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Deutsche Zusammenfassung (German Summary)
Eine zentrale Eigenschaft von Theorien in der mathematischen Logik ist die Quan-
torenelimination. Dadurch vereinfacht sich der Formelaufbau wesentlich und es
können zum Beispiel definierbare Mengen in Modellen der Theorie besser beschrieben
werden. Dies kann genutzt werden um zu zeigen, dass (R, <,+, g) nicht field type
ist [HW21].

In dieser Bachelorarbeit arbeiten wir zunächst in Kapitel 5 die Quantorenelimini-
ation für die in [Del97] eingeführte Theorie T aus. Dafür nutzen wir das Theorem
5.24, welches besagt, dass es ausreicht, eine Erweiterung für jede Einbettung zwis-
chen einem Modell M mit |M| ≤ κ und einem Modell N , das κ+-saturiert ist, zu
finden [Hie21, Corollary 4.2.6].

Für die konkrete Konstruktion der erweiterten Einbettung nutzen wir dieselbe Fal-
lunterscheidung und ähnliche Eigenschaften von Modellen von T aus wie in [Del97]
genannt werden. Allerdings nutzen wir im Gegensatz zu [Del97] nicht, dass die
algebraischen Eigenschaften der Modelle es zulassen, jedes Modell als geordneten
Vektorraum über dem Quotientenkörper der endlichen Summen von Elementen aus
P zu interpretieren. Stattdessen wenden wir konkret die Axiome der Theorie T an
und zeigen damit alle Eigenschaften, die sich aus der Interpretation als Vektorraum
ergeben, direkt wenn wir sie für die Konstruktion benötigen. Außerdem werden in
dieser Arbeit manche Beweisideen von [Del97] genauer ausgearbeitet und die dafür
benötigten Eigenschaften der Presburger Arithmetik zuvor in Kapitel 4.2 gezeigt.

Anschließend diskutieren wir kurz, eine Anwendung der Quantorenelimination.
Die Struktur (R, <,+, g) ist nicht field type. Eine Struktur nennen wir field type,
wenn es in der Struktur definierbare Funktionen gibt, mit denen die Struktur (ggf.
eingeschränkt auf ein Intervall) isomorph zum geordneten Körper (R, <,+, ·) ist.

Aus einer kurzen Rechnung in Kapitel 6 folgt, dass (R, <,+, g) eine weak pole
zulässt. Dies ist eine in [HW21] eingefürte Notation, die eine Abschwächung der
Definition einer pole ist und die beschreibt, ob es eine definierbare Menge von
Funktionen gibt, die einen bestimmten Definitionsbereich haben und in deren Bild
ein kompaktes Intervall liegt.

Dieses Ergebnis, dass die betrachtete Struktur sowohl field type ist, als auch eine
weak pole zulässt, wurde in [HW21] gezeigt. Dafür wird die in dieser Arbeit aus-
geführte Quantorenelimination genutzt. Außerdem wird in [HW21] die Bedeutung
dieses Ergebnisses herausgestellt. In der Quelle wird bewiesen, dass o-minimale
Modelle nur eine weak pole zulassen, wenn diese field type sind. Dasselbe Ergeb-
nis wird für Expansionen, die eine dichte ω-anordnenbare Menge definieren (dense
ω-orders), gezeigt. Somit ist das hier analysierte Modell ein interessantes Beispiel,
welches belegt, dass sich dieses Ergebnis nicht für alle Expansionen der geordneten,
additiven Gruppe der reellen Zahlen verallgemeinern lässt.
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1 Introduction
In this Bachelor thesis we are considering a specific model and its properties.
Namely, we follow the ideas from Delon [Del97] to show that the theory T of R :=
(R, 2Z, (2nZ)n∈N∗ , <,+,−, g, λ, 0, 1) admits quantifier elimination. This structure is
an expansion by definitions of (R, <,+, g) which is the real ordered additive group
expanded by g, where g denotes the usual multiplication but with the first factor
restricted to 2Z.

Proving this quantifier elimination will be the main result of this thesis and will
take some work. First, we will prove certain results for Presburger Arithmetic in
Section 4.2 which we can later translate into results for T . Then we will prove
basic results for T in Section 5.2. Applying these results, we will do an embedding
test to show that T admits quantifier elimination in Section 5.3.

This quantifier elimination was applied by [HW21] in order to conclude that
(R, <,+, g) is not field type. We will shortly discuss this application in Section 5.5.

With a quick calculation in Chapter 6, we show that (R, <,+, g) admits a weak
pole since g is one. The concept of a weak pole is introduced in [HW21] and is a
weakening of the more commonly used notion of a pole.

This concludes the result from [HW21] that (R, <,+, g) is not field type but admits
a weak pole. This result is the main motivation for this thesis and its relevance
gets clear from [HW21]. Assuming o-minimality, it is known that structures can
be classified into two groups: linear structures and field-type structures [PS98].
Hieronymi and Walsberg used this to show that o-minimal structures could only
admit a weak pole if they are field-type. They also showed the same result for
expansions which define a dense ω-orderable set: “An ω-orderable set [. . . ] is a
definable set that is either finite or admits a definable ordering with order type ω”
[HW21]. However, as proven by the example considered in this thesis this result
cannot be generalized to all first order expansions of (R, <,+).

In conclusion, the rather technical and specific constructions in this thesis lay the
foundation for this interesting result from [HW21] that there is indeed a structure
with a weak pole that is not field-type. This example demonstrates that not all
expansions of the additive ordered group of the reals can be classified in the same
way as expansions with additional properties like o-minimality.

2 Notations
In the following, we will work in a language that has a binary relation symbol <
and some unary relation symbols. In order to shorten the notation, we will use
t1 > t2 to abbreviate ¬(t1 < t2 ∨ t1 = t2), t1 ≤ t2 to abbreviate t1 < t2 ∨ t1 = t2,
and t1 ≥ t2 to abbreviate t1 > t2 ∨ t1 = t2, with t1 and t2 being arbitrary L-terms.
Note that this agrees with the usual definition of the relation symbols >, ≤, ≥.
Another commonly used abbreviation which we use in this thesis is t1 < t2 < t3
instead of t1 < t2 ∧ t2 < t3.
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For a unary relation symbol R, we will occasionally use the notation x ∈ R to
mean that x is an element such that R(x) holds. For a subset A of the universe
of a model of the theory, we use the notation P (A) to refer to the set of all a ∈ A
such that P (a) holds.

For any symbol s in some language L, we will use the notation sM to denote the
interpretation of s in M for some L-structure M. If it is clear from the context
which structure is meant, we will often omit the structure and just write s to mean
sM.

We will use N∗ = {1, 2, 3, 4, . . . } to denote the smallest inductive set without 0
and N0 to denote N∗ ∪ {0}.

3 Definitions
In this chapter we will introduce mostly commonly known definitions which will
be used in this thesis.

The following seven definitions are taken from [Hie21, Definition 5.1.1, 3.5.1, 2.3.1,
2.3.2, 2.2.4].

Definition 3.1 (universal formula). We say an L-formula ψ is universal if there
is a quantifier-free L-formula ψ1 and an n ∈ N∗ such that ψ is the formula
∀x1 . . . ∀xnψ1.

Definition 3.2 (κ-saturated). Let κ be an infinite cardinal. We say that an
L-structure M is κ-saturated if every type p(x1, . . . , xn) over A is realized in M
for all A ⊂M with |A| < κ and every n ∈ N∗.

Definition 3.3 (definable set). Let M be an L-structure with universe M . A set
X ⊂ Mn is called definable in M (without parameters) if there is an L-formula
φ(x1, . . . xn) such that X = {m : M |= φ(m)}.

Definition 3.4 ((first order) expansion). Let L′,L be languages with L′ ⊃ L. Let
M′ be an L′-structure and M be an L-structure on the same universe M . M′ is
an expansion of M if

1. cM′
= cM for each constant symbol c in L,

2. fM′
= fM for each function symbol f in L,

3. RM′
= RM for each relation symbol R in L.

Definition 3.5 (expansion by definitions). Let L′,L be languages with L′ ⊃ L.
Let M′ be an L′-structure and M be an L-structure on the same universe M . M′

is an expansion by definitions of M if M′ is an expansion of M and

1. the set {x : M′ |= (x = c)} is definable in M for each constant symbol
c ∈ L′,

2. the set graph(f) = {(x, y) : M′ |= (y = f(x))} with x ∈ M l is definable in
M for each l-ary function symbol f ∈ L′ ,
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3. the set {x : M′ |= (R(x))} is definable in M for each relation symbol R ∈ L′.

Definition 3.6 (definable function). Let M be an L-structure with universe M .
A function F :Mm →Mn is called definable if there exists an L-formula
φ(y1, . . . , ym+n, z1, . . . , zj) and b ∈M j, such that:

graph(F ) := {(x, F (x)) : x ∈Mm} = {a ∈Mm+n : M |= φ(a, b)}.

Definition 3.7 (embedding). Let M,N be L-structures. A map φ is an em-
bedding if it is an injective map from the universe of M onto the universe of N
and

1. φ(cM) = cN for each constant symbol c in L,

2. φ(fM(m1, . . . ,mn)) = fN (φ(m1), . . . , φ(mn)) for each function symbol f in
L and all m1, . . . ,mn in the universe of M ,

3. RM(m1, . . . ,mn) holds if and only if RN (φ(m1), . . . , φ(mn)) for each relation
symbol R in L and all m1, . . . ,mn in the universe of M .

4 Properties of Presburger Arithmetic
In this chapter, we will introduce Presburger Arithmetic and analyse it. Presburger
Arithmetic is one of the most fundamental theories in mathematical logic and has
therefore been well studied (see e.g. [PD11, p. 51, pp. 132 ff.] and [Mar02, pp. 81
– 84]). In the theory T , on which we will focus in this thesis, one of the axioms
will be that a certain subset models Presburger Arithmetic. Therefore, we want to
understand some of the known properties of Presburger Arithmetic here, in order
to translate them into results for T later.

Since the Presburger Arithmetic contains the theory of linear ordered abelian
groups we will begin by stating that theory, then state Presburger Arithmetic and
some of its properties.

4.1 Linear ordered abelian groups

The following theory can be found in [Mar02, p. 17].
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Let L = {+, <, 0} be a language with a binary function symbol +, a binary
relation symbol < and a constant symbol 0. The theory Tablo of linear ordered
abelian groups consists of the following axioms:

Tablo1. ∀x x+ 0 = x

Tablo2. ∀x∀y ∀z x+ (y + z) = (x+ y) + z

Tablo3. ∀x∃y x+ y = 0

Tablo4. ∀x∀y x+ y = y + x

Tablo5. ∀x ¬(x < x)

Tablo6. ∀x ∀y ∀z ((x < y ∧ y < z) → (x < z))

Tablo7. ∀x∀y ((x < y) ∨ (x = y) ∨ (y < x))

Tablo8. ∀x ∀y ∀z ((x < y) → (x+ z < y + z))

Remark 4.1. Let L′ = L ∪ {−} be a language with an additional binary function
symbol −. In that case we call the extension by definitions T ′

ablo of Tablo such that

T ′
ablo = Tablo ∪ {∀x ∀y ∀z (x− y = z) ↔ (x = z + y)}

the theory of linear ordered abelian groups as well.

We call every structure modelling the Tablo or T ′
ablo a linear ordered abelian group.

4.2 Presburger Arithmetic

For the following theory and Remark 4.2 confer [Mar02, pp. 81 f.].

Let L = {(Pn)n∈N∗ ,+,−, <, 0, 1} be a language consisting of unary relation sym-
bols Pn, binary function symbols + and −, a binary relation symbol < and two
constant symbols 0, 1. Let TPr be the theory given by the set of the following
sentences:

TPr1. the theory of linear ordered abelian groups T ′
ablo

TPr2. 0 < 1

TPr3. ∀x (x ≤ 0 ∨ x ≥ 1)

TPr4.n. This is a collection of sentences for all n ∈ N∗:

∀x (Pn(x) ↔ ∃y x = y + · · ·+ y︸ ︷︷ ︸
n times

)

TPr5.n. This is a collection of sentences for all n ∈ N∗:

∀x
n−1∨
i=0

(Pn(x+ 1 + · · ·+ 1︸ ︷︷ ︸
i times

) ∧
∧
j ̸=i

¬Pn(x+ 1 + · · ·+ 1︸ ︷︷ ︸
j times

))
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We call TPr Presburger Arithmetic.

Remark 4.2. This theory is an expansion by definitions of Th(Z,+, <, 0, 1), the
theory of the ordered group of integers. We call a model of this theory a Z-group.

Notation 4.3. We define the following abbreviations in order to shorten the nota-
tion:

∃!x ψ(x) denotes ∃x (ψ(x) ∧ ∀y (ψ(y) → y = x)),

ny = y + · · ·+ y︸ ︷︷ ︸
n times

and i = 1 + · · ·+ 1︸ ︷︷ ︸
i times

.

Remark 4.4. Let n ∈ N∗. By TPr4.n and TPr5.n, the following sentence has to
hold in TPr:

∀x
n−1∨
i=0

(∃y ny = x+ i) ∧
∧
j ̸=i

(¬∃z nz = x+ j).

This is equivalent to

∀x ∃!y
n−1∨
i=0

(ny = x+ i).

Notation 4.5. Let n1, . . . , nm ∈ N∗. We write lcm(n1, . . . , nm) to denote the least
common multiple of n1, . . . , nm.

Lemma 4.6. TPr |= (Rn1(x) ∧ · · · ∧Rnm(x)) ↔ (Rlcm(n1,...,nm)(x))

Proof. The statement follows from TPr4.n. and the fact that
∧m

i=1 ni | z if and only
if lcm(n1, . . . , nm) | z.

