫
V l
r

ω(h)ϕr(x)ψD(b((x, x)− T ))dx db (3.8)

Here, dx and db denote the Haar measures that are self-dual with respect to ψD.
We view V l as an a�ne variety and let V l

reg be the subvariety of vectors v = (v1, · · · , vl) ∈ V l

such that the D-module generated by v1, · · · , vl has is free of rank l, and let Herml(D)× ⊂
Ml(D) be the set of invertible hermitian matrices of rank l. Then the map

α : V l
reg −→ Herm×

l (D), x 7−→ (x, x)

is a moment map. Choose a translation invariant top di�erential form ωT on ΩT = α−1(T ) and
a top translation invariant di�erential form ωD on Herml(D) such that ωV = ωT ∧ ωD ̸= 0 is
a top translation invariant di�erential form on V l

reg. Let |ωT | be the associated Haar measure
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on ΩT with respect to ωT and ψD (see [10, �9]). Moreover |ωD| = db and |ωV | = dx are
self-dual with respect to ψD.

On the other hand, G acts on ΩT transitively. Choose and �x an x ∈ ΩT (if it exists), and
let Gx be its stabilizer of x in G, then

Gx\G
∼−→ ΩT , g 7−→ g−1x. (3.9)

Notice that G acts on the top di�erential ωT via the reduced norm map which has norm
1 Choose a top invariant di�erential ωx on Gx so that ωD = ωx ∧ ΩT is an invariant top
di�erential on G (up to a scalar in E1. So they induce Haar measures with |ωG|/|ωx| = |ωT |.
The following is an analogue to the local Siegel�Weil formula in [3, Section 2].

Proposition 3.1 (Local Siegel�Weil formula). Let T ∈ Herml(D)× and ϕ ∈ S(V l). Then

γ(V )−1WT (h, s0, ϕ) =

∫
ΩT

ϕ(x)|ωT | =
∫
Gx\G

ϕ(g−1x)|ωG|/|ωx|.

Proof. The second identity is true by de�nition. For the �rst one, we calculate

γ(V )−1WT (h, s0, ϕ) =

∫
Herml(D)

∫
V l

ϕ(x)ψD(b((x, x)− T ))|ωV ||ωD|

=

∫
Herml(D)

∫
Herml(D)

Mϕ(β)ψD(b(β − T ))|ωD|(β)|ωD|(b)

=

∫
Herml(D)

M̂ϕ(−b)ψD(−bT )|ωD|(b)

=
ˆ̂
Mϕ(−T )

=Mϕ(T ).

Here, we have written

Mϕ(T ) =

∫
ΩT

ϕ(x)|ωT |.

□

3.2. Relation with usual unitary dual pairs. When E is a quadratic �eld extension of
F , then one has D ∼= Mn(E) (see �2.3). However, the involution ∗ may not be the standard
one x 7→ tx̄. We assume in this subsection that x∗ = tx̄ and will comment on the general
case in �3.3. Then, the dual pair (G,H) and the Rallis map are exactly the same as the dual

pair (UE(V0), UE(ln, ln)) and its Rallis map, where V = V
(n)
0 under the Morita equivalence

in Lemma 2.4. In particular, for T ∈ Herml(D) = Hermln(E) and ϕ ∈ S(V l), let ϕ0 be the
corresponding Schwartz function in S(V ln

0 ). Then we have

WD
T (h, s, ϕ) =WE

T (h, s, ϕ0). (3.10)

Here, the superscripts D and E indicate the Whittaker functions with respect to D and E,
respectively. In particular, the local Siegel�Weil formula becomes a local Siegel-Weil formula
with the unitary local Siegel�Weil formula, whose orthogonal analogue is given in [3].

Now assume that instead E = F ×F . Then D = D0 ×Dop
0 by the next lemma, where Dop

0
is the opposite central simple algebra of D. If we further have D0

∼= Mn(F ), then the dual
pair (G,H) and the Rallis map are also exactly the same as the degenerate case of the dual
pair (UE(V0), UE(ln, ln)).
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Let D = D1×D2 be the decomposition of D that corresponds to E = F ×F . Both D1 and
D2 are central simple algebras over F . Also let V = V1⊕V2 be the resulting decomposition of
V ; each Vi is a right Di-module of rank m. The following is well-known and straightforward.

Lemma 3.2. Let the notation be as above. Then

(1) There is a natural isomorphism α : Dop
1

∼→ D2 given by

[x, 0]∗ = [0, α(x)]. (3.11)

Here we write elements of D as [x, y] ∈ D1 ×D2.

(2) There is a natural Dop-linear isomorphism α : V2
∼→ V ∨

1 = HomD1(V1, D1), given by

((0, v), (w, 0)) = [α(w)(v), 0].

We will simply write (v, w) = α(w)(v) ∈ D1, which can be viewed as the natural form on
V1 × V ∨

1 → D1 after identifying V2 with V ∨
1 .

(3) For g0 ∈ GLD1(V1), let g̃0 ∈ GLDop
1
(V ∨

1 ) be its dual in the sense

(g0v, w) = (v, g̃0w), v ∈ V1, w ∈ V ∨
1 .

Then under the above identi�cation, we have

G =
{
(g0, g̃

−1
0 ) : g0 ∈ GLD1(V1)

} ∼= GLD1(V1).

We set D0 = D1 and V0 = V1. Similarly, for a split skew-hermitian space W = D(l) ⊕D(l)

as above, we have W = W0 ⊕W0 with W0 being a free left D0-module of rank 2l . Then we
have

H = UD(l, l) = {(h, (h∗)−1) : h ∈ GLD0(W0) = GL2l(D0)} ∼= GL2l(D0). (3.12)

Under this identi�cation, the standard Siegel parabolic subgroup P = NM becomes

N = {n(b, b∗) : b ∈Ml(D0)} ∼=
{
n(b) =

(
Il b
0 Il

)
: b ∈Ml(D0)

}
, (3.13)

M =
{(

(a,d̃−1) 0

0 (ã−1,d))

)}
∼= {m(a, d) = diag(a, d) ∈ GL2l(D0) : a, d ∈ GLl(D0)}.

For a character χ of E×, we write χ = (χ0, χ1) for two characters χ0 and χ1 of F×. The

induced representation I(s, χv) becomes Ind
GL2l(D0)
P (χ0| |s, χ−1

1 | |−s): a section is a smooth
function Φ on GL2l(D0) such that

Φ(n(b)m(a, d)h, s) = χ0(a)|a|
s+n

2
F χ−1

1 (d)|d|−s−
n
2 Φ(h, s). (3.14)

In our case, χ satis�es χ|F× = 1, so χ1 = χ−1
0 and hence

I(s, χv) = χ0 Ind
GL2l(D0)
P (| |s, | |−s)

is simply the twist of Ind
GL2l(D0)
P (| |s, | |−s) by χ0. Here, we used the notations χ0(a) =

χ0(NrdMl(D0)/F (a)) and |a|F = |NrdMl(D0)/F (a)|F . The Weil representation on functions

ϕ ∈ S(V l) = S(V 2l
0 ) becomes (we write [x, y] ∈ V l

0 ⊗ V l
0 )

ω(n(b))ϕ([x, y]) = ψD(b(x, y))ϕ(x),

ω(m(a, d))ϕ([x, y]) = χ0(ad
∗)|a(d∗)−1))|

mn
2 Φ([xa, y(d∗)−1]), (3.15)

ω(J)ϕ([x, y]) = γ(V )

∫
V 2l
0

ϕ([u,w])ψD((u, y) + (w, x)))du dw
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with γ(V ) = 1. Finally, the Rallis map (3.7) works in this case too. The case of D0 =Mn(F )
is described in [17, Section 7] since in this case Ml(D0) =Mln(F ).

3.3. Change of involutions. For later use in Section 6, we deal with e�ects of involution
change on local Whittaker functions and Rallis map. We assume that D is endowed with two
involutions ∗ and † of the second kind over E. Then there is some β ∈ D× with β∗ = β and
† = β ∗ β−1, i.e., x† = βx∗β−1. Notice that β† = β too. We use superscript ∗ or † to indicate
that the objects are with respect to ∗ or †. The following lemma is straightforward and the
proof is left to the reader.

Lemma 3.3. The map T 7→ βT gives an isomorphism from Herm∗
l (D) onto Herm†

l (D). So

is the map T 7→ Tβ−1.

Proposition 3.4. Let d(β) = Diag(βIl, Il). Then we have group isomorphism

β : U∗
D(l, l)

∼= U †
D(l, l), β(h) = d(β)hd(β)−1.

Moreover, it induces the isomorphism of the induced representations

β∨ : I†(s, χ) ∼= I∗(s, χ), Φ+ 7→ Φ∗ = Φ† ◦ β.