We now want to introduce a universal theory that is similar to the Presburger
Arithmetic. Let T ∗

Pr be the following theory which is taken from [Mar02, p. 82]

T ∗
Pr1., 2., 3., 5.n. are the same as TPr1., TPr2., TPr3. and (TPr5.n.)n∈N∗

T ∗
Pr6.n. This is a collection of sentences for all n ∈ N∗:

∀x ∀y ((P (x) ∧ P (y)) → (P (x+ y) ∧ P (x− y)))

T ∗
Pr7.n. This is a collection of sentences for all n ∈ N∗:

∀x ∀y (y + · · ·+ y︸ ︷︷ ︸
n times

= x) → Pn(x)

T ∗
Pr8.m.n. This is a collection of sentences for all n,m ∈ N∗ with m | n:

∀x (Pn(x) → Pm(x))

T ∗
Pr9.n.k. This is a collection of sentences for all n, k ∈ N∗:

∀x (Pkn(x+ · · ·+ x︸ ︷︷ ︸
k times

) → Pn(x))
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Remark 4.7. It is easy to check that T ∗
Pr ⊂ TPr (i.e. every sentence from T ∗

Pr holds
true in TPr). Thus, every model of TPr is also a model of T ∗

Pr.

The following is a reformulation of the proof of [Mar02, Lemma 3.1.19] modified
slightly at the end to show a similar lemma:

Lemma 4.8. Let G |= T ∗
Pr be a structure with universe G. Then there is a su-

perstructure H ⊃ G with H |= TPr and universe H such that for every model
H′ |= TPr with universe H ′ and every embedding ζ : G→ H ′ there is an embedding
ξ : H → H ′ such that ξ ↾G= ζ.

Proof. Let H := {x
n
: x ∈ G, n ∈ N∗, Pn(x)}. This is a subset of the divisible hull

of G which is closed under addition and subtraction:
x
n
∈ H and y

m
∈ H imply Pn(x) and Pm(y). Thus Pmn(mx) and Pmn(ny). Since

Pmn is closed under subtraction and addition (by T ∗
Pr6.n.), we have Pmn(mx±ny)

and x
n
± y

m
= xm±yn

mn
∈ H.

Let H be the ordered additive subgroup with universe H of the divisible hull of G.
Define PH

n = nH.

We can check that H |= TPr:

1. H |= (0 < 1) since G |= (0 < 1).

2. Let x
n

∈ H. 0 < x
n
< 1 would imply 0 < x < n in G and therefore

x ∈ {0, 1, . . . , n− 1}. However, Pn(n) holds by T ∗
Pr7.n. and thus ¬Pn(x)

by T ∗
Pr5.n. Contradiction to x

n
∈ H.

3. H |= TPr4.n by definition of PH
n .

4. Take any x
n
∈ H. Then, Pn(x) holds in G. By T ∗

Pr5.n there is a unique
i ∈ {0, 1, . . . ,mn − 1} such that Pnm(x + i). It follows with T ∗

Pr8.n.m and
T ∗
Pr6.n that Pm(x + i) and thus Pm(i). Pm(i) implies that there is a unique
l ∈ {0, 1, . . . , n− 1} with i = lm. Then, since Pmn(x + lm) holds, we also
have that Pn(

x
m
+ l) holds by writing out the definition from the previously

proven TPr4.n. The uniqueness follows from the uniqueness of i.

Thus, H ⊃ G with H |= TPr.

Let H′ |= TPr with universe H ′ and an embedding ζ : G→ H ′. Let g ∈ G. Since ζ
is an embedding, Pn(g) holds if and only if Pn(ζ(g)) holds. H′ |= Pn(ζ(g)) implies
that there is a unique yg,n ∈ H ′ such that nyg,n = ζ(g). It is easy to check that
ξ : H → H ′, g

n
7→ yg,n is an embedding fixing G.

Corollary 4.9. Let M,N |= TPr be structures with universes M,N . Let G |= T ∗
Pr

with universe G be a substructure of M. Let ζ : G → N be an embedding. Then
there is some substructure A |= TPr of M such that G ⊂ A and some embedding
ξ : A → N extending ζ. Here A denotes the universe of A .

Proof. First, apply Lemma 4.8 to G to get some superstructure H |= TPr with
the properties of Lemma 4.8. Since we have the identity ζ1 : G → M, g 7→ g as
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a canonical embedding, we get an embedding ξ1 : H → M such that ξ1 ↾G is the
identity. Because ξ1 is an embedding, the image of ξ1, im(ξ1), is a substructure of
M and im(ξ1) |= TPr. To prove this, realize that ξ1 : H → im(ξ1) is an surjective
embedding and thus an isomorphism and use [Hie21, Proposition 2.2.3].

Define A |= TPr as this substructure of M with universe A := im(ξ1). Since
im(ζ1) ⊂ im(ξ1), we have G ⊂ A. By the property of H, there is an embedding
ξ2 : H → N with ξ2 ↾G= ζ. ξ1 : H → A = im(ξ1) is an isomorphism and has
an inverse map ξ−1

1 : A → H which is an embedding as well. Clearly ξ−1
1 (g) = g

for all g ∈ G. Thus, if we define ξ := ξ2(ξ
−1
1 ), ξ : A → N is an embedding with

ξ ↾G= ξ2 ↾G= ζ.

5 R admits quantifier elimination
Now we come to the main part of this thesis. In this chapter we introduce T ,
show some basic properties for it and apply these to show quantifier elimination
for T . We will then introduce a model R |= T with universe R and conclude that
T = Th(R). In the last part of this chapter we shortly consider the application of
this quantifier elimination that (R, <,+, g) is not field type.

5.1 Definition of T

Fix a language L = {P, (Rn)n∈N∗ , <,+,−, f, λ, 0, 1} where P and Rn are unary
relation symbols, < is a binary relation symbol, +,− and f are binary function
symbols, λ is a unary function symbol and 0, 1 are constant symbols.

We define the theory T = {T1, . . . , T13} in this language that was introduced in
[Del97] as the set of the following axioms:

T1. (M,<,+,−, 0) is a linear ordered, abelian group for any M being the universe
of a structure modelling the theory. (This is axiomized by T ′

ablo as listed in
Section 4.1.)

T2. P (1) ∧ ∀x (P (x) ↔ P (x+ x))

T3. ∀x ∀y (P (x) ∧ (x < y < x+ x)) → ¬P (y)

T4. ∀x P (x) → (0 < x)

T5. ∀x (0 < x) → (∃p (P (p) ∧ (p ≤ x) ∧ ¬(∃q P (q) ∧ p < q ≤ x)))

T6. ∀p ∀x ¬P (p) → f(p, x) = 0

7



T7.n. This is a collection of sentences for each n ∈ N∗

∀y1, y2, . . . , yn ∀ε1, ε2, . . . , εn

((
n∧

j=1

P (yj)) ∧
n∧

i=1

(εi = 1 ∨ εi = −1) ∧
n∑

i=1

yiεi > 0)

→ [(∀y ∃x
∑

εif(yi, x) = y)

∧ (∀x1 ∀x2 ((
∑

εif(yi, x1) =
∑

εif(yi, x2)) → (x1 = x2)))

∧ (∀x1 ∀x2 (x1 < x2 → ((
∑

εif(yi, x1) <
∑

εif(yi, x2))

∧ (
∑

εif(yi, x1 + x2) =
∑

εif(yi, x1)) +
∑

εif(yi, x2))))]

(This means that if ((
∧n

j=1 P (yj)) ∧
∧n

i=1(εi = ±1) ∧
∑n

i=1 yiεi > 0) holds,∑
εif(yi,−) is an automorphism of the group defined in T1.)

T8. ∀x, y, z f(x, f(y, z)) = f(f(x, y), z) ∧ f(1, z) = z

T9. ∀x (x > 0) → (∀y1 ∀y2 (P (y1)∧P (y2)) → ((y1 < y2) → (f(y1, x) < f(y2, x))))

(This means that the restriction of f(−, x) to P is strictly increasing for
every x > 0.)

T10. (P, (Rn ↾P )n∈N∗ , f ↾ P 2, <, 1, 1 + 1) forms a Z-group

(This is axiomized by TPr (see Section 4.2) with every ∃x ψ(x) being replaced
by ∃x (P (x)∧ψ(x)) and every ∀x ψ(x) being replaced by ∀x (P (x) → ψ(x))
in order to restrict these axioms to P .)

T11. ∀x f(1 + 1, x) = x+ x

T12. This is again a collection of sentences for each n ∈ N∗:

∀x Rn(x) ↔ [P (x) ∧ ∃y (P (y) ∧ f(y, f(y, . . . f(y,︸ ︷︷ ︸
n times

1 ) . . . ))︸ ︷︷ ︸
n times

= x)]

T13. ∀x ∀y λ(x) = y ↔ [((0 < x) ∧ (P (y) ∧ (y ≤ x < y + y)))
∨ (0 ≥ x ∧ y = 0)]

By T10, P forms a Z-group, and thus f applied to P acts on P like the usual
multiplication and it makes sense to introduce a similar notation:

Notation 5.1. For any p ∈ P we will use the notation p0 to mean 1 and pn to mean
f(p, f(p, . . . f(p︸ ︷︷ ︸

n times

, 1 ) . . . ))︸ ︷︷ ︸
n times

, Let p−n be the inverse of pn in the multiplicative Z-group

P . This means p−n is the unique element such that f(p−n, pn) = f(pn, p−n) = 1
and P (p−n) holds.

Remark 5.2. With a case distinction and a simple calculation one can check that
in this notation f(pz1 , pz2) = pz1+z2 and f(pz, qz) = (f(p, q))z for p, q ∈ P .
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Notation 5.3. In the following let 2 := 1 + 1. Clearly P (2) holds true. Thus we
define 2n, 2−n with the definition in Notation 5.1.

For the following remarks regarding T7 and T10 confer [Del97].

Remark 5.4. Note the following direct consequences of the axioms of T :

T1: In particular, there are unique additive inverses for all elements in a structure
modelling T . We denote the additive inverse of 1 by −1.

T7: If
∑n

i=1 yiεi < 0, set ε̄i := −εi. Then
∑n

i=1 yiε̄i > 0 and by T7 the map x→∑
ε̄if(yi, x) is an automorphism in (M,<,+,−, 0). Then using T1 the map

x → −(
∑
ε̄if(yi, x)) =

∑
(−ε̄i)f(yi, x) =

∑
εif(yi, x) is an automorphism

in (M,+,−, 0) as well, that is, however, strictly decreasing.

T8: This implies that f ↾ P 2 defines a group action on the Z-group introduced
in T10.

T10: By Remark 4.4, there is a unique element y for every x ∈ P such that

P (y) ∧
n−1∨
j=0

f(y, f(y, . . . f(y,︸ ︷︷ ︸
n times

1 ) . . . ))︸ ︷︷ ︸
n times

= f(2−1, f(2−1, . . . f(2−1︸ ︷︷ ︸
j times

, x ) . . . ))︸ ︷︷ ︸
j times

holds.

T13: This implies that for all x > 0, λ(x) is the unique element p that fulfills the
condition (P (p) ∧ (p ≤ x) ∧ ¬(∃q P (q) ∧ p < q ≤ x)) from T5.

Remark 5.5. T is clearly satisfiable (e.g. by the structure R we define in Section
5.4). In the following let M be an arbitrary model of T . By T10 every model of
T must be infinite.

Remark 5.6. Although we do not explicitly use the construction from [Del97] that
models of T can be interpreted as ordered vectorspaces over the field of fractions
of finite sums of elements of P , it might be useful to keep this idea in mind for
the following sections. This might give an intuition for the definitions and the
properties we show in the following.

In that setting
∑n

i=1 εif(yi,−) is the multiplication by
∑n

i=1 εiyi, an element of
the field.

5.2 Properties of T

The following three definitions, the statement from Lemma 5.13 and the main
ideas of the first part of the proof can be found similarly in [Del97].

Definition 5.7 (f−1
ε1,...,εn

). For n ∈ N∗, ε1, . . . , εn ∈ {−1, 1} and y1, . . . , yn ∈ P
such that

∑n
i=1 εiyi > 0 the automorphism in T7 is defined and has an inverse

map. For n ∈ N∗, ε1, . . . , εn ∈ {−1, 1} and y1, . . . , yn ∈ P such that
∑n

i=1 εiyi < 0
the automorphism from the remark regarding T7 in Remark 5.4 is defined and has
an inverse map.
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Let n ∈ N∗ and ε1, . . . , εn ∈ {−1, 1}. Define f−1
ε1,...,εn

to map (x, p1, . . . , pn) to y,
such that the automorphism from T7 maps y to

∑
εif(pi, y) = x, if P (p1), . . . , P (pn)

and
∑
εipi > 0. And define f−1

ε1,...,εn
to map (x, p1, . . . , pn) to y, such that the au-

tomorphism from Remark 5.4 maps y to
∑
εif(pi, y) = x, if P (p1), . . . , P (pn) and∑

εipi < 0. Otherwise define f−1
ε1,...,εn

as 0.

Remark 5.8. By this definition, f−1
1 (1, pn) = p−n for every p ∈ P with the notation

that is introduced in Notation 5.1.

Remark 5.9. f−1
ε1,...,εn

(−, p1, . . . , pn) is strictly increasing if
∑
εipi > 0, and strictly

decreasing if
∑
εipi < 0 since it is the inverse map of

∑
εif(pi,−).

Definition 5.10 (φn). For each n ∈ N, define the map φn: If x ∈ P , let φn map
x to the unique element y such that the formula

P (y) ∧
n−1∨
j=0

f(y, f(y, . . . f(y,︸ ︷︷ ︸
n times

1 ) . . . ))︸ ︷︷ ︸
n times

= f(2−1, f(2−1, . . . f(2−1︸ ︷︷ ︸
j times

, x ) . . . ))︸ ︷︷ ︸
j times

from Remark 5.4 holds. If x ̸∈ P define φn(x) := 0.

Remark 5.11. Note that f−1
ε1,...,εn

and φn are definable functions.