Finally, under the isomorphism, we have for T ∈ Herm∗
l (D)

W ∗
T (h, s,Φ

∗) = χ(β)|β|s+ρn,l

E W †
Tβ−1(h, s,Φ

+). (3.16)

Proof. We �rst record some simple formulas, which should be useful in general

βJ = Jβ = d(β)Jd(β),

β(n∗(b)) = d(β)n∗(b)d(β)−1 = n†(βb). (3.17)

β(m∗(a)) = m∗(βaβ−1),

β(J) = m†(β)J

Then the �rst two claims are straightforward. We now verify (3.16). Indeed,

W ∗
T (h, s,Φ

∗) =

∫
Herm∗

l (D)
Φ∗(Jn(b)h, s)ψD(−bT )d∗b

=

∫
β−1 Herm†

l (D)
Φ†(β(J)β(n(b))β(h), s)ψD(−bT )d∗b

=

∫
β−1 Herm†

l (D)
χ(β)|β|s+ρn,l

E Φ†(Jn(βb)ψD(−bT )d∗b

= χ(β)|β|s+ρn,l

E

∫
Herm†

l (D)
Φ†(Jn(b)β(h))ψD(β

−1bT )d†b

= χ(β)|β|s+ρn,l

E W †
Tβ−1(β(h), s,Φ

†).

The last identity uses the facts that d∗b and d†βb are self-dual with respect to ∗ and †
respectively and that ψD(β

−1bT ) = ψD(bTβ
−1). □

Now we look at how the Schwartz functions change with change of involution. Recall
(v1, v2)† = β(v1, v2)∗ and ⟨w1, w2⟩† = ⟨w1, w2⟩∗β−1, where we use subscript to indicate the
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dependence as superscript has di�erent meaning here. Since the symplectic form on W† =
V † ⊗D W

† is give by

≪ v1 ⊗ w1, v2 ⊗ w2 ≫† = trD/Fβ(v1, v2)∗(⟨w1, w2⟩∗β−1)†

= trD/Fβ(v1, v2)∗(⟨w1, w2⟩∗)∗β−1 =≪ v1 ⊗ w1, v2 ⊗ w2 ≫∗

This implies that the Weil representation of G×H on S(V ⊗X) does not depend on the choice
of involutions. Using a standard D-basis {e1, · · · , el, f1, · · · , fl} of W = X ⊕ Y with respect
to ∗, we have S(V ⊗W X) = S∗(V l), using a standard D-basis {βe1, · · · , βel, f1, · · · , fl} of
W = X ⊕ Y with respect to †, we have S(V ⊗W X) = S†(V l). Then we have identi�cation

S∗(V l) ∼= S†(V l), ϕ(x) 7→ ϕβ(x) := ϕ(xβ), (3.18)

under this identi�cation, we have ω(h)ϕ 7→ ω(β(h))ϕβ . This implies that the standard section

Φ∗ associated to ϕ and the standard section Φ† associated to ϕβ are related by Φ∗ = Φ† ◦ β.
So Proposition 3.4 implies

Corollary 3.5. Let the notation be as above, and let ϕ ∈ S∗(V
l). Then we have

W ∗
T (h, s, ϕ) = χ(β)|β|s+ρn,l

E WTβ−1(β(h), s, ϕβ).

4. Siegel�Weil formula

Let F be a number �eld, set A = AF , and let E be a quadratic �eld extension of F . Denote
by ϵE/F : A× → {±1} the quadratic character of E/F obtained from class �eld theory. Let

D be a central simple algebra over E with involution ∗ of second kind such that F = E∗=id.
Let n = dimE(D)1/2 be the degree of D. Fix a non-trivial additive character ψ =

∏′ ψv of A
that is trivial on F .

4.1. Induced representation and Eisenstein series. Similar to �3, let W = D(l) ⊗D(l)

be a free left D-module of rank 2l with standard split D-hermitian form ⟨ , ⟩ with gram matrix
J , and let UD(W,J) = UD(l, l) be the associated unitary group (viewed as an algebraic group
over F ) with standard Siegel parabolic subgroup P = NM . Let χ be an idele class character
of E, and let ID(s, χ) be the induced representation, consisting of smooth functions Φ on
H(A) such that

Φ(n(b)m(a)h, s) = χ(a)|a|s+ρn,l

E Φ(h, s), (4.1)

where χ(a) = χ(NrdMl(D)/E(a)), |a|E = |NrdMl(D)/E(a)|AE
and ρn,l =

nl
2 .

Let Kf =M2l(ÔD)∩H(Af ), and let K∞ be a �xed maximal compact subgroup of H∞. We
say that Φ is standard if Φ|KfK∞ is independent of s, and that Φ is factorizable if Φ = ⊗Φv
where v runs through primes of F . We say that Φ is holomorphic if for every h ∈ H(A), the
function Φ(h, s) is holomorphic in s. Standard sections are holomorphic. For a holomorphic
section Φ, we de�ne the Eisenstein series

E(h, s,Φ) =
∑

γ∈P\H

Φ(γh, s) (4.2)

which is absolutely convergent for ℜ(s) being big. It has memomorphic continuation to the
whole complex s-plane with �nitely many poles, and satis�es the functional equation

E(h, s,Φ) = E(h,−s,M(s)Φ), (4.3)
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where M(s) : I(s, χ) → I(−s, (χ̄)−1) is the intertwining operator given by

M(s)Φ(h, s) =

∫
Hermn(AD)

Φ(Jn(b)h, s)db (4.4)

for the Haar measure db on Hermn(AD) that is self-dual with respect to ψD.
For a hermitian matrix T ∈ Herml(D), the D-th Fourier coe�cient of the above Eisenstein

series is given by

ET (h, s,Φ) =

∫
[Herml]

E(n(b)h, s,Φ)ψD(−bT )db. (4.5)

Here, for an algebraic group G over F , we have used the standard notation [G] = G(F )\G(A).
Then one has the Fourier expansion

E(h, s,Φ) =
∑

T∈Herml(D)

ET (h, s,Φ). (4.6)

Moreover, when T is invertible, we have

ET (h, s,Φ) =
∏
v≤∞

WT,v(h, s,Φ) (4.7)

where, for each place v of F (set Dv = Fv ⊗F D),

WT,v(h, s,Φ) =

∫
Hermv(Dv)

Φv(Jn(b)h, s)ψD,v(−bT )db (4.8)

is the local Whittaker function de�ned in 3. Note that the intertwining operator from (4.4)
factors as M(s) =

∏
vMv(s) and that

Mv(s)Φ(h, s) =W0,v(h, s,Φ).

4.2. Reductive dual pair and Rallis' map. Let V be a hermitian right D-module that
is free of rank m; let G = UD(V ) be its unitary group. Note that V is an E-vector space of
dimension mn2. Let W = V ⊗D W with F -symplectic form

≪ v1 ⊗ w1, v2 ⊗ w2 ≫= TrdD/F (v1, v2)(w1, w2)
∗, (4.9)

where TrdD/F = trE/F ◦ TrdD/E . Let Sp(W) = Sp(4lmn2) be the symplectic group of W.
The natural actions of G and H on V and W respectively give a natural map

ι : G×H → Sp(W), (4.10)

which realizes (G,H) as reductive dual pair in Sp(W). Assume from now on that the chosen
idele class character χ of A×

E satis�es χ|A× = ϵmnE/F . Following the local consideration in �3,

there is a Weil representation ω = ωV,χ,ψ =
⊗

v ωv of G(A) ×H(A) on S(V l
A) =

⊗
v S(V

l
v ).

The group G(A) acts on S(V l
A) linearly:

ω(g)ϕ(x) = ϕ(g−1x). (4.11)

On the other hand the H(A)-action has the following properties:

ω(n(b))ϕ(x) = ψD(b(x, x))ϕ(x),

ω(m(a))ϕ(x) = χ(a)|a|
mn
2
E ϕ(xa), (4.12)

ω(J)ϕ(x) = γ(VA)

∫
V l
A

ϕ(y)ψD((y, x)) dy.
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Here γ(VA) =
∏
v γ(Vv) = 1. Moreover, we have the Rallis map, which is H(A)-equivariant

(again s0 = n(m− l)/2):

λ = λA : S(V l
A) → I(s0, χ), λ(ϕ)(h) = ω(h)ϕ(0). (4.13)

Let Φ ∈ I(s, χ) be the associated standard section with Φ(h, s0) = λ(ϕ), and we denote

W (h, s, ϕ) = E(h, s,Φ). (4.14)

4.3. Theta integral and Siegel�Weil formula. Given a Schwartz function ϕ =
⊗
ϕv ∈

S(V l
A), let Φ =

⊗
Φv be the standard section in ID(s, χ) associated to λ(ϕ) =

⊗
λ(ϕv). There

are two natural ways to construct an G(A)-invariant linear map from S(V l
A) to automorphic

forms on [H]. The �rst way is the theta integral (the Haar measure dg is taken to be the
Tamagama measure)

I(h, ϕ) =
1

Vol([G])

∫
[G]
θ(g, h, ϕ)dg (4.15)

if it is absolutely convergent, where

θ(g, h, ϕ) =
∑
x∈V l

ω(h)ϕ(g−1x)

is the theta kernel, a two variable automorphic form on [G]× [H].
The second way is via the Eisenstein series E(h, s0, ϕ) when the Eisenstein series is holo-

morphic at s = s0. The Siegel�Weil formula claims that these two constructions are basically
the same. The following is a special case of [30, Theorem 5].