Definition 5.12 (⟨A⟩). Let M be a model of T . Let A be a subset of the
universe of M . Define ⟨A⟩ to be the closure of the set A regarding the func-
tions λ, +, −, f , (φn)n∈N, (f−1

ε1,...εn
)n∈N,ε1,...,εn∈{−1,1}. This means that ⟨A⟩ con-

tains the interpretations in M of all terms consisting of the function symbols
λ,+,−, f, (φn)n∈N, (f

−1
ε1,...εn

)n∈N,ε1,...,εn∈{−1,1} and with variables in A. This corre-
sponds to [Hie21, Definition 4.2.1] if we consider M as a structure in the language
L′ = L ∪ {(φn)n∈N, (f

−1
ε1,...εn

)n∈N,ε1,...,εn∈{−1,1}}.

Lemma 5.13. Let M be a model of the theory T . Let A be a non-empty subset
of the universe of M . Then ⟨A⟩ |= T and ⟨A⟩ can be embedded into every model
of T whose universe contains A.

Proof. ⟨A⟩ models T : The existence of additive inverses and 0 is given because
we are closed under −: If a ∈ ⟨A⟩, then a− a = 0 and a− a− a = −a are in ⟨A⟩.
That we are closed under + is explicitly claimed in the definition of ⟨A⟩. All other
properties of T1 follow directly because they can be formulated universal and need
to be satisfied in M .

The same argument also applies to T2, T3, T4, T6, T8, T9, T11 and T13.

T5 is satisfied because of the condition that ⟨A⟩ is closed under λ.

For T7, let a ∈ ⟨A⟩ and take any y1, . . . , yn ∈ ⟨A⟩ such that
∧n

j=1 P (yj) holds
and any ε1, . . . , εn ∈ {−1, 1} such that

∑n
j=1 yjεj > 0. Since ⟨A⟩ is closed

under +,− and f , we get
∑n

j=1 εjf(yj, a) ∈ ⟨A⟩. This shows that the map
m : ⟨A⟩ → ⟨A⟩, a 7→

∑n
j=1 εjf(yj, a) is well defined. Since this is a restriction of

an automorphism, we only need to check that it is surjective in order for it to be
an automorphism. m is surjective because we are closed under f−1

ε1,...εn
. For any
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b ∈ ⟨A⟩, we have b−1 := f−1
ε1,...εn

(b, y1, y2, . . . , yn) ∈ ⟨A⟩. Then m(b−1) = b, and
since b was chosen arbitrarily, m is surjective. Thus, T7 holds for ⟨A⟩.

For T10 we need to check that f(x, y), φn(x), x
−1 = f−1

1 (x, 1) ∈ P (⟨A⟩) for any
x, z ∈ P (⟨A⟩) and any n ∈ N. This is the case since ⟨A⟩ is closed under f, φn and
f−1
1 (−, 1). The rest of the properties are again inherited from M .

For T12, we need to check for any x ∈ ⟨A⟩ that the existence of an m ∈ M such
that P (m) holds and x = f(m, f(m, . . . f(m,︸ ︷︷ ︸

n times

1 ) . . . ))︸ ︷︷ ︸
n times

implies m ∈ ⟨A⟩. This is

indeed true: If such a m exists, m = φn(x) and φn(x) ∈ ⟨A⟩.

⟨A⟩ embeds into every model of T whose universe contains A: For any
model containing the set A, the interpretation of all terms containing only elements
of A must be in the model again. Thus, it has to be closed under the function
symbols λ, +,−,f . Due to T7 and Remark 5.4(T7,T10), any model must be
closed regarding (φn)n∈N, (f−1

ε1,...εn
)n∈N,ε1,...,εn∈{−1,1}. Thus, any model containing A

contains ⟨A⟩.

Later on we will use, that from this lemma follows that ⟨A⟩ is a submodel of any
model containing A.

Next, we will prove some basic properties of f and f−1
ε1,...,εn

which follow from the
theory T :

Lemma 5.14. The following sentences hold in T :

1. ∀x, y, z f(x, y + z) = f(x, y) + f(x, z) ∧ f(x, y − z) = f(x, y)− f(x, z),

2. ∀x, y ∈ P f(x, y) = f(y, x),

3. ∀p ∈ P f(p, 1) = p,

4. ∀p, x P (p) → f(p+ p, x) = f(p, x) + f(p, x),

5. ∀x, y ¬P (y) → ¬P (f(x, y)).

11



Proof.

1. follows from T7 if x ∈ P (and thus also x > 0). If x ̸∈ P , all the terms are
0.

2. follows from T10 since a Z-group is abelian.

3. Since P (1) and P (p) hold, we have f(p, 1) = f(1, p). With T8 the claim
follows.

4. By T11, f(p+p, x) = f(f(1+1, p), x). By T10, f is abelian for elements of P ,
and thus f(p+ p, x) = f(f(p, 1 + 1), x). Applying T8 gives us f(p+ p, x) =
f(p, f(1 + 1, x)). Applying T11 again we have f(p + p, x) = f(p, x + x).
Applying the property from the first claim of this lemma leads to the desired
equality.

5. If ¬P (x), then f(x, y) = 0 and ¬P (f(x, y)). If P (x) holds: Suppose P (f(x, y))
holds. Let x−1 be the unique inverse of x regarding f . This exists due to
T10. Then P (x−1) holds as well. Since the Z-group must be closed under f ,
we get P (f(x−1, f(x, y))) and by T10 P (f(f(x−1, x), y)). Thus P (y) holds.

Notation 5.15. For the next lemma (and also later in this thesis) we will use
δ1ε1, . . . , δmεn to abbreviate δ1ε1, . . . , δ1εn, δ2ε1, . . . , δ2εn, . . . , δmε1, . . . , δmεn
and f(z1, r1), . . . , f(zm, rn) to abbreviate
f(z1, r1), . . . , f(z1, rn), f(z2, r1), . . . , f(z2, rn), . . . , f(zm, r1), . . . , f(zm, rn).

Lemma 5.16. The following sentences hold in T :

1. For all n ∈ N∗ and ε1, . . . εn ∈ {−1, 1}:

∀x ∀y, r1, . . . , rn ∈ P

f−1
ε1,...,εn

(f(y, x), r1, . . . , rn) = f(y, f−1
ε1,...,εn

(x, r1, . . . , rn)).

2. For all n ∈ N∗ and ε1, . . . εn ∈ {−1, 1}:

∀x, y ∀r1, . . . , rn ∈ P

f−1
ε1,...,εn

(x+ y, r1, . . . , rn)

= f−1
ε1,...,εn

(x, r1, . . . , rn) + f−1
ε1,...,εn

(y, r1, . . . , rn)

∧ f−1
ε1,...,εn

(x− y, r1, . . . , rn)

= f−1
ε1,...,εn

(x, r1, . . . , rn)− f−1
ε1,...,εn

(y, r1, . . . , rn).

3. For all n,m ∈ N∗ and ε1, . . . εn, δ1, . . . , δm ∈ {−1, 1}:

∀x ∀z1, . . . , zm, r1, . . . , rn ∈ P

f−1
ε1,...,εn

(f−1
δ1,...,δm

(x, z1, . . . , zm), r1, . . . , rn)

= f−1
δ1ε1,...,δmεn

(x, f(z1, r1), . . . , f(zm, rn)).
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4. If ι is an embedding from M to N , x ∈ M , ε1, . . . εn ∈ {−1, 1} and
r1, . . . , rn ∈ P (M) with

∑n
i=1 εiri ̸= 0 we have:

ι(f−1
ε1,...,εn

(x, r1, . . . , rn)) = f−1
ε1,...,εn

(ι(x), ι(r1), . . . , ι(rn)).

Proof.

1. Either
∑n

i=1 εiri = 0 and thus by definition ∀z f−1
ε1,...,εn

(z, r1, . . . , rn = 0) (i.e.
both terms equal 0 and therefore they are equal) or using the Lemma 5.14
and T8 and T10, we have:

f−1
ε1,...,εn

(f(y, x), r1, . . . , rn)

= f−1
ε1,...,εn

(f(y,
n∑

j=1

εjf(rj, f
−1
ε1,...,εn

(x, r1, . . . , rn)), r1, . . . , rn))

= f−1
ε1,...,εn

(
n∑

j=1

εjf(y, f(rj, f
−1
ε1,...,εn

(x, r1, . . . , rn)), r1, . . . , rn))

= f−1
ε1,...,εn

(
n∑

j=1

εjf(rj, f(y, f
−1
ε1,...,εn

(x, r1, . . . , rn)), r1, . . . , rn))

= f(y, f−1
ε1,...,εn

(x, r1, . . . , rn)).

2. Either
∑n

i=1 εiri = 0 and thus ∀z f−1
ε1,...,εn

(z, r1, . . . , rn) = 0 (i.e. both terms
are 0 and therefore they are equal), or using the Lemma 5.14 and the property
just proven before, we have:

f−1
ε1,...,εn

(x+ y, r1, . . . , rn)

= f−1
ε1,...,εn

(
n∑

j=1

εjf(rj, f
−1
ε1,...,εn

(x, r1, . . . , rn)

+
n∑

j=1

εjf(rj, f
−1
ε1,...,εn

(y, r1, . . . , rn)), r1, . . . , rn))

= f−1
ε1,...,εn

(
n∑

j=1

εjf(rj, f
−1
ε1,...,εn

(x, r1, . . . , rn))

+ f(rj, f
−1
ε1,...,εn

(y, r1, . . . , rn)), r1, . . . , rn)

= f−1
ε1,...,εn

(
n∑

j=1

εjf(rj, (f
−1
ε1,...,εn

(x, r1, . . . , rn)

+ f−1
ε1,...,εn

(y, r1, . . . , rn))), r1, . . . , rn)

= f−1
ε1,...,εn

(x, r1, . . . , rn) + f−1
ε1,...,εn

(y, r1, . . . , rn).

The proof for − follows similarly.
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3. f−1
ε1,...,εn

(f−1
δ1,...,δm

(a, z1, . . . , zm), r1, . . . , rn) is either 0 or equal to an element e
such that

∑n
i=1 εif(ri,

∑m
j=1 δjf(zj, e)) = a. We have:

n∑
i=1

εif(ri,
m∑
j=1

δjf(zj, e)) =
n∑

i=1

εi

m∑
j=1

δjf(ri, f(zj, e))

=
n∑

i=1

m∑
j=1

εiδjf(f(ri, zj), e).

Thus
e = f−1

δ1ε1,...,δmεn
(a, f(z1, r1), . . . , f(zm, rn)).

4. For every y, we have ι(
∑n

i=1 εif(ri, y)) =
∑n

i=1 εif(ι(ri), ι(y)). Thus
n∑

i=1

εif(ι(ri), f
−1
ε1,...,εn

(ι(x), ι(r1), . . . , ι(rn)))

= ι(x)

= ι(
n∑

i=1

εif(ri, f
−1
ε1,...,εn

(x, r1, . . . , rn)))

=
n∑

i=1

εif(ι(ri), ι(f
−1
ε1,...,εn

(x, r1, . . . , rn))).

Since ι is an embedding,
∑n

i=1 εiι(ri) ̸= 0. Thus
∑n

i=1 εif(ι(ri),−) is strictly
monotone and the previous equation is equivalent to

f−1
ε1,...,εn

(ι(x), ι(r1), . . . , ι(rn)) = ι(f−1
ε1,...,εn

(x, r1, . . . , rn)).

< defines an order on any model M of the theory in which (M,<,+,−, 0) is an
abelian ordered group by T1. Now we want to describe how this order acts on
terms containing f and f−1. It is immediate to see that f(x, y) ≤ f(x, z) if and
only if y ≤ z (by T7), and f(x, y) ≤ f(z, y) if and only if x ≤ z ∧ y > 0 (by T9
and T7). In the following lemmata other important terms will be looked at.

Lemma 5.17. T |= ∀x, y ((x < y) → x < f(2−1, x+ y) < y)

Proof. Let M |= T and g1 < g2 be elements of the universe of M . Then

g1 < g2

g1 + g1 < g1 + g2 (by T1)
f(2, g1) < g1 + g2 (by T11)

f(2−1, f(2, g1)) < f(2−1, g1 + g2) (by T7 applied to y1 = 2−1, ε1 = 1)

f(f(2−1, 2), g1) < f(2−1, g1 + g2) (by T8)
f(1, g1) < f(2−1, g1 + g2) (by definition of 2−1)

g1 < f(2−1, g1 + g2) (by T8).
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and

g1 < g2

g1 + g2 < g2 + g2 (by T1)
g1 + g2 < f(2, g2) (by T11)

f(2−1, g1 + g2) < f(2−1, f(2, g2)) (by T7 applied to y1 = 2−1, ε1 = 1)

f(2−1, g1 + g2) < f(f(2−1, 2), g2) (by T8)
f(2−1, g1 + g2) < f(1, g2) (by definition of 2−1)

f(2−1, g1 + g2) < g2 (by T8)

Lemma 5.18. For any n ≥ 1 and any y1, . . . yn ∈ P ,
∑n

i=1 yiεi = 0 implies∑n
i=1 εif(yi, x) = 0.

Proof. Define S+ := {i : εi = 1}, S− := {i : εi = −1} and S = S− ∪ S+. Then,∑
i∈S+ yi =

∑
j∈S− yj > 0 since yi ∈ P and thus yi > 0. We want to show that∑

i∈S+ f(yi, x) =
∑

j∈S− f(yj, x). With Lemma 5.14 we can assume that all yi with
i ∈ S− are distinct: If yi1 = yi2 with i1, i2 ∈ S−, replace S− by (S− \ {i1, i2}) ∪ y′
with y′ = yi1 + yi2 = yi1 + yi1 ∈ P . We have

∑
j∈S− yj = y′ +

∑
j∈S−\{i1,i2} yj and∑

j∈S−

f(yj, x) = f(yi1 , x) + f(yi1 , x) +
∑

j∈S−\{i1,i2}

f(yj, x)

= f(yi1 + yi1 , x) +
∑

j∈S−\{i1,i2}

f(yj, x)

= f(y′, x) +
∑

j∈S−\{i1,i2}

f(yj, x).