Theorem 4.1 ([30, Theorem 5]). When m > 2l, both the theta integral and E(h, s0, ϕ) for
all ϕ ∈ S(V l

A) are absolutely convergent, and they are equal:

I(h, ϕ) = E(h, s0, ϕ).

When D is a �eld, Kudla�Rallis [13, 14] extended Weil's theorem (for the dual pair
(O(V ),Sp(2l))) �rst to the case when the theta integral is absolutely convergent. In their
case, the Eisenstein series has holomorphic continuation at s = s0. Kudla�Rallis also con-
sidered the case that not all theta integrals are convergent, introduced a regularization of
the theta integral, and proved the so-called �rst identity. The analog in the unitary case
was proved by Ichino [9, 10]. These results have been extended further by a lot of authors,
including the second identity. We refer to [5] (the �rst 7 sections) for a quick survey on this
subject. All these results should have extensions to central simple algebras, and it would be
interesting to work them out. Here, we are satis�ed with the following result which is needed
later in our paper.

We need some notation �rst. Given T ∈ Herm×
l (D) (i.e., Nrd(T ) ̸= 0), the T -th Fourier

coe�cient of I(h, ϕ) is formally given by

IT (h, ϕ) =

∫
[Herml]

I(n(b)h, ϕ)

=
1

2

∫
[G]

∑
x∈V l, (x,x)=T

ω(h)ϕ(g−1x)dg, (4.16)

if there exists some x ∈ V l with (x, x) = T . Otherwise, IT (h, ϕ) = 0. Note that the second
expression might still be meaningful even if I(h, ϕ) is divergent. We will use the second
expression as our de�nition of IT (h, ϕ) whenever it makes sense. Similarly, we de�ne the T -th
Fourier coe�cient of the Eisenstein series E(h, s, ϕ) via (4.7).
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Proposition 4.2. Assume that m ≥ l and T ∈ Herm×
l (D), and let ϕ ∈ S(V l

A). Then
ET (h, s, ϕ) is holomorphic at s = s0, and IT (h, ϕ) is absolutely convergent. Moreover

ET (h, s0, ϕ) = κ IT (h, ϕ).

with κ = 2 or 1 depending on whether m = l or m > l. Here s0 =
n(m−l)

2 .

Proof. We follow the proof of [10, Proposition 6.2] closely.
Step 1. Let S be a �nite set of primes of F containing all in�nite primes and such that all

our data are `unrami�ed' at every v /∈ S. More precisely, for v /∈ S, we demand that Ev/Fv
is unrami�ed, (Dv, ∗) = (Mn(Ev), x 7→ tx̄), ϕv = Char(Llv) where Lv ⊂ Vv is a self-dual
Mn(OE,v)-lattice in Vv, and hv ∈ UD(l, l)(OF,v). In this case, Gv = UD(Vv) = UE(V0,v) and
Hv = U(ln, ln) are the usual quasi-split unitary groups and [28, Proposition 3.2] (see also [10,
(6.2)]) gives

ET (h, s, ϕ) =
1∏ln

i=1 L
S
F (2s+ ln− i+ 1, ϵmn+i−1

E/F )

∏
v∈S

WT,v(hv, s, ϕv).

This implies that ET (h, s, ϕ) is holomorphic at s = s0, because the partial L-function L
S
F (s, η)

is holomorphic (and non-zero) at s0, and because the local Whittaker functions are holomor-
phic for holomorphic sections.
Step 2. Applying [23, Proposition 1.2.3] to the exact sequence (the last map is the reduced

norm map)

1 −→ SUD(V ) −→ UD(V ) −→ E1 −→ 1,

and using the fact that SUD(V ) is simply connected and hence has Tamagawa measure 1, we
have that the Tamagawa measure of UD(V ) is given by

τ(UD(V )) = τ(E1) = 2.

In particular, it is independent of dimV or D. One can easily see from de�nitions (see [23, �1])
that the Artin L-function associated to G is L(s,G) = L(s, ϵE/F ), which is again independent
of dimV or D. Chose and �x one x ∈ ΩT (F ) (if such an x does not exist, both sides are zero),
and let Gx be the stabilizer of x in G as done locally in (3.9) before. Then Gx is trivial when
l = m because we assumed Nrd(T ) ̸= 0. Moreover, if there exists some x ∈ ΩT (F ), then

Gx\G
∼−→ ΩT , g 7−→ g−1x.

As in the local case, we choose an translation invariant top degree form ωT on ΩT , and a top
degree right invariant di�erential forms ωx on Gx respectively such that ωG = ωT ∧ ωx is a
G-invariant top degree di�erential form on G up to a scalar in E1. This gives for each place
v of F that ∫

Gx(Fv)\G(Fv)
ω(hv)ϕv(g

−1x)|ωG,v|/|ωx,v| =
∫
ΩT (Fv)

ω(hv)ϕv|ωT,v|.

Here |ω| denotes the local Haar measure associated to the top degree di�erential form ω.
Recall from [23, �1] or [10, �9] that the Tamagawa measure is de�ned by

dgA = L(1, ϵE/F )
−1
∏
v

Lv(1, ϵE/F )|ωG,v|
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Since G acts transitively on ΩT (F ), we have formally

IT (h, ϕ) =
1

τ(G)

∫
Gx(Q)\G(A)

ω(h)ϕ(g−1x)dg

=
τ(Gx)

τ(G)

L(1, Gx)

L(1, G)

∏
v

∫
Gx(Fv)\G(Fv)

Lv(1, G)

Lv(1, Gx)
ω(h)ϕv(g

−1x)|ωG|v/|ωx|v

=
τ(Gx)

τ(G)

L(1, Gx)

L(1, G)

∏
v

λv

∫
y∈ΩT (Fv)

ω(h)ϕv(y)|ωT |v.

So we obtain

IT (h, ϕ) =


1
2

1
L(1,E/F )

∏
v λv

∫
y∈ΩT (Fv)

ω(h)ϕv(y) if m = l,∏
v λv

∫
y∈ΩT (Fv)

ω(h)ϕv(y) if m > l,
(4.17)

whenever that in�nite product is absolutely convergent. Here,

λv =

{
1 if m > 1 or v|∞
Lv(1, ϵE/F ) if m = l and v <∞.

Step 3. Let V l
reg ⊂ V l denote the subset of tuples v = (v1, · · · , vl) such that the D-module

generated by v1, · · · , vl is free of rank l. Then the map

α : V l
reg −→ Herm×

l (D), x 7−→ (x, x)

is a moment map. Let ωT be as in Step 2. Choose a top degree translation invariant di�erential
form ωD on Herml(D) such that ωV = ωT ∧ ωD ̸= 0 is a top degree translation invariant
di�erential form on V l

reg. Let |ωT | =
∏
v |ωT |v be the associated Haar measure on ΩT (A) with

respect to ωT and ψD (see [10, �9]) . Then |ωD|A and |ωV |A are self-dual with respect to ψD.
Then the local Siegel�Weil formula (Proposition 3.1) gives

WT,v(h, s0, ϕv) = γ(Vv)

∫
y∈ΩT (Fv)

ω(h)ϕv(y)|ωT |v. (4.18)

Note that almost all γ(Vv) = 1 and that
∏
v γ(Vv) = 1. When m > l,∏

v

WT,v(h, s0, ϕv) =
∏
v/∈S

1∏ln
i=1 Lv(mn− i+ 1, ϵmn+i−1

E/F )

∏
v∈S

WT,v(h, s0, ϕv)

is absolutely convergent. When m = l, the same is not true, but∏
v

Lv(1, ϵE/F )WT,v(h, s0, ϕv) =
∏
v/∈S

1∏ln−1
i=1 Lv(ln− i+ 1, ϵln+i−1

E/F )

∏
v∈S

λvWT,v(h, s0, ϕv)

is absolutely convergent. So∏
v

λv

∫
y∈ΩT (Fv)

ω(h)ϕv(y)|ωT |v =
∏
v

λvWT,v(h, s0, ϕv) (4.19)

is always absolutely convergent. Combining this with (4.17), we have

WT (h, s0, ϕ) = κ IT (h, ϕ)

as expected.
□
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5. Shimura varieties

In this section, we de�ne Shimura varieties for central simple algebras with involution of
the second kind. Our main references are [16] and [25], which we adapt from the matrix
algebra case to that of general CSAs.

5.1. Shimura Data. We begin with the choice of rational PEL data. Let k/Q be an
imaginary-quadratic �eld and let k → C be a �xed embedding. We assume that 2 is split in k.
We consider a CSA D/k of degree n = [D : k], together with a positive involution ∗ : D → D
of the second kind. Recall that this means that ∗ is Q-linear and satis�es

∗2 = 1, (ab)∗ = b∗a∗, ∗|k = σk/Q, trdD/Q(x
∗x) > 0 for x ̸= 0.

The following convention will be used throughout: Whenever we consider a prime p, then we
denote by † the standard involution onMn(kp), i.e. (xij)

† = t(x̄ij). For example, the condition
on ∗ being positive is equivalent to the existence of an isomorphism (DR, ∗) ∼= (Mn(C), †).

Next, let (V, ( , )) be a hermitian right D-module that is free of rank 1 over D. We
also assume V to be of signature (n − 1, 1) in the following sense. Choose an isomorphism
(DR, ∗) ∼= (Mn(C), †). Then, by the Morita equivalence from Lemma 2.4, there exists an n-

dimensional hermitian C-vector space (unique up to isomorphism) such that VR ∼=W ⊗CC(n).
The condition now is that the signature of W is (n − 1, 1) in the usual sense. Equivalently,
we require that the signature of (VR, ( , )k) is (n

2 −n, n). Here, ( , )k = TrdD/k ◦( , ) is the
k-valued form corresponding to ( , ) as in Lemma 2.7.

Let Z = Resk/Q(Gm) and let Nk/Q : Z → Gm denote the norm. (The group Z can also be

viewed as the unitary similitude group of a 1-dimensional hermitian k-vector space as in [25].)
Let G = UD(V ) be the group of D-linear isometries of V , let GQ = GUD(V ) be the group
of D-linear similitudes, and let c : GQ → Gm denote the similitude factor. Our convention is
that G and GQ act from the left on V . Finally, we consider the product

G̃ = Z ×Gm GQ =
{
(z, g) ∈ Z ×GQ | Nk/Q(z) = c(g)

}
. (5.1)

Note that there is an isomorphism

G̃
∼−→ Z ×G, (z, g) 7−→ (z, z−1g). (5.2)

We can now de�ne our Shimura varieties. Throughout, we identify R⊗Q k
∼→ C along the

�xed embedding k → C. For the group Z, we de�ne (Z, {hZ}) by

hZ : ResC/R(Gm) −→ ZR, z 7−→ z. (5.3)

We de�ne the Shimura datum (G,XG) as follows. Choose isomorphisms (DR, ∗) ∼= (Mn(C), †)
and VR =W ⊗C C(n) (Morita equivalence). Then GR ∼= U(W ). Choose an orthonormal basis

W
∼−→ (C, NC/R)

⊕(n−1)
⊥
⊕ (C,−NC/R)

and let XG be the G(R)-conjugacy class of the homomorphism

hG : ResC/R(Gm) −→ GR, z 7−→ diag(1(n−1), z/z). (5.4)

Finally, we de�ne the Shimura datum (G̃,X) where X is the G̃(R)-conjugacy class of the di-
agonal homomorphism (hZ , hG) with respect to (5.2). Then X is a connected, n-dimensional,
hermitian symmetric domain. It can be described intrinsically as the space of negative de�nite
DR-stable n-dimensional subspaces of VR.
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De�nition 5.1. The re�ex �eld of (Z, {hZ}) and (G̃,X) is k. Let KZ ⊂ Z(Af ) as well as
KG ⊂ G(Af ) be level subgroups and set K = KZ ×KG. We denote by

S(Z, {hZ})KZ
, S(G̃,X)K −→ Speck

the Shimura varieties of (Z, hZ) and (G̃,X) for the indicated level subgroups.

The results in this article are new when D ̸∼= Mn(k). In this case, G is anisotropic and

hence S(G̃,X)K projective.

5.2. Moduli Description. We next give a PEL moduli description of S(Z, {hZ})KZ
and

S(G,X)K .

De�nition 5.2. Let M0,KZ
be the following stack over Speck. For every k-scheme S, the

S-points M0,KZ
(S) are the groupoid of triples (E, ι, η) where

• E/S is an elliptic curve.

• ι : k → End0(E) is a strict k-action in the sense that ι(a) acts as multiplication with a on
Lie(E), for every a ∈ k.

• η is a KZ-coset of Ak,f -linear isomorphisms Ak,f
∼→ V̂ (E).

An isomorphism (E, ι, η)
∼→ (E′, ι′, η′) is a k-linear quasi-isogeny γ : E → E′ such that

γη = η′.

For KZ su�ciently small,M0,KZ
is a �nite k-scheme. The tower

(
M0,KZ

)
KZ

, endowed with

the Hecke action of A×
k,f , is isomorphic to the tower S(Z, {hZ})KZ

.

De�nition 5.3. Let MK be the following stack over Speck. For every k-scheme S, the
S-points M(S) are the groupoid of tuples (E, ι0, η0, A, ι, λ, η) where

• (E, ι0, η0) ∈M0,KZ
(S) is as in De�nition 5.2.

• A is an abelian scheme over S of dimension n2.

• ι : D → End0(A) is a right D-action which satis�es the Kottwitz condition

char(ι(a) | Lie(A);T ) = charredD/k(a;T )
n−1charredD/k(a

∗;T ), a ∈ D.

This is meant as an identity of polynomials in OS [T ].

• λ : A → A∨ is a quasi-polarization that is compatible with the D-action in the sense that
ι(a∗) = λ−1ι(a)∨λ.

• η is a KG-level structure, meaning a KG-coset of isometric, D-linear isomorphisms

η : V (Af )
∼−→ HomAk,f

(V̂ (E), V̂ (A)). (5.5)

Here, source is endowed with the hermitian form ( , )k = TrdD/k ◦( , ). This will implicitly

always be the understood when we consider isometries between a hermitian D-module and a
hermitian k-vector space (or between their adelic variants). The target in (5.5) is endowed with
the following hermitian form. Choosing a trivialization of the Tate twist Af (1), the canonical
polarization of E and the polarization λ endow V̂ (E) and V̂ (A) with perfect alternating
pairings. The Hom-space in (5.5) acquires a hermitian form by

(x, y) := x∗ ◦ y ∈ EndAk,f
(V̂ (E)) = Ak,f .

Here, x 7→ x∗ denotes the Rosati adjoint map. The form ( , ) is independent of the choice of
trivialization of Af (1).
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An isomorphism

(E, ι0, η0, A, ι, λ, η)
∼−→ (E′, ι′0, η

′
0, A

′, ι′, λ′, η′)

in the groupoid MK(S) is a pair (γE , γA) that consists of an isomorphism γE : (E, ι0, η0) →
(E′, ι′0, η

′
0) in M0,KZ

(S) and a D-linear quasi-isogeny γA : A → A′ with the following two
additional properties:

• γA is a similitude with same similitude factor as γE , meaning γ∗A(λ
′) = deg(γE) · λ.

• Then (γE , γA) : Hom(V̂ (E), V̂ (A))
∼→ Hom(V̂ (E′), V̂ (A′)) is an isometry and we further

require that (γE , γA)η = η′.

Proposition 5.4. For every level K = KZ × KG ⊂ G̃(Af ), the stack MK is a Deligne�
Mumford stack that is smooth of relative dimension n − 1 over Speck. The tower (MK)K ,

endowed with the Hecke action of G̃(Af ), is isomorphic to the tower S(G̃,X)K . If D ̸∼=Mn(k),
then MK is proper.

Proof. There is a natural construction of isomorphism of the C-points of (MK)K and S(G̃,X)K
which is the same as that for [25, Theorem 3.5]. The fact that this isomorphism descends to
an isomorphism of varieties (i.e. the fact that (MK)K is a canonical model of the Shimura
variety), is mentioned at the beginning of [25, �3.3]. It holds since the tower (MK)K is open
and closed in the product of the PEL moduli problems of the Shimura varities for Z and
GQ. The latter are canonical models for the Shimura varieties for Z and GQ by Deligne's
de�nition. □

5.3. Integral Models. From now on, we �x KZ ⊂ A×
k,f as the maximal compact subgroup

Ô×
k and we abbreviate M0 := M0,KZ

. It is well-known that M0 is isomorphic to the moduli

stack of elliptic curves with strict CM by Ok.

De�nition 5.5. Let M0 be the stack over SpecOk such that M0(S) is the groupoid of pairs
(E, ι), where

• E is an elliptic curve over S.

• ι : Ok → End(E) is a strict Ok-action in the sense that ι(a) acts by multiplication with a
on Lie(E), for all a ∈ Ok.

An isomorphism in M0(S) is an Ok-linear isomorphism of elliptic curves. Then M0 is a �nite
étale Deligne�Mumford stack over SpecOk and an integral model of M0.

We next impose additional assumptions on (D, ∗), V andKG that allow to de�ne an integral
model of MK over SpecOk.

• First, we assume that there exists, and �x, a ∗-stable maximal order OD ⊂ D. This is
equivalent to the existence of ∗-stable maximal orders OD,p ⊂ Dp for all primes p. That last
condition is non-trivial only when n is even and p inert in k, as explained in Lemma 2.9.

• Second, we �x an OD-lattice Λ ⊂ V . Let Λp = Zp ⊗Z Λ denote its p-adic completion. We
assume that each Λp is of one of the following types:
� If p is split, then we assume that Λp = Λ∨

p . The dual here and in the following is with
respect to ( , )k.