Since we always replace two elements of S− by one and S− is finite, we will have
distinct elements after finitely many steps. Similarly, we can argue that all elements
with indicies in S+ are distinct.

Moreover, we can show that we can assume all elements with indicies in S− to be
distinct from elements with indicies in S+. If yi+ = yi− with i+ ∈ S+ and i− ∈ S−

we have 0 =
∑

j∈S εjyj =
∑

j∈S\{i+,i−} εjyj and∑
j∈S

εjf(yj, x) = f(yi+ , x)− f(yi− , x) +
∑

j∈S\{i+,i−}

εjf(yj, x)

= f(yi+ , x)− f(yi+ , x) +
∑

j∈S\{i+,i−}

εjf(yj, x)

=
∑

j∈S\{i+,i−}

εjf(yj, x)

Here we consider the empty sum to equal 0. Thus, we can assume that all yi with
i ∈ S are distinct.
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Since we only have finitely many elements, we can take the maximum. W.l.o.g.
assume yn > yn1 > · · · > y1 > 0 (since we could permute the indicies). Then
clearly y1 + y2 < y2 + y2 ≤ y3 since y3 ∈ P and y2 + y2 is the smallest element of
P larger than y2. By induction we get that

∑n−1
i=1 yi < yn.

Thus, |
∑n−1

i=1 εiyi| ≤
∑n−1

i=1 |yi| =
∑n−1

i=1 yi < yn. This is a contradiction to
∑n

i=1 yiεi =
0. Thus {1, . . . , n} = S = ∅ and

∑n
i=1 εif(yi, x) = 0.

Lemma 5.19. Let z1, . . . , zn ∈ P be distinct. Let zn = max{zi : i ∈ {1, . . . , n}}.
Let δn = 1 and δ1, . . . , δn−1 ∈ {1,−1}. For any x ∈ P we have

f(2−n+1, f(x, zn)) ≤
n∑

i=1

δif(x, zi) < f(2, f(x, zn))

and
f−1
1 (x, f(2−n+1, zn)) ≥ f−1

δ1,...,δn
(x, z1, . . . , zn) ≥ f−1

1 (x, f(2, zn)).

Proof. Like we showed at the end of the proof of the previous lemma, we have∑n−1
i=1 δizi < zn. Thus

∑n
i=1 δizi < zn + zn = f(2, zn). Moreover, since the zi are

distinct,

n∑
j=1

εjzj = zn +
n−1∑
j=1

εjzj

≥ zn −
n−1∑
j=1

f(2−j, zn)

= f(2−(n−1), zn)

For p ∈ P we have:

f(2−n+1, zn) ≤
n∑

i=1

δizi ≤ f(2, zn)

f(p, f(2−n+1, zn)) ≤ f(p,
n∑

i=1

δizi) ≤ f(p, f(2, zn))

f(2−n+1, f(p, zn)) ≤
n∑

i=1

δif(p, zi) ≤ f(2, f(p, zn))

This shows the first statement.

We will prove the second statement with a contradiction, using the first statement:
Suppose

f−1
1 (x, f(2−n+1, zn)) < f−1

δ1,...,δn
(x, z1, . . . , zn)

or
f−1
δ1,...,δn

(x, z1, . . . , zn) < f−1
1 (x, f(2, zn)).
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Then, since δn = 1, we have
∑n

i=1 δizi > 0. Thus, by T7, we have for x < y:∑n
i=1 δif(zi, x) <

∑n
i=1 δif(zi, y). Hence

n∑
i=1

δif(zi, f
−1
1 (x, f(2−n+1, zn))) <

n∑
i=1

δif(zi, f
−1
δ1,...,δn

(x, z1, . . . , zn)) = x

or

x =
n∑

i=1

δif(zi, f
−1
δ1,...,δn

(x, z1, . . . , zn)) <
n∑

i=1

δif(zi, f
−1
1 (x, f(2, zn)))

and since x ∈ P implies f−1
1 (x, f(2−n+1, zn)) ∈ P and f−1

1 (x, f(2, zn)) ∈ P , we
have:

f(2−n+1, f(f−1
1 (x, f(2−n+1, zn)), zn)) ≤

n∑
i=1

δif(f
−1
1 (x, f(2−n+1, zn)), zi) < x

or

x <
n∑

i=1

δif(f
−1
1 (x, f(2, zn)), zi) ≤ f(2, f(f−1

1 (x, f(2, zn)), zn)).

This shows x < x or x < x. Contradiction.

Lemma 5.20. Let p ∈ P . Then for any εi ∈ {−1, 1} and any yi ∈ P with∑n
i=1 εiyi > 0, we have

f−1
1 (p, λ(

n∑
i=1

εiyi)) ≥ f−1
ε1,...,εn

(p, y1, . . . , yn).

Proof. Since
∑n

i=1 εiyi > 0, we have
∑n

i=1 εiyi > λ(
∑n

i=1 εiyi) > 0. Moreover,
p ∈ P implies f−1

1 (p, λ(
∑n

i=1 εiyi)) ∈ P . Then we can conclude:

n∑
i=1

εif(f
−1
ε1,...,εn

(p, y1, . . . , yn), yi) = p

= f(f−1
1 (p, λ(

n∑
i=1

εiyi)), λ(
n∑

i=1

εiyi))

≤ f(f−1
1 (p, λ(

n∑
i=1

εiyi)),
n∑

i=1

εiyi)

=
n∑

i=1

εif(f
−1
1 (p, λ(

n∑
i=1

εiyi)), yi).

We have
∑n

i=1 εiyi > 0 and thus
∑n

i=1 εif(−, yi) is strictly increasing. Therefore

f−1
1 (p, λ(

n∑
i=1

εiyi)) ≥ f−1
ε1,...,εn

(p, y1, . . . , yn).
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5.3 T admits quantifier elimination

For the following definition confer [Hie21, Definition 4.2.2].

Definition 5.21 (Sub(M,N )). Let L be a language and M,N be L-structures.
Sub(M,N ) is the set of all maps ι such that ι is an embedding of some substructure
A of M into N .

Remark 5.22. For any ι ∈ Sub(M,N ) we have that the image of the map im(ι)
is a substructure of N .

Proof. Realize that for some embedding ι : A → N we have that ι′ : H → im(ι) ,
x 7→ ι(x) is an surjective embedding. This means ι′ is an isomorphism. Applying
[Hie21, Proposition 2.2.3] the claim follows.

The following theorem and a proof of it can be found in [Hie21, Corollary 4.2.6].

Theorem 5.23. Let T be an L-theory and let κ be a cardinal such that κ ≥ |L|.
Suppose for all models M,N of T with universes M ,N and |M | ≤ κ and N being
κ+-saturated and for every ι ∈ Sub(M,N ) either the domain of ι is M or ι has a
proper extension ι′ ∈ Sub(M,N ). Then, T has quantifier-elimination.

For the following theorem and its proof confer [Del97]. In the proof we distinguish
the same cases as in [Del97] and apply ideas regarding how we can describe the
elements of ⟨A ∪ a⟩ from [Del97]. However, as mentioned earlier we elaborate
these ideas further, we use a slightly different method for proving the quantifier
elimination and we do not focus so much on the underlying algebraic properties.
The proof to show that p(x) is finitely satisfiable in Case 1 is a slightly modified
version from a similar proof for ordered vectorspaces in [Hie21, Theorem 4.2.7].

Theorem 5.24. The theory T that is stated above, has quantifier elimination.

Proof. We will show this using Theorem 5.23.

Take N ,M to be models of T . Let |M| ≤ κ and N κ+-saturated, let A be a
submodel of M. Let A,N,M be the universes of A ,N ,M. Take any ι : A →
N ∈ Sub(M,N ) and any a ∈ M . Let B = im(ι) be the image of ι and thus a
substructure of N . Let B be the universe of B.

If the domain of ι is M , we are done. If it is not, we can find a ∈ M \ A. We
will show that in this case we can find an extension ι′ ∈ Sub(M,N ) with a in its
domain (i.e. in particular this is a proper extension) using a case distinction.

Case 1 (PM(A) = PM(A ∪ {a})): This means for all x ∈ ⟨A ∪ {a}⟩, P (x)
implies x ∈ A. Define the type

p(x) := {ι(c) < x : c <M a, c ∈ A} ∪ {x < ι(d) : a <M d, d ∈ A}

Note that since PM(A) = PM(A∪{a}), we have λ(a) < a < λ(a)+λ(a) and thus
{ι(c) < x : c <M a, c ∈ A} ≠ ∅ and {x < ι(d) : a <M d, d ∈ A} ≠ ∅.
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Definition of b: Let c1, . . . , cn, d1, . . . dm be in A, such that ci < a and a < dj
for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Because {ι(c) < x : c <M a, c ∈ A} ≠ ∅ and
{x < ι(d) : a <M d, d ∈ A} ≠ ∅ we can assume that n ≥ 1,m ≥ 1.

Then, max{c1, . . . , cn} < min{d1, . . . , dm} and because ι is a partial isomorphism,
we get that max{ι(c1), . . . , ι(cn)} < min{ι(d1), . . . , ι(dm)}. Set

b′ := f(2−1,max{ι(c1), . . . , ι(cn)}+min{ι(d1), . . . , ι(dm)}).

Then by Lemma 5.17,

max{ι(c1), . . . , ι(cn)} < b′ < min{ι(d1), . . . , ι(dm)}.

Therefore, p(x) is finitely satisfiable in N . Since |p(x)| = |A| ≤ κ and N is
κ+-saturated, p(x) is realized in N . Let b be a realization of p(x) in N .

Show that b ̸∈ P : Since we have that PM(A) = PM(A ∪ {a}), it follows that
λ(a), λ(a) + λ(a) ∈ A. By T2, T13 and since a ̸∈ P which implies a ̸= λ(a), we
have PM(λ(a)), PM(λ(a)+λ(a)), λ(a) < a < λ(a)+λ(a). Since ι is an embedding
and b satisfies p(x), we have that P (ι(λ(a))) and ι(λ(a)) < b < ι(λ(a) + λ(a)) =
ι(λ(a)) + ι(λ(a)) hold. Because b, ι(λ(a)), ι(λ(a)) + ι(λ(a)) ∈ N and T3 holds for
N , we can conclude b ̸∈ P .

Elements of ⟨A ∪ {a}⟩: All elements of ⟨A ∪ {a}⟩ are of the form
x0 +

∑n
i=1 εif(yi, f

−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)) with n ∈ N∗, m1, . . . ,mn ∈ N∗, x0 ∈ A

and yi, zi ∈ PM(⟨A ∪ {a}⟩) = PM(A), εi, δi ∈ {−1, 1}.

In order to show this, define S to be the set of all elements of this form. We have
a ∈ ⟨A ∪ {a}⟩ and A ⊂ ⟨A ∪ {a}⟩. By definition ⟨A ∪ {a}⟩ is closed under +,−,f ,
(f−1

δi1 ,...,δimi
)i∈{1,...,n} and it follows that

x0 +
n∑

i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)) ∈ ⟨A ∪ {a}⟩.

Thus, S ⊂ ⟨A ∪ {a}⟩.

For the other direction, we have a = 0+
∑1

i=1 f(1, f
−1
1 (a, 1)) ∈ S and for any a1 ∈ A

we have a1 = a1 + f(1, f−1
1 (a, 1)) − f(1, f−1

1 (a, 1)) ∈ S. Thus A ⊂ S. Hence, we
just have to show that the set S is closed regarding the functions λ,+,−,f , (φn)n∈N,
(f−1

α1,...,αn
)n∈N,α1,...,αn∈{−1,1}.

Let s0 := x0 +
∑n0

i=1 εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)) and

s1 := x1 +
∑n1

i=1 µif(pi, f
−1
γi1 ,...,γiki

(a, qi1 , . . . , qiki )) be arbitrary elements of S. Then
s0 ∈ ⟨A∪{a}⟩ and thus λ(s0) ∈ ⟨A∪{a}⟩. By the definition of λ we have λ(s0) ∈ P
or λ(s0) = 0. We have PM(A) = PM(A ∪ {a}). Thus, λ(s0) ∈ A ⊂ S.
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By T1 we get

s0 + s1 = (x0 +

n0∑
i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)))

+ (x1 +

n1∑
i=1

µif(pi, f
−1
γi1 ,...,γiki

(a, qi1 , . . . , qiki )))

= (x0 + x1) + (

n0∑
i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
))

+

n1∑
i=1

µif(pi, f
−1
γi1 ,...,γiki

(a, qi1 , . . . , qiki ))) ∈ S.

Define µ̄i = −µi ∈ {−1, 1}. Then

s0 − s1 = (x0 +

n0∑
i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)))

− (x1 +

n1∑
i=1

µif(pi, f
−1
γi1 ,...,γiki

(a, qi1 , . . . , qiki )))

= (x0 − x1) + (

n0∑
i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
))

+

n1∑
i=1

µ̄if(pi, f
−1
γi1 ,...,γiki

(a, qi1 , . . . , qiki ))) ∈ S.

Either φn(s0) = 0 ∈ S or s0 ∈ P , and since PM(A) = PM(A ∪ {a}), we get
φ(s0) ∈ A ⊂ S.

We have f(s1, s0) = 0 ∈ S if s1 ̸∈ P . If s1 ∈ P , we again have s1 ∈ A. Then

f(s1, s0) = f(s1, x0 +

n0∑
i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)))

= f(s1, x0) + f(s1,

n0∑
i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)))

= f(s1, x0) +

n0∑
i=1

εif(s1, f(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)))

by Lemma 5.14. With T8, we can conclude that

f(s1, s0) = f(s1, x0) +

n0∑
i=1

εif(f(s1, yi), f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)).

This is an element of S since f(s1, yi) ∈ P .

Let n be in N∗ and r1, . . . , rn be elements of S ⊂ ⟨A ∪ {a}⟩.
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We have f−1
α1,...,αn

(s0, r1, . . . , rn) = 0 ∈ S if any rj is not in P or if
∑n

i=1 αiri = 0.
Assume r1, . . . rn ∈ P , and therefore r1, . . . rn ∈ A, and

∑n
i=1 αiri ̸= 0. Then

f−1
α1,...,αn

(s0, r1, . . . , rn)

= f−1
α1,...,αn

(x0 +

n0∑
i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)), r1, . . . , rn)

= f−1
α1,...,αn

(x0, r1, . . . , rn)

+

n0∑
i=1

εif
−1
α1,...,αn

(f(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)), r1, . . . , rn)

by Lemma 5.16. Since A |= T (in particular A is closed under f−1
α1,...,αn

) and
x0, r1, . . . , rn ∈ A, we have f−1

α1,...,αn
(x0, r1, . . . , rn) ∈ A. On the other hand

f−1
α1,...,αn

(f(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
)), r1, . . . , rn)

= f(yi, f
−1
α1,...,αn

(f−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
), r1, . . . , rn))

by Lemma 5.16. With the same lemma, we have
f−1
α1,...,αn

(f−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
), r1, . . . , rn) = 0 ∈ S or there are ki ∈ N,

βi1 , . . . , βiki ∈ {−1, 1} and wi1 , . . . , wik ∈ P such that
f−1
α1,...,αn

(f−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
), r1, . . . , rn) = f−1

βi1
,...,βiki

(a, wi1 , . . . , wiki
). Thus

f−1
α1,...,αn

(s0, r1, . . . , rn)

= f−1
α1,...,αn

(x0, r1, . . . , rn) +

n0∑
i=1

εif(yi, f
−1
βi1

,...,βiki

(a, wi1 , . . . , wiki
)) ∈ S.

We can conclude that S = ⟨A ∪ {a}⟩.

Having this, we can actually show an even stronger statement. Every element of
⟨A ∪ {a}⟩ is of the form: x0 +

∑n
i=1 εif(yi, f

−1
δ1,...,δm

(a, z1, . . . , zm)) with n ∈ N∗,
m ∈ N∗, x0 ∈ A, y1, . . . , yn, z1, . . . , zm ∈ P :

Let y1, . . . yn, wi1 , . . . , wimi
∈ P and ε1, . . . , εn, δi1 , . . . , δimi

∈ {−1, 1}.

Let Ii = {i1, . . . , imi
} and I =

⋃n
j=1 Ij. Then applying the definition of f−1

δi1 ,...,δimi
,

Lemma 5.14 and Lemma 5.16, we have for some h ∈ N, γ1, . . . , γh ∈ {−1, 1} and
w1, . . . , wh ∈ P :
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n∑
i=1

εif(yi, f
−1
δi1 ,...,δimi

(a, zi1 , . . . , zimi
))

=
n∑

i=1

εif(yi,
∑
j1∈I1

· · ·
∑

ji−1∈Ii−1

∑
ji+1∈Ii+1

· · ·
∑
jn∈In

δj1 . . . δji−1
δji−1

. . . δjnf(

f(. . . f(f(. . . f(1, zj1) . . . , zji−1
), zji+1

), . . . , zjn), f
−1
δ11 ,...,δ1m1

(

f−1
δ21 ,...,δ2m2

(. . . f−1
δn1 ,...,δnmn

(a, zn1 , . . . , znmn
), . . . ), z11 , . . . , z1m1

)))

=
n∑

i=1

∑
j1∈I1

· · ·
∑

ji−1∈Ii−1

∑
ji+1∈Ii+1

· · ·
∑
j∈In

εiδj1 . . . δji−1
δji−1

. . . δjnf(

f(. . . f(f(. . . f(yi, zj1) . . . , zji−1
), zji+1

), . . . , zjn),

f−1
γ1,...,γh

(a, w1, . . . , wh)).

(5.1)

Definition of ι′: Define

ι′ : ⟨A ∪ {a}⟩ → N

x0 +
n∑

i=1

εif(yi, f
−1
δ1,...,δm

(a, z1, . . . , zm))

7→ ι(x0) +
n∑

i=1

εif(ι(yi), f
−1
δ1,...,δm

(b, ι(z1), . . . , ι(zm)))

In particular: a 7→ b and x 7→ ι(x) if x ∈ A.

ι′ is well defined: Take any s0 = s1 in ⟨A ∪ {a}⟩. Then either s0 ∈ A and thus
ι′(s0) = ι(s0) = ι(s1) = ι′(s1) or we have

∑s
i=1 τipi ̸= 0∧

∑t
i=1 αiwi ̸= 0. Since ι is

an embedding, the second case implies
∑s

i=1 τiι(pi) ̸= 0 ∧
∑t

i=1 αiι(wi) ̸= 0 and it
follows

s0 = s1

(x0 − x1) =
s∑

i=1

τif(pi, f
−1
α1,...,αt

(a, w1, . . . , wt))

f−1
τ1,...,τs

(x0 − x1, p1, . . . , ps) = f−1
α1,...,αt

(a, w1, . . . , wt)
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps)) = a.

Since b satisfies p(x) and ι is an embedding, this is equivalent to

ι(
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps))) = b

t∑
i=1

αif(ι(wi), f
−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps))) = b
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f−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps)) = f−1
α1,...,αt

(b, ι(w1), . . . , ι(wt))

ι(x0)− ι(x1) =
s∑

i=1

τif(ι(pi), f
−1
α1,...,αt

(b, ι(w1), . . . , ι(wt)))

ι′(s0) = ι′(s1).

We can conclude that s0 = s1 implies ι′(s0) = ι′(s1)

s0 < s1 is equivalent to ι′(s0) < ι′(s1): First, we show that s0 < s1 implies
ι′(s0) < ι′(s1). Take s0 < s1 in ⟨A ∪ {a}⟩. Suppose
s0 = x0 +

∑n0

i=1 εif(yi, f
−1
δ1,...,δm

(a, z1, . . . , zm)),
s1 = x1 +

∑n1

i=1(−µi)f(yi, f
−1
γ1,...,γk

(a, q1, . . . , qk)). Because T1 holds for M, the
following are equivalent

s0 < s1

(x0 − x1) <

n0∑
i=1

εif(yi, f
−1
δ1,...,δm

(a, z1, . . . , zm))

+

n1∑
i=1

µif(yi, f
−1
γ1,...,γk

(a, qi1 , . . . , qiki )).

By the previously shown Equation 5.1, we can find s, t ∈ N,
p1, . . . , ps, w1, . . . , wt ∈ P and τ1, . . . , τs, α1, . . . , αt such that

n0∑
i=1

εif(yi, f
−1
δ1,...,δm

(a, z1, . . . , zm)) +

n1∑
i=1

µif(yi, f
−1
γ1,...,γk

(a, qi1 , . . . , qiki ))

=
s∑

i=1

τif(pi, f
−1
α1,...,αt

(a, w1, . . . , wt)).

If we do the same calculation for
∑n0

i=1 εif(ι(yi), f
−1
δ1,...,δm

(b, ι(z1), . . . , ι(zm))) and∑n1

i=1 µif(ι(yi), f
−1
γ1,...,γk

(b, ι(qi1), . . . , ι(qiki ))) in N , we get

n0∑
i=1

εif(ι(yi), f
−1
δ1,...,δm

(b, ι(z1), . . . , ι(zm)))

+

n1∑
i=1

µif(ι(yi), f
−1
γ1,...,γk

(b, ι(qi1), . . . , ι(qiki )))

=
s∑

i=1

τif(ι(pi), f
−1
α1,...,αt

(b, ι(w1), . . . , ι(wt))).

Then:

s0 < s1

(x0 − x1) <
s∑

i=1

τif(pi, f
−1
α1,...,αt

(a, w1, . . . , wt)).
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Now we will use that by T7.n and the definition of f−1,
∑n

i=1 εif(yi,−) and
f−1
ε1,...,εn

(−, y1, . . . , yn) are strictly increasing if
∑n

i=1 εiyi > 0, and strictly decreas-
ing if

∑n
i=1 εiyi < 0. Therefore, we do a case distinction.

Case 1.1 (
∑s

i=1 τipi = 0 ∨
∑t

i=1 αiwi = 0): We have, either by Lemma 5.18 or the
definition of f−1

α1,...,αt
, that

∑s
i=1 τif(pi, f

−1
α1,...,αt

(a, w1, . . . , wt)) = 0. Additionally,
since ι is an embedding,

∑s
i=1 τiι(pi) = 0 ∨

∑t
i=1 αiι(wi) = 0 and thus∑s

i=1 τif(ι(pi), f
−1
α1,...,αt

(b, ι(w1), . . . , ι(wt))) = 0. Then the following inequalities
are equivalent since ι is an embedding and T1 holds for N :

s0 < s1

(x0 − x1) < 0

ι(x0 − x1) < ι(0)

ι(x0)− ι(x1) < 0

ι(x0)− ι(x1) <
s∑

i=1

τif(ι(pi), f
−1
α1,...,αt

(b, ι(w1), . . . , ι(wt)))

ι(x0)− ι(x1) <

n0∑
i=1

εif(ι(yi), f
−1
δ1,...,δm

(b, ι(z1), . . . , ι(zm)))

+

n1∑
i=1

µif(ι(yi), f
−1
γ1,...,γk

(b, ι(qi1), . . . , ι(qiki )))

ι′(s0) < ι′(s1).

Case 1.2 (
∑s

i=1 τipi > 0 ∧
∑t

i=1 αiwi > 0): Since ι is an embedding, we have∑s
i=1 τiι(pi) > 0 ∧

∑t
i=1 αiι(wi) > 0. Therefore, the following inequalities are

equivalent:

s0 < s1

(x0 − x1) <
s∑

i=1

τif(pi, f
−1
α1,...,αt

(a, w1, . . . , wt))

f−1
τ1,...,τs

(x0 − x1, p1, . . . , ps) < f−1
α1,...,αt

(a, w1, . . . , wt)
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps)) < a.

Since b satisfies p(x) and ι is an embedding, this is equivalent to:

ι(
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps))) < b

t∑
i=1

αif(ι(wi), f
−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps))) < b

f−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps)) < f−1
α1,...,αt

(b, ι(w1), . . . , ι(wt))
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ι(x0)− ι(x1) <
s∑

i=1

τif(ι(pi), f
−1
α1,...,αt

(b, ι(w1), . . . , ι(wt)))

ι′(s0) < ι′(s1)

Case 1.3 (
∑s

i=1 τipi > 0 ∧
∑t

i=1 αiwi < 0): Since ι is an embedding, we have∑s
i=1 τiι(pi) > 0 ∧

∑t
i=1 αiι(wi) < 0. Therefore, the following inequalities are

equivalent:

s0 < s1

(x0 − x1) <
s∑

i=1

τif(pi, f
−1
α1,...,αt

(a, w1, . . . , wt))

f−1
τ1,...,τs

(x0 − x1, p1, . . . , ps) < f−1
α1,...,αt

(a, w1, . . . , wt)
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps)) > a.

Since b satisfies p(x) and ι is an embedding, this is equivalent to:

ι(
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps))) > b

t∑
i=1

αif(ι(wi), f
−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps))) > b

f−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps)) < f−1
α1,...,αt

(b, ι(w1), . . . , ι(wt))

ι(x0)− ι(x1) <
s∑

i=1

τif(ι(pi), f
−1
α1,...,αt

(b, ι(w1), . . . , ι(wt)))

ι′(s0) < ι′(s1).

Case 1.4 (
∑s

i=1 τipi < 0 ∧
∑t

i=1 αiwi > 0): Since ι is an embedding, we have∑s
i=1 τiι(pi) < 0 ∧

∑t
i=1 αiι(wi) > 0. Therefore, the following inequalities are

equivalent:

s0 < s1

(x0 − x1) <
s∑

i=1

τif(pi, f
−1
α1,...,αt

(a, w1, . . . , wt))

f−1
τ1,...,τs

(x0 − x1, p1, . . . , ps) > f−1
α1,...,αt

(a, w1, . . . , wt)
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps)) > a.
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Since b satisfies p(x) and ι is an embedding, this is equivalent to:

ι(
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps))) > b

t∑
i=1

αif(ι(wi), f
−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps))) > b

f−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps)) > f−1
α1,...,αt

(b, ι(w1), . . . , ι(wt))

ι(x0)− ι(x1) <
s∑

i=1

τif(ι(pi), f
−1
α1,...,αt

(b, ι(w1), . . . , ι(wt)))

ι′(s0) < ι′(s1).

Case 1.5 (
∑s

i=1 τipi < 0 ∧
∑t

i=1 αiwi < 0): Since ι is an embedding, we have∑s
i=1 τiι(pi) < 0 ∧

∑t
i=1 αiι(wi) < 0. Therefore, the following inequalities are

equivalent:

s0 < s1

(x0 − x1) <
s∑

i=1

τif(pi, f
−1
α1,...,αt

(a, w1, . . . , wt))

f−1
τ1,...,τs

(x0 − x1, p1, . . . , ps) > f−1
α1,...,αt

(a, w1, . . . , wt)
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps)) < a.

Since b satisfies p(x) and ι is an embedding, this is equivalent to:

ι(
t∑

i=1

αif(wi, f
−1
τ1,...,τs

(x0 − x1, p1, . . . , ps))) < b

t∑
i=1

αif(ι(wi), f
−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps))) < b

f−1
τ1,...,τs

(ι(x0)− ι(x1), ι(p1), . . . , ι(ps)) > f−1
α1,...,αt

(b, ι(w1), . . . , ι(wt))

ι(x0)− ι(x1) <
s∑

i=1

τif(ι(pi), f
−1
α1,...,αt

(b, ι(w1), . . . , ι(wt)))

ι′(s0) < ι′(s1).

We can conclude that s0 < s1 implies ι′(s0) < ι′(s1).