� If p is non-split, then we assume that Λp is a vertex lattice in the sense that

Λp ⊆ Λ∨
p ⊆ π−1

p Λp. (5.6)
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Here, πp ∈ kp denotes a uniformizer. If p is rami�ed, then we moreover assume that

Λp = Λ∨
p or

Λ∨
p = π−1

p Λp n even

[π−1
p Λp : Λ

∨
p ] = n n odd.

(5.7)

• We de�ne KG =
∏
p Stab(Λp) and set K

G̃
= KZ ×KG as before.

De�nition 5.6. Let M• be the following moduli stack over SpecOk. Its S-points M•(S)
are the groupoid of tuples (E, ι0, A, ι, λ,F) where

• (E, ι0) ∈ M0(S) is a CM elliptic curve as in De�nition 5.5.

• A is an abelian scheme of dimension n2 over S.

• ι : OD → End(A) is a right OD-action that satis�es the Kottwitz condition

char(ι(a) | Lie(A);T ) = charredD/k(a;T )
n−1charredD/k(a

∗;T ).

This is meant as an identity of polynomial functions on A1
S .

• λ : A → A∨ is a polarization that is compatible with the OD-action in the sense that
λ−1ι(a)∨λ = ι(a∗) for all a ∈ OD. We furthermore impose the following conditions on its
kernel. For every prime p that splits in k, the kernel ker(λ) is p-torsion free. For every prime
p that is non-split, we instead have

ker(λ)[p∞] ⊆ A[πp], | ker(λ)[p∞]| = |Λ∨
p /Λp|. (5.8)

Here, πp ∈ kp denotes a uniformizer.

• Let B ⊂ SpecOk be the set of primes which are rami�ed in k and satisfy Λp ̸= Λ∨
p . The

datum F ⊂ Lie(A)[B−1] is a so-called Krämer datum which is added when S[B−1] ̸= ∅: It
is an OD-stable OS-submodule with the following properties. It is locally a direct summand
and its OS-rank is n2 − n. Furthermore, the Ok-action on F via ι equals the action by the
natural map Ok → OS . The Ok-action on Lie(A)/F on the other hand equals the Galois
conjugate of the natural action.

• Finally, for every prime p that rami�es in k and such that Λp ̸= Λ∨
p , we assume that the

p-divisible group A[p∞], restricted to the p-adic completion Spf Ok,p × S of S, satis�es the

wedge condition and the (re�ned) spin condition in the sense of De�nition 5.9 below.

An isomorphism (E, ι0, A, ι, λ,F) → (E′, ι′0, A
′, ι′, λ′,F ′) in this groupoid is a pair (γE , γA)

of isomorphisms γE : E → E′ and γA : A → A′ such that γE is Ok-linear, γA is OD-linear,
γ∗A(λ

′) = λ, and γA(F) = F ′.

Before giving the de�nition of the wedge condition and the (re�ned) spin condition in our
setting, we explain a general Morita equivalence statement for p-divisible groups. This will
also play a central role for the de�nition of arithmetic special cycles in the next section. First,
we de�ne the p-divisible group variant of the above tuples (A, ι, λ,F).

De�nition 5.7. Let S be a a scheme over Spf Ok,p.

(1) A (p-divisible) hermitian Ok,p-module (of height 2n) over a scheme S is a triple (X, ι, λ)

where X/S is a p-divisible group of height 2n, where ι : Ok,p → End(X) is an Ok,p-action,

and where λ : X → X∨ is a polarization that is compatible with ι in the sense that ι(ā) =
λ−1ι(a)∨λ for all a ∈ Ok,p. We moreover require ker(λ) ⊆ X[ι(πp)] and deg(ker(λ)) =

#(Λ∨
p /Λp)/n.
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A Krämer datum for (X, ι, λ) is an Ok,p-stable OS-submodule F ⊂ Lie(X) which is locally
a direct summand of rank n − 1 and which has the property that Ok,p acts naturally on F
and via Galois conjugation on Lie(X)/F .

(2) A (p-divisible) hermitian OD,p-module (of height 2n2) over a scheme S is a triple (X, ι, λ),
where X/S is a p-divisible group of height 2n2, where ι : OD,p → End(X) is a right action
of OD,p, and where λ : X → X∨ is a polarization that is compatible with ι in the sense
ι(a∗) = λ−1ι(a)∨λ for all a ∈ OD,p. Moreover, we require that ker(λ) ⊆ X[ι(πp)] and that
deg(ker(λ)) = #(Λ∨

p /Λp).
A Krämer datum for (X, ι, λ) is an OD,p-stable OS-submodule F ⊂ Lie(X) which is locally

a direct summand of rank n2 − n and which has the property that Ok,p acts naturally on F
and via Galois conjugation on Lie(X)/F .

Construction 5.8. Assume that p is non-split in k. Fix an isomorphism γ : OD,p ∼=Mn(Ok,p)

and denote by ∗ the resulting involution on Mn(Ok,p) from the involution ∗ on D. Recall

that † denotes the standard involution on Mn(Ok,p). Fix a †-hermitian invertible element

β ∈ GLn(Ok,p) with the property that x∗ = β−1x†β for all x ∈ Mn(Ok,p). These choices
de�ne a Morita equivalence

{Hermitian Ok,p-modules over S} ∼−→ {∗-Hermitian OD,p-modules over S}

(X, ι, λ) 7−→ (X, ι, λ)⊗ (O
(n)

k,p, β).
(5.9)

The image of (X, ι, λ) here is de�ned as the triple
(
X(n), ι(n), λ(n) ◦ ι(n)(β)

)
where

• X(n) is the n-th power of X viewed as row vectors.

• ι(n) denotes the natural right action of Mn(Ok,p) on X
(n).

• λ(n) : X(n) ∼→ X∨,(n) = (X(n))∨ is the diagonal polarization.

Of course, we view this triple as a hermitian OD,p-module via γ, even though we have not
made this explicit in the notation. We note that if F is a Krämer datum for (X, ι, λ), then

F (n) is a Krämer datum for (X, ι, λ)⊗ (O
(n)

k,p, β) and every Krämer datum for the latter is of

this form.

Now assume that p is rami�ed and that S is a Spf Ok,p-scheme. (By assumption this implies

p ̸= 2.) Let π ∈ kp be a uniformizer with π̄ = −π and let (X, ι, λ) be a hermitian Ok,p-module

of height 2n over S. Recall from [24, �6] that (X, ι, λ) is said to satisfy the wedge condition if∧2(ι(π) + π) acts as zero on Lie(X). If n is even, then it is said to satisfy the spin condition
if ι(π) is non-zero on Lie(X) in each point of S. If n is odd, then there is the de�nition of the
re�ned spin condition which is more complicated to state and for which we refer to [24, �7].

De�nition 5.9. A hermitian OD,p-module (X, ι, λ) of height 2n2 over S is said to satisfy the
wedge condition and the spin condition (n even), resp. the wedge condition and the re�ned
spin condition (n odd), if it comes under Morita equivalence from a hermitian Ok,p-module
that satis�es these two conditions.

It can be shown by a local model argument that this condition is independent of the choices
of γ and β in Construction 5.8 (omitted).

Proposition 5.10. The stack M• is a Deligne�Mumford stack that is �at and regular with
semi-stable reduction of relative dimension n− 1 over SpecOk. It is smooth over all primes
p of the following kind:
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• (Split) p is split in k and Dp
∼=Mn(kp).

• (Hyperspecial) p is inert in k and Λ∨
p = Λp or Λ∨

p = p−1Λp.

• (Exotic smooth) p is rami�ed and Λ∨
p = π−1

p Λp (if n even) or [π−1
p Λp : Λ

∨
p ] = n (if n odd).

If D ̸∼=Mn(k), then M• is proper.

Proof. The fact that M• is representable by a Deligne�Mumford stack of �nite type over
SpecOk is well-known. Its local properties (�atness of relative dimension n − 1, semi-stable
reduction, smoothness over the primes as stated) follow from the standard local model ar-
gument: At primes p that split, M• is �at of relative dimension n − 1 and has semi-stable
reduction because the parahoric local models of GLn have this property. At non-split primes,
using the Morita equivalence in Construction 5.8, the claim reduces to the properties of the
local models as in [25, Theorem 5.4].

It is left to prove the properness of M• when D ̸∼= Mn(k). By the semi-stable reduction
theorem, and by the fact that the signature and wedge conditions are closed conditions, it
su�ces to see that there are no semi-abelian varieties B of dimension n2 and with non-trivial
torus part over algebraically closed Ok-�elds k that admit an OD-action that satis�es those
conditions. So assume B/k is semi-abelian with dimB = n2 and that ι : OD → End(B) is an
OD-action. Let B ↠ T be the maximal torus quotient of B. Also assume that D =Mm(D0)
for a division algebra D0 with d = [D0 : k] ≥ 2. Then T has rank a multiple of 2md2, say
r2md2. Moreover, there exists a �nite projective Ok-module Q of Ok-rank rd

2m such that
T ∼= Q ⊗Z Gm as torus with Ok-action. If char(k) = 0 or if char(k) = p with p unrami�ed,
then the signature of the Ok-action on Lie(T ) = Q⊗ Lie(Gm) is (rd

2m, rd2m). If B satis�es
the signature (n−1, 1)-condition in the D-sense, then the Ok-action on Lie(B) is of signature
(n2 − n, n). The only possibility is r = 0 and we are done. If p is rami�ed and if π ∈ kp

is a uniformizer with π̄ = −π, then one similarly has that
∧rd2m(ι(π) + π | Lie(T )) ̸= 0.

If B satis�es the wedge condition, then again the only possibility is r = 0 and the proof is
complete. □

We next explain how to decompose M• according to hermitian D-modules. This is com-
pletely parallel to [16, Proposition 2.12]. Let k be an Ok-�eld of characteristic p ≥ 0, and
consider a point (E, ι0, A, ι, λ,F) ∈ M•(k). Then

Λ̂(E,A)p := HomAp

k,f

(T̂ (E)p, T̂ (A)p)

is a hermitian ÔD-module. For each prime ℓ ̸= p, the localization Λ̂(E,A)ℓ is of the same
type as Λ in (5.6) and (5.7). This follows from the conditions on λ in (5.8). Moreover, the

isomorphism class of Λ̂(E,A)p is locally constant on Z(p) ⊗Z M•.
Assume next that k = C and that k → C is the �xed inclusion. Then we may pass to

analytic spaces and obtain a hermitian OD-module

Λ(E,A) := HomOk
(H1(E(C),Z), H1(A(C),Z)).

Its signature is (n−1, 1) in theD-sense, which follows from the signature condition in the same
way as during the proof of [16, Proposition 2.12]. Moreover, by the Betti�étale comparison,

Λ(E,A)⊗OD
ÔD

∼−→ Λ̂(E,A).

It follows that when k is of characteristic 0, there exists a unique hermitian D-module V (E,A)
that is free of rank 1, has signature (n− 1, 1), and admits an isometric embedding

Λ̂(E,A) −→ V (E,A)⊗D AD.
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This de�nes a locally constant map

k⊗Ok
M• −→

{
Hermitian D-modules V of rank 1

s.t. there exists an OD-lattice Λ′ ⊂ V of the same type as Λ

}
(E, ι0, A, ι, λ,F) 7−→ V (E,A).

(5.10)
Consider now a prime p > 0 and denote by M•

(p) = Z(p) ⊗Z M• the localization of M• at p.

Proposition 5.10 established that M•
(p) is �at over SpecOk,(p). Thus the function

(E, ι0, A, ι, λ,F) 7−→ Λ̂(E,A)p

is locally constant on M•
(p) and takes values in hermitian ÔpD-modules Λ̂p that have the

property that there exists a hermitian D-module W of rank 1 and signature (n − 1, 1) such

that there exists an isometric embedding Λ̂p ↪→ Apf ⊗Q W . By the classi�cation of hermitian

D-modules, see Theorem 2.10, any such W is uniquely determined by Apf ⊗Q W . It follows

that (5.10) extends to a locally constant function on all of M•.

De�nition 5.11. Let M := MV ⊆ M• denote the �ber above V , our �xed hermitian D-
module. By the same arguments as for [16, Proposition 4.4], MV is an integral model for

S(G̃,X)K .

5.4. Non-archimedean Uniformization. Let p be a prime that is non-split in k. Let
π = πp be a uniformizer of Ok,p and let F denote the algebraic closure of Ok/(π). Let

W =

{
W (F) if p inert

Ok ⊗Z W (F) if p rami�ed

be its ring of Ok,p-Witt vectors. In particular, there is a natural map Ok,p →W .

De�nition 5.12. Let (X, ι, λ) be a hermitian Ok,p-module of height 2n over F. The RZ

space N = N (X, ι, λ) of (X, ι, λ) is de�ned as the following functor on the category of SpfW -
schemes. Its S-valued points N (S) are the set of isomorphism classes of tuples

(X, ι, λ, ρ) resp. (X, ι, λ, ρ,F)

where (X, ι, λ) is as in De�nition 5.7 and where

ρ : S ×SpecF X −→ S ×S X

is an Ok,p-linear quasi-isogenies that preserves the polarization. We assume that (X, ι, λ)

satis�es the wedge and spin condition (n even), resp. the wedge condition and the re�ned
spin condition (n odd). The datum F is a Krämer datum for (X, ι, λ) which is included in
the case that p is rami�ed and Λp = Λ∨

p .
It is well-known [26] that N is representable by a formal scheme that is locally formally of

�nite type over SpfW . It is �at of relative dimension n − 1 and with semi-stable reduction.
If p is inert and Λp self-dual or Λ

∨
p = p−1Λp, or if p is rami�ed and Λp of exotic smooth type,

then N is formally smooth over SpfW .

We now turn to the basic locus of M over p, which coincides with the supersingular
locus. The general uniformization result of Rapoport�Zink [26] describes the completion
W ⊗̂Ok,p

Mss
p of M along the supersingular locus in terms of a moduli space of hermitian

OD,p-modules (De�nition 5.7). The formulation we give here uses Morita equivalence to
translate this into a statement about hermitian Ok,p-modules.
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Construction 5.13. Make the following choices.

• Fix a supersingular point (E, ι0, A, ι, λ) ∈ M(F). If p is of Krämer type, then we also include
a Krämer datum for Lie(A). We will suppress this in the following however; everything works
the same when including Krämer data.

• Let (Y, ιY, λY) be the p-divisible group of (A, ι, λ). It is a hermitian OD,p-module in the
sense of De�nition 5.7.

• Choose an isomorphism γ : OD,p ∼= Mn(Ok,p) and a hermitian matrix β ∈ GLn(Ok,p) as

in Construction 5.8. Consider a hermitian Ok,p-module (X, ι, λ) of height 2n over F together
with an isomorphism

(X, ι, λ)⊗ (O
(n)

k,p, β)
∼−→ (Y, ιY, λY).

Let N = N (X, ι, λ) denote the RZ space of (X, ι, λ).
Composing the general uniformization morphism from [26] with Construction 5.8 de�nes a
morphism

Z(Af )/KZ ×
[
N ×G(Apf )/K

p
G

]
−→W ⊗̂Ok,p

M̂ss
p . (5.11)

Our next aim is to describe the automorphism group of the �xed supersingular point. For
this, we �rst give a general de�nition:

De�nition 5.14. The space of special homomorphisms of a point (E, ι0, A, ι, λ,F) ∈ M(S)
is the Ok-module

L(E,A) := HomOk
(E,A).

It is endowed with the Ok-hermitian form

(x, y)k := x∗ ◦ y ∈ EndOk
(E). (5.12)

It is naturally a right OD-module by xa = ι(a) ◦ x, and this action is compatible with the
hermitian form in the sense that (x, ya) = (xa∗, y). We also set

V (E,A) = L(E,A)⊗Z Q.

Consider again the �xed supersingular point (E, ι0, A, ι, λ) ∈ M(F). Then A is isogeneous
to the n2-th power of E, so V (E,A) is a k-vector space of dimension n2. It is necessarily free
of rank 1 as D-module and the natural map

Apf ⊗Q V (E,A)
∼−→ V̂ (E,A)p

has to be an isomorphism. Moreover, by positivity of the Rosati involution, we know that
V (E,A) is a positive de�nite hermitian D-module. By the de�nition of M in terms of
(5.10), we obtain that V (E,A) is the unique positive de�nite hermitian D-module such that

Apf ⊗Q V (E,A)
∼→ Apf ⊗Q V . (The uniqueness follows from the classi�cation of hermitian

D-modules in �2.4.) We denote that D-module by V (p) and call it the p-nearby hermitian
D-module of V . The group of quasi-automorphisms of (E, ι0, A, ι, λ) is then

G̃(p)(Q) = [k× ×GUQ
D(V

(p))(Q)]N(z)=c(g).

This group acts on the left hand side of (5.11) by composition in the framing.

Proposition 5.15. The uniformization morphism (5.11) descends to an isomorphism

Z(Q)\Z(Af )/KZ × G(p)(Q)\
[
N ×G(Apf )/K

p
G

]
∼−→W ⊗̂Ok,p

Mss
p . (5.13)

Proof. This is the uniformization result of [26] combined with the Morita equivalence (5.9). □
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6. Special Cycles

6.1. Algebraic Cycles. The hermitian form on L(E,A) de�ned in (5.12) takes values in
Ok. Let ( , )D be its lift along Trd : D → k as in Lemma 2.7. It takes values in the inverse
di�erent of D/k,

∂−1
D/k = {x ∈ D | trdD/k(xy) ∈ Ok for all y ∈ OD}. (6.1)

Thus the forms ( , )k and ( , )D are related by the diagram

∂−1
D/k

trd
D/k

��
L× L

( , )k
//

( , )D

77

Ok.