¬(s0 < s1) implies s0 > s1 ∨ s0 = s1. Thus, as just shown,
ι′(s0) > ι′(s1) ∨ ι′(s0) = ι′(s1) and ¬(ι′(s0) < ι′(s1)).

Therefore, s0 < s1 is indeed equivalent to ι′(s0) < ι′(s1).
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ι′ is injective: By Lemma 5.13, the domain of ι′ is a submodel of M. Take s0 ̸= s1
in ⟨A ∪ {a}⟩. W.l.o.g. assume s0 < s1. As just shown this implies ι′(s0) < ι′(s1)
and thus indeed ι′(s0) ̸= ι′(s1).

ι′ is an embedding: constant symbols: Since A is a model of the theory, we
have 0 ∈ A and 1 ∈ A. ι is an embedding, therefore ι(0) = 0 and ι(1) = 1. Thus
ι′(0) = 0 and ι′(1) = 1.

function symbols: We know λ(s0), (λ(s0) + λ(s0)) ∈ P (A) for all s0 ∈ ⟨A ∪ {a}⟩.
Thus ι′(λ(s0)) = ι(λ(s0)) ∈ P and ι′(λ(s0) + λ(s0)) = ι(λ(s0) + λ(s0)). We have
λ(s0) ≤ s0 < λ(s0) + λ(s0) and thus ι(λ(s0)) ≤ ι′(s0) < ι′(λ(s0) + λ(s0)) =
ι(λ(s0) + λ(s0)) = ι(λ(s0)) + ι(λ(s0)). Being an element of P and fulfilling this
property uniquely characterizes λ(ι′(s0)).

Thus λ(ι′(s0)) = ι(λ(s0)) = ι′(λ(s0)).

ι′(s1 + s0) = ι′(x0 +

n0∑
i=1

εif(yi, f
−1
δ1,...,δm

(a, z1, . . . , zm))

+ x1 +

n1∑
i=1

µif(pi, f
−1
γ1,...,γk

(a, q1, . . . , qk)))

= ι′(x0 + x1 +

n0∑
i=1

εif(yi, f
−1
δ1,...,δm

(a, z1, . . . , zm))

+

n1∑
i=1

µif(pi, f
−1
γ1,...,γk

(a, q1, . . . , qk)))

= ι(x0 + x1) +

n0∑
i=1

εif(ι(yi), f
−1
δ1,...,δm

(b, ι(z1), . . . , ι(zm)))

+

n1∑
i=1

µif(ι(pi), f
−1
γ1,...,γk

(b, ι(q1), . . . , ι(qk)))

= ι(x0) + ι(x1) +

n0∑
i=1

εif(ι(yi), f
−1
δ1,...,δm

(b, ι(z1), . . . , ι(zm)))

+

n1∑
i=1

µif(ι(pi), f
−1
γ1,...,γk

(b, ι(q1), . . . , ι(qk)))

= ι(x0) +

n0∑
i=1

εif(ι(yi), f
−1
δ1,...,δm

(b, ι(z1), . . . , ι(zm)))

+ ι(x1) +

n1∑
i=1

µif(ι(pi), f
−1
γ1,...,γk

(b, ι(q1), . . . , ι(qk)))

= ι′(s0) + ι′(s1)

The proof for − follows similarly.
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For f , first show that P (s0) holds if and only if P (ι′(s0)) holds. P (s0) holds if and
only if s0 ∈ A. This implies ι′(s0) = ι(s0) ∈ P . Suppose P (ι′(s0)) holds. Then
ι′(s0) = λ(ι′(s0)) = ι′(λ(s0)). Since ι′ is injective, we have s0 = λ(s0) and thus
s0 ∈ P .

Now we can apply this statement: ι′(f(s0, s1)) = 0 = ι′(0) = f(ι′(s0), ι
′(s1)) if

s0 ̸∈ P and therefore ι′(s0) ̸∈ P . If s0 ∈ P and thus s0 ∈ A, we have

ι′(f(s0, s1)) = ι′(f(s0, x1 +

n1∑
i=1

µif(pi, f
−1
γ1,...,γk

(a, q1, . . . , qk))))

= ι′(f(s0, x1) +

n1∑
i=1

µif(s0, f(pi, f
−1
γ1,...,γk

(a, q1, . . . , qk))))

= ι(f(s0, x1)) +

n1∑
i=1

µif(ι(s0), f(ι(pi), f
−1
γ1,...,γk

(b, ι(q1), . . . , ι(qk))))

= f(ι(s0), ι(x1)) + f(ι(s0),

n1∑
i=1

µif(ι(pi), f
−1
γ1,...,γk

(b, ι(q1), . . . , ι(qk))))

= f(ι(s0), ι(x1) +

n1∑
i=1

µif(ι(pi), f
−1
γ1,...,γk

(b, ι(q1, . . . , ι(qk)))))

= f(ι′(s0), ι
′(s1))

relation symbols: s0 < s1 is equivalent to ι′(s0) < ι′(s1) and P (s0) holds if and
only if P (ι′(s0)) holds (see the previous two paragraphs).

Let s0 be in ⟨A ∪ {a}⟩. Since ⟨A ∪ {a}⟩ |= T12, Rn(s0) holds if and only if P (s0),
and there is some s∗ ∈ ⟨A∪ {a}⟩ with P (s∗) and f(s∗, f(s∗, . . . f(s∗,︸ ︷︷ ︸

n times

1 ) . . . ))︸ ︷︷ ︸
n times

= s0.

This implies s0, s∗ ∈ A and since ι is an embedding, we get

f(ι(s∗), f(ι(s∗), . . . f(ι(s∗),︸ ︷︷ ︸
n times

1 ) . . . ))︸ ︷︷ ︸
n times

= ι(s0) ∧ P (ι(s0)) ∧ P (ι(s∗)).

Thus,

f(ι′(s∗), f(ι′(s∗), . . . f(ι′(s∗),︸ ︷︷ ︸
n times

1 ) . . . ))︸ ︷︷ ︸
n times

= ι′(s0) ∧ P (ι′(s0)) ∧ P (ι′(s∗))

and therefore RN
n (ι′(s0)) holds. Suppose Rn(ι

′(s0)) holds. Then P (ι′(s0)) holds,
P (s0) holds and s0 ∈ A. Thus ι′(s0) = ι(s0). Therefore Rn(ι

′(s0)) is equivalent to
Rn(ι(s0)) and since ι is an embedding, we have that Rn(ι(s0)) implies that Rn(s0)
holds.

Case 2 (a ∈ P ): This means that P (a) holds in M. Since a ̸∈ A, it follows that
P (A) ̸= P (A ∪ {a}).

Definition of p(x): Define the type

p(x) = {P (x)} ∪ {ι(c) < x : c <M a, c ∈ A} ∪ {x < ι(d) : a <M d, d ∈ A}
∪ {Rn(f(2

j, xεz)) : (M |= Rn(2
j, aεz)) ∧ j ∈ {0, . . . , n− 1}, ε ∈ {−1, 1}, z ∈ N∗}
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Then |p(x)| ≤ max{κ,N∗} = κ since, by TPr5.n, M |= Rn(2
j, a) for exactly one

j ∈ {0, . . . , n− 1}.

Since P (a) = R1(a) holds, we have {Rn(x) : M |= Rn(a)} ≠ ∅.

p(x) is finitely satisfied in N : Let p′(x) be a finite subset of p(x).

Assume ε = z = 1 for all Rn(f(2
j, xεz)) ∈ p′(x).

Take any m, t, l0, l1, . . . , lt, k ∈ N0. Let c1, . . . , ck, d1, . . . dm be in A such that
(ci < x) ∈ p′(x) and (x < dj) ∈ p′(x) for all i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}. Thus,
ci < a and a < dj for all i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}.

Let Rn1(x), . . . , Rnl0
(x) ∈ p′(x), and for j ∈ {1, . . . , t} let

Rn
1+

∑j−1
i=0

li

(f(x, 2j)), . . . , Rn∑j
i=0

li

(f(x, 2j)) ∈ p′(x).

We can assume that l1 ̸= 0 since {Rn(x) : M |= Rn(a)} ̸= ∅ and that lj ̸= 0 for
j ∈ {1, . . . , t} since M |= Rn(2

j, a) for exactly one j ∈ {0, . . . , n− 1}.

Assume there are no other elements in p′(x).

Suppose m, k ̸= 0. Then max{c1, . . . , ck} < a < min{d1, . . . , dm}. Define e :=
min{d1, . . . , dm}. Since P (a) holds, we have a > 0 and thus 0 < e, 0 < λ(e) ≤ e
and λ(e) ∈ P by T5. Moreover, since P (a) holds and because λ(x) or respec-
tively f(2, λ(x)) are the closest elements to x that are in P ∪ {0}, it follows that
max{c1, . . . , ck} ≤ f(2, λ(max{c1, . . . , ck})) ≤ a ≤ λ(e) ≤ e.

Then d1, . . . , dm ∈ A implies e = min{d1, . . . , dm} ∈ A. Since A |= T , we
have λ(e) ∈ A and since c1, . . . ck ∈ A we have λ(max{c1, . . . , ck}) ∈ A and
f(2, λ(max{c1, . . . , ck})) ∈ A.

Let n∗
0 := lcm(n1, . . . , nl) and n∗

j := lcm(n(1+
∑j−1

i=0 li)
, . . . , n(

∑j
i=0 li)

) for j ∈ {1, . . . , t}.
By Lemma 4.6, Rn∗

1
(a) and Rn∗

j
(f(a, 2j)) hold for j ∈ {1, . . . , t}.

Define

s0 := φn∗
0
(λ(e)) ∈ P and a−1,0 := f(s0, f(s0, . . . f(s0︸ ︷︷ ︸

n∗
0 times

, 1 ) . . . ))︸ ︷︷ ︸
n∗
0 times

and for j ∈ {1, . . . t} define

sj := φn∗
j
(f(λ(e), 2j)) ∈ P and a−1,j := f(sj, f(sj, . . . f(sj︸ ︷︷ ︸

n∗
j times

, 1 ) . . . ))︸ ︷︷ ︸
n∗
j times

.

Define

a0,0 :=

{
a−1,0 if a−1,0 ̸= e,

f−1
1 (a−1,0, 2

n∗
0) else

and

a0,j :=

{
f−1
1 (a−1,j, 2

j) if f−1
1 (a−1,j, 2

j) ̸= e,

f−1
1 (f−1

1 (a−1,j, 2
j), 2n

∗
j ) else.
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Define for all i ∈ {1, . . . , n∗
j

∏
v ̸=j(n

∗
v)

2} and all j ∈ {1, . . . , t}

ai,j := f−1
1 (ai−1,j, 2

n∗
j ).

Define m∗
j := n∗

j

∏
v ̸=j(n

∗
v)

2, n∗ :=
∏

v n
∗
v and m∗ :=

∏
v(n

∗
v)

2 = (n∗)2 = n∗
jm

∗
j .

Since A is a submodel of M, φn is a definable function and λ(e) ∈ A, we have
ai,j ∈ A for all i ∈ {−1, 0, 1, . . . ,m∗

j} and all j ∈ {1, . . . , t}. It is easy to see that
Rn∗

j
(f(ai,j, 2

j)) holds for i ∈ {−1, 0, 1, . . . ,m∗
j} and j ∈ {0, . . . , t}. Moreover, for

any j ∈ {0, . . . , t} there is no uj ∈ M such that am∗
j ,j

≤ uj < e, Rn∗
j
(f(uj, 2

j))

holds and uj ̸= ai,j for all i ∈ {−1, 0, 1, . . . ,m∗
j}.

Claim: X :=
⋂t

j=0{ai,j : i ∈ {0, 1, . . . ,
∏

v ̸=j n
∗
v}} ≠ ∅.

Proof of claim: Since Rn∗
j
(f(a, 2j)) holds for all j, we also have that

Rn∗
j
(f−1

1 (f(a, 2j), (φm∗(f(2, a)))m
∗
)).

Moreover,

Rn∗
j
(f(f−1

1 (f(a, 2j), (φm∗(f(2, a))m
∗
)), (φm∗(a0,j))

m∗
))

and thus for every j

Rn∗
j
(f(f(f−1

1 (a, (φm∗(f(2, a)))m
∗
), (φm∗(a0,j))

m∗
), 2j)).

With a short calculation, one can show that

2(−m∗) ≤ (f−1
1 (a, (φm∗(f(2, a)))m

∗
)) ≤ 1

and

f(2(−m∗), (φm∗(a0,j))
m∗

)

≤ f(f−1
1 (a, (φm∗(a))m

∗
), (φm∗(a0,j))

m∗
)

≤ (φm∗(a0,j))
m∗
.

(To show this, note that we get 1 ≤ f−1(x, (φm∗(x))m
∗
) ≤ 2m

∗ with the defini-
tion and the axioms.) Since f(2(−m∗), (φm∗(a0,j))

m∗
) ≥ f(2−m∗

, f(2−m∗
, a0,j)) =

f(2−m∗−m∗
, a0,j) and (φm∗(a0,j))

m∗ ≤ a0,j, we have for every j

f(2−m∗−m∗
, a0,j) ≤ f(f−1

1 (a, (φm∗(a))m
∗
), (φm∗(a0,j))

m∗
) ≤ a0,j.

By definition aj,m∗
j
= f(2−m∗−m∗

, a0,j). Thus,

f(f−1
1 (a, (φm∗(a))m

∗
), (φm∗(a0,j))

m∗
) ∈ X.

Choose a′ := maxX. By the definition of ai,j, we have a′ < e and Rn∗
j
(a′, 2j) holds

for all j ∈ {0, . . . , t}. By Lemma 4.6, Rn∗
j
(a′, 2j) implies that
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Rn
1+

∑j−1
i=0

li

(f(a′, 2j)), . . . , Rn∑j
i=0

li

(f(a′, 2j)) hold for all j ∈ {0, 1, . . . , t}.
By maximality and since the same has to hold for a, we get a < a′.