(6.2)

Remark 6.1. The inverse di�erent is a two-sided OD-ideal which may be described as follows.
If p is non-split in K, then ∂−1

D/k,p = OD,p. If p is split, then choose a central division algebra

Q over Qp and an isomorphism

OD,p ∼=Mm(OQ)×Mm(O
op
Q ).

Let d = n/m be the degree of Q and let ϖ ∈ OQ be a uniformizer. Then

∂−1
D/k,p =Mm(∂

−1
Q/Qp

)×Mm(∂
−1
Q/Qp

)op ∼= ϖ−d+1(Mm(OQ)×Mm(O
op
Q )). (6.3)

Indeed, let H/Qp be an unrami�ed �eld extension of degree d and let OH → OQ be any

embedding. Then OQ =
⊕d−1

i=0 ϖ
iOH so

trdQ/Qp

(
d−1∑
i=0

ϖiai

)
= trH/Qp

(a0).

On the other hand, the trace pairing on OH is perfect by the unrami�edness of H/Qp.

Recall that Herm(D) and Herm×(D) denote the sets of hermitian (invertible) elements in
D. We write Herm>0(D) ⊂ Herm×(D) for all those elements that are positive de�nite at
in�nity.

De�nition 6.2. For ξ ∈ Herm(D), de�ne Z(ξ) → M as the relative scheme with functor of
points

Z(ξ)(S) = {(E, ι0, A, ι, λ,F , x) | x ∈ L(E,A), (x, x)D = ξ} .

Set Vf = Af ⊗Q V and let V∞ be a positive de�nite hermitian D∞-module that is free of
rank 1. Then V = Vf ⊗V∞ is a hermitian right AD-module that is incoherent, meaning that

its Hasse invariant χ(V) ∈ A×/Nk/Q(A
×
k) does not lie in Q×/Nk/Q(k

×). The next de�nition

goes back to Kudla [12].

De�nition 6.3. The di�erence set of an element ξ ∈ Herm×(D) is the set

Diff(V, ξ) = {p ≤ ∞ | χ(Vp) ̸= Nrd(ξ)}.

The incoherence of V implies that Diff(V, ξ) is always non-empty and consists of an odd
number of places. Note that if p is non-archimedean, then χ(Vp) = χ(ξ) if and only if Vp
represents ξ.
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Proposition 6.4. Assume that ξ ∈ Herm×(D) and that Z(ξ) ̸= ∅. Then Diff(V, ξ) consists
of a unique non-archimedean non-split prime p, and ξ > 0. Moreover, Z(ξ) is supported over
the supersingular locus of Mp.

Proof. Assume that there exists a �eld k of characteristic p ̸= 0 and a tuple (E, ι0, A, ι, λ,F , x) ∈
Z(ξ)(k). Then x de�nes an element x̂ ∈ V̂ p(E,A) = Hom(V̂ p(E), V̂ p(A)) with (x̂, x̂) = ξ.

Since V̂ p(E,A) ∼= V ⊗Apf by de�nition of M, it follows that no �nite prime ℓ ̸= p is contained

in Diff(V, ξ). Moreover, by positivity of the Rosati involution and because ξ is non-singular,
it also has the property that TrdD/K(a∗ξa) > 0 for every 0 ̸= a ∈ D. Hence ξ is a positive
de�nite element and thus ∞ ̸∈ Diff(V, ξ). Since we know a priori that Diff(V, ξ) has an odd
number of elements, this proves Diff(V, ξ) = {p}.

Only non-split places may occur in Diff(V, ξ), so p is non-split. Then E is supersingular.
Moreover, the homomorphism x : E → A extends to an OD-linear map

OD ⊗Z E −→ A.

Since ξ is non-singular, this map is an isogeny so A is supersingular as well, and the proof is
complete. □

We next give a description of Z(ξ) in terms of uniformization (Proposition 5.15). Assume
for this that Diff(V, ξ) = {p}. Fix a supersingular point (E, ι0, A, ι, λ) ∈ M(F) as well as
choices of γ, β and (X, ι, λ) as in Construction 5.13. Let E be the p-divisible group of E.
We denote by X the universal hermitian Ok,p-module over N and by E/SpfW the canonical
lifting of E.

De�nition 6.5. For a tuple x = (x1, . . . , xn) ∈ Hom(E,X)(n), denote by Z(x) → N the closed
formal subscheme of triples (X, ι, λ, ρ), resp. quadruples (X, ι, λ,F , ρ) in the Krämer case,
that is de�ned by the condition that the n quasi-homomorphisms x1 ◦ ρ, . . . , xn ◦ ρ : E → X
are homomorphisms.

It was explained before Proposition 5.15 that V (E,A) is the p-nearby hermitian D-module

V (p) of V. Its p-adic completion agrees with Homk(E,Y) for rank reasons because both E
and Y are supersingular. Using γ and β, there is an identi�cation as hermitian Dp-modules

Homkp
(E,X)⊗kp

(k(n)p , β)
∼−→ Homkp

(E,Y).

Under this bijection, elements x ∈ Homkp
(E,Y) with (x, x)D = ξ correspond to tuples

(x1, . . . , xn) ∈ Homkp
(E,X)(n) such that (xi, xj)ij = βξ. (Here and below, we use γ to

view ξ as element of Mn(kp).) Note that ξ is ∗-hermitian ξ∗ = ξ, which implies that βξ is
†-hermitian.

Fix an element x ∈ V (p) with (x, x)D = ξ. At p, we view x as an element of Hom(E,X)(n)
with (xi, xj)ij = βξ as just explained.

Proposition 6.6. The uniformization morphism from (5.11) induces an isomorphism

Π : Z(Q)\Z(Af )/KZ ×
∑

gp∈G(Ap
f )/K

p

1Λp(gp,−1x) · Z(x)× [gpKp]
∼−→ Z(ξ). (6.4)

Note that the universal map x : OD ⊗Z E → A over Z(ξ) is essentially a quasi-isogeny to
the framing object. So it is not surprising that Z(ξ) embeds into the covering space of (5.11).
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Given x = (x1, . . . , xn) ∈ Homkp
(E,X)(n), there is a more re�ned de�nition of the local

cycle as

[Z(x)] := [OZ(x1)

L
⊗
OM

· · ·
L
⊗
OM

OZ(xn)] ∈ K ′
0(Z(x)).

It lies in the �ltration step that is generated by 0-dimensional cycles, i.e. may be represented
by a �nite sum of skyscraper sheaves. By the main result of [8], the class [Z(x)] only depends
on the lattice ⟨x1, . . . , xn⟩ generated by x. By (6.4), the only way to de�ne a global class z(ξ)
that is compatible with the local theory is to set

z(ξ) :=
∑
gp

1
Λ̂p(g

p,−1x0) Π∗z(g
p,−1x0) ∈ K ′

0(Z(ξ)). (6.5)

Remark 6.7. The class z(ξ) is well-de�ned, meaning it is independent of the choices in
Construction 5.13: First, independence of β is clear because the de�nition of z(ξ) does not
refer to β. Second, any two choices of γ are conjugate under GLn(Ok,p). In terms of Z(x), this

corresponds to a change of basis of the lattice ⟨x1, . . . , xn⟩ and it is known by Howard's linear
invariance [8] as well as its extensions to the rami�ed and bad reduction places [4, 19] that
[Z(x)] only depends on that lattice. Finally, independence of the base point (E, ι0, A, ι, λ)
used for the uniformization can be seen directly.

There is also a recent construction of a canonical derived cycle LZ(ξ)[d−1] by Madapusi
[22] which applies at unrami�ed places of good reduction. (Here, d denotes the complement
of those places.) It should be true that the class [Z(ξ)] can be constructed canonically from
LZ(ξ) whenever p ∤ d.

Assume that D ̸∼=Mn(k). ThenM is proper (Proposition 5.4) and we denote by ĈH
n
(M)Q

the top degree Q-coe�cient Chow group of M. There is a natural map

FnK ′
0(Z(ξ)) −→ ĈH

n
(M)Q (6.6)

that sends the skyscraper sheaf OP of a closed point P ∈ Z(ξ) to the class of (P, 0).

De�nition 6.8. We denote by ĉ(ξ) ∈ ĈH
n
(M) the image of z(ξ) under (6.6).

The following degree formula is completely analogous to that of [16]. Let γ and β be as in
Construction 5.13.

Proposition 6.9. Assume that ξ ∈ Herm>0(D) is positive and such that Diff(V, ξ) = {p}
consists of a single prime. The arithmetic degree of ĉ(ξ) is given by

d̂eg(ĉ(ξ)) = cKIntp(ξβ
−1)Orbp(ξ, 1Λp) log pfp .

Here fp = [Ok,p/p : Zp/p], cK = |Z(Q)\Z(Af )/KZ |, and

Orbp(ξ, 1Λp) =
∑

gp∈G(Ap
f )/K

p

1Λp(gp,−1x) =
1

Vol(Kp)

∫
G(Ap

f )
1Λp(gp,−1x)dg

where dg is the Tamagawa measure on G(A) restricted to G(Apf )

Proof. This follows from (6.5), noting that Intp(ξβ
−1) := deg(z(x)) is independent of x ∈

V
(p)
ξ (Qp) and that the number of contributing summands in (6.5) is counted by Orbp(ξ, 1Λp).

□
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Proposition 6.10. Let the notation be as above. Then there is an explicit Schwartz function

ϕ
(p)
p ∈ S(V

(p)
p ) such that

Intp(ξβ
−1) log pfp =

W ′
ξ,p(1, 0, 1Λp) +Wξ,p(1, 0, ϕ

(p)
p ) log pfp

Wξ0,p(1, 0, 1Λp)
.

Here Λp = Λ ⊗Z Zp ∼= ODp, ξ0 is a Gram matrix of Λp with respect to involution ∗, all
Whittaker functions are respect to the involution ∗ of D, and fp = 1 or 2 depending on
whether k/Q is rami�ed or not at p. Moreover, when p is inert and Λp is self-dual or when p

is rami�ed and we are in exotic smooth case, ϕ
(p)
p = 0.

Proof. (Sketch) Typically the local arithmetic Siegel-Weil formula is written in terms of local
density functions. The relation between local Whittaker functions and local density functions
in the usual Hermitian case is given by

Wξ,p(1, s, 1L) = γ(L)| detL|npDen(L,Mξ, X) (6.7)

with X = (pfp)−2s when s ≥ 0 is an integer. Here Mξ is a hermitian Okp
-lattice with Gram

matrix ξ. Now the local arithmetic Siegel-Weil formula in [7], [19] and [20] together with
equivalence give

Intp(ξβ
−1) log pfp =

W †,′
ξβ−1,p

(1, 0, 1Λp) +W †
ξβ−1,p

(1, 0, ϕ̃
(p)
p ) log pfp

W †
ξ0β−1,p

(1, 0, 1Λp)
.

For some Schwartz function ϕ̃
(p)
p ∈ S†(V

(p)
p ). Here the superscript † indicates that the func-

tions are relative to the standard involution † inMn(kp), and the local arithmetic intersection
Intp(ξβ

−1) is in the standard Rapoport-Zink space. Finally ξ0β
−1 is a Gram matrix of Λp

with respect to †. Let ϕ(p)p = ϕ̃
(p)
p,β−1 as in (??), and notice that 1Λp,β−1 = 1Λp as β ∈ GLn(OE)

and Λp is unimodular. So we have by Corollary 3.5

Intp(ξβ
−1) log pfp =

W ′
ξ,p(1, 0, 1Λp) +W †

ξ,p(1, 0, ϕ
(p)
p ) log pfp

Wξ0,p(1, 0, 1Λp)
,

as expected.
□

6.2. Green Currents. Recall that X ⊆ P1(W1) denotes the hermitian symmetric domain
of our Shimura datum. Let L ⊂ V ⊗C OX be the universal n-dimensional D-stable totally
negative subspace and let

pL : V ⊗C OX −→ L
denote the orthogonal projection. Given an element x ∈ V such that ξ = (x, x)D ∈ D×

R , the
pair (L, pL(x)) consists of a hermitian rank n vector bundle with nowhere vanishing section.
In this situation, Garcia�Sankaran [6] de�ne a Green current for the empty cycle (i.e. a top
degree smooth di�erential form) ω(x) ∈ Ωn,n(X). It is G(R)-equivariant in the sense that

g∗ω(x) = ω(g−1x).

Moreover, ω(x) is integrable and we de�ne

Int∞(x) :=

∫
X
ω(x).
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In fact, this quantity only depends on ξ = (x, x). For every ξ ∈ Herm×(D), the sum

ω̃(ξ) :=
∑

x∈Vξ(Q)

∑
gK∈G(Af )/K

ω(x)⊗ 1Λ(g
−1x) ∈ Ωn,n

(
X ×G(Af )/K

)
(6.8)

is G(Q)-equivariant.

De�nition 6.11. Let ω(ξ) ∈ Ωn,n(M(C)) be the descent of ω̃(ξ) along the complex uni-
formization morphism. De�ne

ẑ(ξ) := (0, ω̃(ξ)) ∈ ĈH
n
(M).

By (6.8), we have

deg ẑ(ξ) = Int∞(ξ)Orb(ξ, 1Λ).

7. Arithmetic Siegel�Weil formula

In this section, let (D, ∗) be a central simple algebra over k of degree n and second kind
involution ∗ with a ∗-stable maximal order OD. Let V be a right free (D, ∗)-hermitian module
of signature (n − 1, 1), and let Λ be an OD-lattice of V such that for each non-split prime
number p, Λ∨

p = Λp or π−1
p Λp. We assume that D ̸= Mn(k) as the case Mn(k) has already

been known as usual unitary Shimura variety of signature (n− 1, 1).
Let Vf = Af ⊗Q V , and let V∞ be a positive de�nite hermitian (D∞, ∗)-module that is

free of rank 1. Then V = Vf ⊗ V∞ is an incoherent hermitian A⊗Q (D, ∗)-module, meaning
it does not come by completion from a hermitian D-module. Let ϕ = ⊗′ϕp ∈ S(VA) where

where ϕp is the characteristic function of Λp, and ϕ∞(x) = e−π(x,x) ∈ S(V∞) is the Gaussian.

For each �nite prime p rami�ed in k such that Λ′
p = Λp, de�ne ϕ

(p) = ⊗′
qϕ

(p)
q ∈ S(V

(p)
A ) where

ϕ
(p)
q = ϕq for all q ̸= p and ϕ

(p)
p is the same as in Proposition 6.10. For z = x + iy ∈ Hn,

and x ∈ Herm×
n (D), we de�ne the associated arithmetic 0-cycle ẑ(y, ξ) as follow. When

|Diff(V, ξ)| > 1, we have ẑ(y, ξ) = 0; when Diff(V, ξ) = {p}, we have

ẑ(y, ξ) =

{
(z(ξ), 0) ifp <∞,

(0, ω̃(y, ξ) ifp = ∞.
(7.1)

Theorem 7.1. For every ξ ∈ Herm×(D), there is the identity

Cd̂egẑ(y, ξ)qξ = E′
ξ(z, 0, ϕ) +

∑
p<∞

Eξ(z, 0, ϕ
(p)) log pfp . (7.2)

Here C ̸= 0 is an absolute constant independent of ξ, q = e2πiTr(zξ), and z = x+ iy ∈ Hn.

Proof. The proof is standard now and is a combination of local arithmetic Siegel-Weil formula
and counting via the usual Siegel-Weil formula. As V is incherent, |Diff(V, ξ)| ≥ 1. When
|Diff(V, ξ)| > 1, both sides are equal to 0. Assume that Diff(V, ξ) = {p}, then p is non-split
in k. When p < ∞, one has ξ∞ is positive de�nite, and the sum on the right has only one
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possible non-zero term, which is Eξ(z, 0, ϕ
(p)). So

E′
ξ(z, 0, ϕ) +

∑
p<∞

Eξ(z, 0, ϕ
(p)) log pfp

=
[
W ′
ξ,p(1, 0, ϕp) +Wξ,p(z, 0, ϕ

(p) log pfp
] ∏
q∤p∞

Wξ,q(1, s, ϕq)|s=0Wξ,∞(z, 0, ϕ∞)

=
[
W ′
ξ,p(1, 0, ϕp) +Wξ,p(1, 0, ϕ

(p)) log pfp
] Lp(1, ϵk/Q)
L(1, ϵk/Q)

∏
q∤p∞

λqWξ,q(1, 0, ϕq) ·Wξ,∞(z, 0, ϕ∞),

and by Proposition 6.9

d̂egẑ(y, ξ)qξ = d̂egẑ(ξ)qξ = cKIntp(ξβ
−1)Orbp(ξ, 1Λp) log pfpqξ.

By Siegel-Weil formula (Proposition 4.2 ) and local Siegel-Weil formula (Proposition 3.1), we
have

Orbp(ξ, 1Λp) = (γ(Vp)γ(V∞))−1
∏
q∤p∞

λqWξ,q(1, 0, ϕq).

Recall (see for example [21, Proposition 4.5] or [6, Proposition 3.2])

Wξ,∞(τ, 0, ϕ∞) = γ(V∞)
(2π)n

2

Γn(n)
qξ.

Here

Γn(s) = (2π)
n(n−1)

2

n−1∏
j=0

Γ(s− j)

is the Siegel Gamma function. So the local arithmetic Siegel-Weil formula implies

Cpd̂egẑ(y, ξ)q
ξ = E′

ξ(z, 0, ϕ) +
∑
p<∞

Eξ(z, 0, ϕ
(p)) log pfp ,

for some explicit constant Cp ̸= 0. The same argument also give the same identity for p = ∞
with constanct C∞. Direct calculation shows gives an explicit constant for all Cp, p ≤ ∞,
which is independent of p. This proves the theorem.

□
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