We conclude

max{c1, . . . , ck} ≤ f(2, λ(max{c1, . . . , ck})) ≤ a ≤ a′ < e.

Because ι is an embedding, it follows

ι(max{c1, . . . , ck}) ≤ ι(f(2, λ(max{c1, . . . , ck}))) ≤ ι(a′) < ι(e).

P (ι(a′)) holds since P (a′) holds and Rn(ι(a
′)) holds if and only if Rn(a

′).

ι(max{c1, . . . , ck}) = ι(f(2, λ(max{c1, . . . , ck}))) if and only if
ι(max{c1, . . . , ck}) = 0. However, a′ ̸= 0 and thus, ι(a′) ̸= 0.
Therefore, ι(max{c1, . . . , ck}) < a′.

We can conclude b′ := ι(a′) is a finite realisation of p(x) in N . This means that
p′(b′) holds.

If k = 0, we can do the same calculation to find a b′ with p′(b′). We just do not
have a lower bound that b′ needs to fulfill.

If k ̸= 0 and m = 0, define e2 := f(2, λ(max{1, c1, . . . , ck})).

Then max{1, c1, . . . , ck} ≥ 1 > 0 implies e2 ∈ P . Moreover, e > max{c1, . . . , ck}.

By TPr5.n., there is some i∗0 ∈ {0, . . . , n∗
0} such that Rn∗

0
(f(2i

∗
0 , e2)) holds. Define

a′0 := f(2i
∗
, e2).

Define i∗j to be an element of {0, . . . , n∗
j} such that Rn∗

j
(f(f(a′j−1, 2

i∗j
∏j−1

r=0 n
∗
r), 2j))

holds.

It is possible to show with a similar calculation like in the setting where m ̸= 0
that such a i∗j indeed has to exist if Rn∗

j
(f(a, 2j)) holds for all j.

Define a′j := f(a′j−1, 2
i∗j

∏j−1
r=0 n

∗
r). Then b′ := a′t is a finite realization of p(x) in N .

We can assume that either k ̸= 0 or m ̸= 0 since 1 ∈ A and either a > 1 or a < 1.

Suppose ¬(εi = zi = 1) for some i. If f(2, λ(max{c1, . . . , ck})) = a, then clearly
ι(f(2, λ(max{c1, . . . , ck}))) is a realization of p′(x) in N . If λ(e) = a, then ι(λ(e))
is a realization of p′(x) in N . Thus, assume in the following that
f(2, λ(max{c1, . . . , ck})) ̸= a and e ̸= a.

Note that Rn(f(x, x1)) holds if and only if Rzn(f(x
εz, (x1)

εz)) holds, and for
p, q, x ∈ P ∪ {0} we have p < x ≤ q if and only if pεz < xεz ≤ qεz. Define
z∗ :=

∏
i zi. For any i∗ define n̄ := nz∗

zi∗
, j̄ := jz∗

zi∗
. Then Rn(f(a

εi∗zi∗ , 2j)) holds if
and only if Rn̄(f(a

z∗ , 2j̄)) holds. f(2, λ(max{c1, . . . , ck})) ≤ a ≤ λ(e) if and only
if (f(2, λ(max{c1, . . . , ck})))z

∗ ≤ az
∗ ≤ (λ(e))z

∗ .
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Define a new finite type

q1(y) = {Rz∗(y)} ∪ {Rn̄(f(y, 2
j̄)) : Rn(f(x

εi∗zi∗ , 2j)) ∈ p′(x)}
∪ {(f(2, λ(max{c1, . . . , ck})))z

∗
< y < λ(e)z

∗}.

Then clearly q(az∗) holds. Since this type is of the same form as the one above, we
can apply the previous calculation to get b′ ∈ N satisfying q(y). Because Rz∗(b

′)
holds, it is easy to see with the previous calculations that p′(φz∗(b

′)) holds.

Defininition of b: Since N is κ+-saturated and p(x) is finitely satisfiable in N ,
p(x) is satisfiable in N . Let b be a realization of p(x) in N .

Definition of G and ζ: Let G be be the closure under f and f−1
1 of P (A) and

a. Then G ⊂ P (M) since P (A) ⊂ P (M), a ∈ P (M) and P (M) is a Z-group and
thus closed under f and f−1

1 .

We have

(P (M), (Rn ↾P (M))n∈N∗ , f ↾P (M)2 , <↾P (M)2 , 1, 1 + 1) |= TPr

and thus

(P (M), (Rn ↾P (M))n∈N∗ , f ↾P (M)2 , <↾P (M)2 , 1, 1 + 1) |= T ∗
Pr.

(G, (Rn ↾G)n∈N∗ , f ↾G2 , <, 1, 1 + 1) is well defined since G is closed under f and
1, 1 + 1 ∈ P (A) ⊂ G. All the axioms from T ∗

Pr except for Tablo3. are universal
and thus also hold for (G, (Rn ↾G)n∈N∗ , f ↾G2 , <↾G2 , 1, 1 + 1) since they hold for
(P (M), (Rn ↾P (M))n∈N∗ , f ↾P (M)2 , <, 1, 1 + 1). Tablo3. (which states the existence of
an inverse) is satisfied since we assumed that G is closed under f−1

1 .

It is easy to show that all elements of G are of the form f(aεn, a1) with a1 ∈ P (A),
n ∈ N0 and ε ∈ {1,−1}. (for the notation see Notation 5.1).

Define ζ : G → N, f(aεn, a1) 7→ f(bεn, ι(a1)). We can show that this is an embed-
ding in the language {(Rn)n∈N∗ , f, <, 1, 1 + 1}:

Let f(az1 , a1), f(az2 , a2) ∈ G be two arbitrary elements of G. Then the following
are equivalent

f(az1 , a1) < f(az2 , a2)

f(a1, a
−1
2 ) < az2−z1

φz2−z1(f(a1, a
−1
2 )) < a

ι(φz2−z1(f(a1, a
−1
2 ))) < b

φz2−z1(f(ι(a1), ι(a2)
−1)) < b

f(ι(a1), ι(a2)
−1) < bz2−z1

f(bz1 , ι(a1)) < f(bz2 , ι(a2))

ζ(f(az1 , a1)) < ζ(f(az2 , a2))

(5.2)

since first of all P (M) and P (N) are linear ordered abelian groups, secondly φz2−z1

is monotone and xz2−z1 is the smallest element such that φz2−z1(x
z2−z1) = x, thirdly

b satisfies p(x) and lastly ι is an embedding.
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ζ well definded and injective: Let s1, s2 be in G. s1 = s2 if and only if (¬s1 < s2)∧
(¬s1 > s2). By the previously proven statement this holds if and only if (¬ζ(s1) <
ζ(s2)) ∧ (¬ζ(s1) > ζ(s2)) which holds if and only if ζ(s1) = ζ(s2).

constant symbols: ζ(1 + 1) = ι(1 + 1) = ι(1) + ι(1) = 1 + 1 and ζ(1) = ι(1) = 1.

function symbols: Let s1 := f(az1 , a1), s2 := f(az2 , a2) be in G.

f(ζ(s1), ζ(s2)) = f(ζ(f(az1 , a1)), ζ(f(a
z2 , a2)))

= f(f(bz1 , ι(a1)), f(b
z2 , ι(a2)))

= f(f(bz1 , bz2), f(ι(a1), ι(a2)))

= f(bz1+z2 , ι(f(a1, a2)))

= ζ(f(az1+z2 , f(a1, a2)))

= ζ(f(f(az1 , a1), f(a
z2 , a2)))

= ζ(f(s1, s2))

relation symbols: s1 < s2 if and only if ζ(s1) < ζ(s2) was shown in Equation 5.2.

Let s := f(az, a1) be in G. Rn(s) holds if and only if Rn(f(a
z, a1)) holds. If

z = 0, we can apply the fact that ι is an embedding and get that Rn(a1) holds
if and only if Rn(f(ι(a1))) holds. Thus, for z = 0, Rn(s) holds if and only if
Rn(ζ(s)) holds. Suppose z ̸= 0. By TPr5.n., there is a unique j∗ ∈ {0, . . . , n}
such that Rn(f(a1, 2

−j∗)) holds. Thus, by T ∗
Pr6.n., Rn(f(a

z, a1)) holds if and only
if Rn(f(a

z, 2j
∗
)) holds. Since b satisfies p(x), this is equivalent to Rn(f(b

z, 2j
∗
))

and since ι is an embedding Rn(f(a1, 2
−j∗)) is equivalent to Rn(f(ι(a1), 2

−j∗)).
We can conclude that Rn(f(a

z, a1)) holds if and only if Rn(f(b
z, ι(a1))) holds (i.e.

Rn(ζ(f(a
z, a1))) holds).

Definition of P1 and ξ: Apply Corollary 4.9 to G. This gives us a Z-group
P1 |= TPr with G ⊂ P1 ⊂ P (M) and thus P (A) ⊂ P1 and a ∈ P1. Moreover, there
is some embedding

ξ : P1 → P (N) (5.3)

such that ξ ↾G= ζ.

Elements of ⟨A∪P1⟩: Since A ⊂M and P1 ⊂ P (M) ⊂M , we have ⟨A∪P1⟩ ⊂
M .

In the following, we will proof the claim that all elements of ⟨A ∪ P1⟩ are of the
form f−1

δ1,...,δn
(
∑m

j=1 εjf(yj, xj), z1, . . . , zn) with xj ∈ A, z1, . . . , zn, y1, . . . , ym ∈ P1,
δj, εj ∈ {1,−1} and

∑n
i=1 δizi ̸= 0.

Clearly each element of this form must be in ⟨A ∪ P1⟩.

Let S be the set of all elements of the form f−1
δ1,...,δn

(
∑m

j=1 εjf(yj, xj), z1, . . . , zn) with
n,m ∈ N∗, xj ∈ A, z1, . . . , zn, y1, . . . , ym ∈ P1, δj, εj ∈ {1,−1} and

∑n
i=1 δizi ̸= 0.

Then we can show that P (S) = P1: Let f−1
δ1,...,δn

(
∑m

j=1 εjf(yj, xj), z1, . . . , zn)) ∈ S.
Either λ(f−1

δ1,...,δn
(
∑m

j=1 εjf(yj, xj), z1, . . . , zn)) = 0 or
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f−1
δ1,...,δn

(
∑m

j=1 εjf(yj, xj), z1, . . . , zn) > 0. In the following assume
f−1
δ1,...,δn

(
∑m

j=1 εjf(yj, xj), z1, . . . , zn) > 0. We can assume that x1, . . . , xn ≥ 0
since εif(yi, xi) = (−εi)f(yi, (−xi)). We can further assume x1, . . . , xn ̸= 0 since
f(yi, 0) = 0. We can choose z1, . . . , zm to be distinct and y1, . . . , ym to be distinct
modulo P (A) (i.e. f−1

1 (yi, yj) ̸∈ P (A) if i ̸= j). To show this, we do a similar cal-
culation like in the proof of Lemma 5.18: Suppose yi, yj ∈ P1, xi, xj ∈ A, i ̸= j and
p := f−1

1 (yi, yj) ∈ P (A). Denote with p−1 the unique inverse of p in the Z-group
P (A). We have

f(yi, xi) + f(yj, xj) = f(yi, xi) + f(f(yj, 1), xj)

= f(yi, xi) + f(f(yj, f(p, p
−1)), xj)

= f(yi, xi) + f(f(yj, p), f(p
−1, xj))

= f(yi, xi) + f(yi, f(p
−1, xj))

= f(yi, xi + f(p−1, xj))

with yi ∈ P1 and (xi + f(p−1, xj)) ∈ A.

For zi = zj and δi = δj, we have for all x that δif(zi, x)+δjf(zj, x) = δif(zi+zi, x)
and thus

f−1
δ1,...,δi,...,δj ,...,δn

(x, z1, . . . , zn)

= f−1
δ1,...,δi,...,δj−1,δj+1...,δn

(x, z1, . . . , zi−1, zi + zi, zi+1 . . . , zj−1, zj+1, . . . , zn).

If zi = zj and δi ̸= δj, we have δif(zi, x) + δjf(zj, x) = f(zi, x)− f(zi, x) = 0 and
thus

f−1
δ1,...,δi,...,δj ,...,δn

(x, z1, . . . , zn)

= f−1
δ1,...,δi−1,δi+1,...,δj−1,δj+1...,δn

(x, z1, . . . , zi−1, zi+1 . . . , zj−1, zj+1, . . . , zn).

(Note: If n = 2, z1 = z2 and δ1 ̸= δ2 we have δ1z1 + δ2z2 = 0 and thus our
assumptions for elements of S are not fulfilled.)

Using this fact, we have since xj > 0 implies λ(xj), λ(xj) + λ(xj) ∈ P (A) and
λ(xj) ̸= λ(xj) + λ(xj) for all j, that all elements which are either of the form
f(yi, λ(xi)) or of the form f(yi, λ(xi) + λ(xi)) with i ∈ {1, . . . , n} are pairwise
distinct. Define

λ̄(xi) :=

{
λ(xi) if εi = 1

λ(xi) + λ(xi) if εi = −1.

Then all elements of the form f(yi, λ̄(xi)) ∈ P are pairwise distinct. Without loss
of generality, assume maxi∈{1,...,m}{f(yi, λ̄(xi))} = f(ym, λ̄(xm)). Assume εm = 1.
We know that λ(xj) ≤ xj < λ(xj) + λ(xj) since xj > 0. Thus, by the choice of λ̄,
we get εjf(yj, xj) ≥ εjf(yj, λ̄(xj)) (by T7 and Remark 5.4, εjf(yj,−) is strictly
increasing if εj = 1 and strictly decreasing if εj = −1). Thus

∑m
j=1 εjf(yj, xj) ≥∑m

j=1 εjf(yj, λ̄(xj)).

Since the f(yj, λ̄(xj)) ∈ P are distinct, we can apply Lemma 5.19 and get
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m∑
j=1

εjf(yj, λ̄(xj)) ≥ f(2−(m−1), f(ym, λ̄(xm))).

We can conclude
m∑
j=1

εjf(yj, xj) ≥
m∑
j=1

εjf(yj, λ̄(xj)) ≥ f(2−(m−1), f(ym, λ̄(xm))).

Define

λ′(xi) :=

{
λ(xi) if εi = −1

λ(xi) + λ(xi) ifεi = 1.

Since f(ym, λ̄(xm)) = f(ym, λ(xm)) ≥ f(yj, λ(xj)), we also have

f(ym, λ
′(xm)) = f(ym, λ(xm)) + f(ym, λ(xm))

≥ f(yj, λ(xj)) + f(yj, λ(xj))

= f(yj, λ(xj) + λ(xj))

≥ f(yj, λ
′(xj)).

By Lemma 5.19,
∑m

j=1 εjf(yj, λ
′(xj)) < f(2, f(ym, λ

′(xm))). By the choice of λ′,
we have εjf(yj, xj) ≤ εjf(yj, λ

′(xj)) and thus∑m
j=1 εjf(yj, xj) ≤

∑m
j=1 εjf(yj, λ

′(xj)) < f(2, f(ym, λ
′(xm))).

We can conclude

f(2−(m−1), f(ym, λ̄(xm))) ≤
m∑
j=1

εjf(yj, xj) ≤ f(2, f(ym, λ
′(xm))).

W.l.o.g. assume zn = max{zi : i ∈ {1, . . . , n}}. Since f(2−(m−1), f(ym, λ̄(xm))) and
f(2, f(ym, λ

′(xm))) are elements of P , we further can apply Lemma 5.19 and get

f−1
1 (f(2, f(ym, λ

′(xm))), f(2
−n+1, zn))

≥ f−1
δ1,...,δn

(f(2, f(ym, λ
′(xm))), z1, . . . , zn)

and

f−1
δ1,...,δn

(f(2−(m−1), f(ym, λ̄(xm))), z1, . . . , zn)

≥ f−1
1 (f(2−(m−1), f(ym, λ̄(xm))), f(2, zn)).

Additionally, since
∑n

j=1 δizi > 0, we have

f−1
δ1,...,δn

(f(2−(m−1), f(ym, λ̄(xm))), z1, . . . , zn)

≤ f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn)

≤ f−1
δ1,...,δn

(f(2, f(ym, λ
′(xm))), z1, . . . , zn).
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We conclude

f−1
1 (f(2, f(ym, λ

′(xm))), f(2
−n+1, zn))

≥ f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn)

≥ f−1
1 (f(2−(m−1), f(ym, λ̄(xm))), f(2, zn)).

We know that all elements of P between

f−1
1 (f(2, f(ym, λ

′(xm))), f(2
−n+1, zn))

= f−1
1 (f(2, f(ym, λ(xm) + λ(xm))), f(2

−n+1, zn))

= f−1
1 (f(f(2, 2), f(ym, λ(xm))), f(2

−n+1, zn))

and

f−1
1 (f(2−(m−1), f(ym, λ̄(xm))), f(2, zn))

= f−1
1 (f(2−(m−1), f(ym, λ(xm))), f(2, zn))

are elements of the form

f−1
1 (f(2i, f(ym, λ(xm))), f(2

j, zn))

with i ∈ {2, 1, 0, . . . ,−(m− 1)} and j ∈ {1, 0,−1, . . . ,−n + 1}. Thus these ele-
ments are in P1 because ym ∈ P1, λ(xm) ∈ P (A) ⊂ P1 and P1 is closed regarding
f and f−1

1 . But

λ(f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn))

is the largest element of P smaller than

f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn)

and thus clearly between

f−1
1 (f(22, f(ym, λ(xm))), f(2

−n+1, zn)) and f−1
1 (f(2−(m−1), f(ym, λ(xm))), f(2, zn)).

It follows that

λ(f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn)) ∈ P1.

Suppose δn = −1. Then
∑n

i=1 δizi < 0 and f−1
δ1,...,δn

(−, z1, . . . , zn) is strictly de-
creasing. Remember that we have

m∑
j=1

εjf(yj, xj) ≥ f(2−(m−1), f(ym, λ̄(xm))) > 0.
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Thus,

f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn) < f−1
δ1,...,δn

(0, z1, . . . , zn) = 0.

This is a contradiction to our assumptions.

Suppose εm = −1. Define

¯̄λ(xi) :=

{
λ(xi) if εi = −1

λ(xi) + λ(xi) if εi = 1.

Then

max
i∈{1,...,m}

{f(yi, λ̄(xi))} = f(ym, λ̄(xm)) and

max
i∈{1,...,m}

{f(yi, ¯̄λ(xi))} = f(ym1 ,
¯̄λ(xm1))

imply

f(ym, λ̄(xm)) = f(ym, f(2, λ(xm))) ≥ f(ym1 , λ̄(xm1)) and

f(ym,
¯̄λ(xm)) = f(ym, λ(xm)) ≤ f(ym1 ,

¯̄λ(xm1)).

Suppose εm1 = 1. Then we have f(ym, f(2, λ(xm))) ≥ f(ym1 , λ(xm1)) and
f(ym, λ(xm)) ≤ f(ym1 , f(2, λ(xm1))). The second inequality is equivalent to
f(2−1, f(ym, λ(xm))) ≤ f(ym1 , λ(xm1)). Thus,

f(ym, f(2, λ(xm))) ≥ f(ym1 , λ(xm1)) ≥ f(2−1, f(ym, λ(xm)))

Since the only elements of P between f(ym, f(2, λ(xm))) and f(ym, f(2−1, λ(xm)))
are f(ym, f(2, λ(xm))), f(ym, λ(xm)) and f(ym, f(2−1, λ(xm))), this is a contradic-
tion to f(ym, f(2, λ(xm))), f(ym, f(2, λ(xm))), f(ym1 , λ(xm1)) and
f(ym1 , f(2, λ(xm1))) being pairwise distinct. This proves that εm1 = 1.

Thus, we can apply the previous calculations to ε̄1 := −ε1, . . . , ε̄m := −εm and
δ̄1 := −δ1, . . . , δ̄n := −δn and ε̄∗j = 1 for maxi∈{1,...,m}{f(yi, λ̄(xi)) = f(yj∗ , λ̄(xj∗)).
We have

f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn) = −f−1
δ1,...,δn

(−
m∑
j=1

εjf(yj, xj), z1, . . . , zn)

= f−1
−δ1,...,−δn

(
m∑
j=1

ε̄jf(yj, xj), z1, . . . , zn)

= f−1
δ̄1,...,δ̄n

(
m∑
j=1

ε̄jf(yj, xj), z1, . . . , zn)

Thus, λ(f−1
δ1,...,δn

(
∑m

j=1 εjf(yj, xj), z1, . . . , zn)) ∈ P1.

In particular λ(P (S)) = P (S) ⊂ P1.
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⟨A ∪ P1⟩ ⊂ S: We have to show that S is closed regarding the functions λ, +, −,
f , (φn)n∈N, (f−1

α1,...,αn
)n∈N,α1,...,αn∈{−1,1} since clearly A = f−1

1 (f(1, A), 1) ⊂ S and
P1 = f−1

1 (f(P1, 1), 1) ⊂ S.

λ(f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn)) ∈ P1 ⊂ S

was shown in the proof of P1 = P (S) before.

By Lemma 5.16, we have

f−1
δ1,...,δn0

(

m0∑
j=1

εjf(yj, xj), z1, . . . , zn0) + f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1)

= f−1
δ1,...,δn0

(f−1
γ1,...,γn1

(

n1∑
i=1

γif(pi,

m0∑
j=1

εjf(yj, xj)), p1, . . . , pn1), z1, . . . , zn0)

+ f−1
γ1,...,γn1

(f−1
δ1,...,δn0

(

n0∑
i=1

δif(zi,

m1∑
j=m0+1

εjf(yj, xj)), z1, . . . , zn0), p1, . . . , pn1)

= f−1
δ1γ1,...,δn0γn1

(

n1∑
i=1

γif(pi,

m0∑
j=1

εjf(yj, xj)), f(z1, p1), . . . , f(zn0 , pn1))

+ f−1
δ1γ1,...,δn0γn1

(

n0∑
i=1

δif(zi,

m1∑
j=m0+1

εjf(yj, xj)), f(z1, p1), . . . , f(zn0 , pn1))

= f−1
δ1γ1,...,δn0γn1

(

n1∑
i=1

m0∑
j=1

εjγif(f(pi, yj), xj) +

n0∑
i=1

m1∑
j=m0+1

εjδif(f(yj, zi), xj),

f(z1, p1), . . . , f(zn0 , pn1)) ∈ S.

That S is closed regarding − follows directly if we define ε̄j = −εj for all j ∈
{m0, . . . ,m1} and apply the previous equation to ε̄j.

f(s0, f
−1
γ1,...,γn1

(
∑m1

j=m+1 εjf(yj, xj), p1, . . . , pn1)) = 0 ∈ A ⊂ S if s0 ̸∈ P1. By Lemma
5.16 and Lemma 5.14, s0 ∈ P1 implies

f(s0, f
−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1))

= f−1
γ1,...,γn1

(f(s0,

m1∑
j=m+1

εjf(yj, xj)), p1, . . . , pn1)

= f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(f(s0, yj), xj), p1, . . . , pn1) ∈ S.
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Let n be in N∗. Then φn(s0) = 0 ∈ S if s0 ̸∈ P (S). Suppose s0 ∈ P (S) = P1.
Since P1 is a Z-group, we have that φn(s0) ∈ P1 ⊂ S.

Let n1 ∈ N∗, γ1, . . . , γn1 ∈ {1,−1}, p1, . . . , pn1 ∈ P (S) = P1. Then by Lemma
5.16, we have

f−1
γ1,...,γn1

(f−1
δ1,...,δn

(
m∑
i=1

εif(yi, xi), z1, . . . , zn), p1, . . . , pn1)

= f−1
δ1γ1,...,δnγn1

(
m∑
i=1

εif(yi, xi), f(z1, p1), . . . , f(zn, pn1)) ∈ S

since f(zi, pj) ∈ P1 and εiδj ∈ {1,−1}.

We can conclude that S = ⟨A ∪ P1⟩.

Definition of ι′: We define

ι′ : ⟨A ∪ P1⟩ → N

f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn) 7→ f−1
δ1,...,δn

(
m∑
j=1

εjf(ξ(yj), ι(xj)), ξ(z1), . . . , ξ(zn)).

In particular x 7→ ι(x) if x ∈ A and x 7→ ξ(x) if x ∈ P1, with ξ as defined in 5.3)

ι′ is well defined: Let

f−1
δ1,...,δn0

(

m0∑
j=1

εjf(yj, xj), z1, . . . , zn0) = f−1
γ1,...,γn1

(

m1∑
j=1

τjf(rj, xj), p1, . . . , pn1)

be in ⟨A ∪ P1⟩. This is equivalent to

n1∑
i=1

γif(pi, (

m0∑
j=1

εjf(yj, xj))) =

n0∑
i=1

δif(zi, (

m1∑
j=1

τjf(rj, xj)))

and

0 =

n1∑
i=1

m0∑
j=1

−γiεjf(f(pi, yj), xj) +
n0∑
i=1

m1∑
j=1

δiτjf(f(zi, rj), xj).

Since we can do a similar calculation in N , we only need to show that for any
n ∈ N∗ xi ∈ A, any yi ∈ P1 and any εi ∈ {1,−1}:

∑n
i=1 εif(yi, xi) = 0 implies∑n

i=1 εif(ξ(yi), ι(xi)) = 0. This is easy to show: 0 ∈ A implies
∑n

i=1 εif(yi, xi) ∈ A
and thus

n∑
i=1

εif(ξ(yi), ι(xi)) = ι′(
n∑

i=1

εif(yi, xi)) = ι(
n∑

i=1

εif(yi, xi)) = ι(0) = 0.

s1 < s2 is equivalent to ι′(s1) < ι′(s2): First, we want to show that
ι′(s2 − s1) = ι′(s2)− ι′(s1).
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Applying Lemma 5.16(3), we have

ι′(f−1
δ1,...,δn0

(

m0∑
j=1

εjf(yj, xj), z1, . . . , zn0)− f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1))

= ι′(f−1
δ1γ1,...,δn0γn1

(

n1∑
i=1

m0∑
j=1

εjγif(f(pi, yj), xj)

−
n0∑
i=1

m1∑
j=m0+1

εjδif(f(yj, zi), xj), f(z1, p1), . . . , f(zn0 , pn1)))

= f−1
δ1γ1,...,δn0γn1

(

n1∑
i=1

m0∑
j=1

εjγif(ξ(f(pi, yj)), ι(xj))

n0∑
i=1

m1∑
j=m0+1

−εjδif(ξ(f(yj, zi)), ι(xj)), ξ(f(z1, p1)), . . . , ξ(f(zn0 , pn1)))

= f−1
δ1γ1,...,δn0γn1

(

n1∑
i=1

m0∑
j=1

εjγif(f(ξ(pi), ξ(yj)), ι(xj))

−
n0∑
i=1

m1∑
j=m0+1

εjδif(f(ξ(yj), ξ(zi)), ι(xj)), f(ξ(z1), ξ(p1)), . . . , f(ξ(zn0), ξ(pn1))).

A similar calculation for

f−1
δ1,...,δn0

(

m0∑
j=1

εjf(ξ(yj), ι(xj)), ξ(z1), . . . , ξ(zn0))

− f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(ξ(yj), ι(xj)), ξ(p1), . . . , ξ(pn1))

in N like the one we did for

f−1
δ1,...,δn0

(

m0∑
j=1

εjf(yj, xj), z1, . . . , zn0)− f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1)

in M leads to

ι′(f−1
δ1,...,δn0

(

m0∑
j=1

εjf(yj, xj), z1, . . . , zn0))

− ι′(f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1))
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= f−1
δ1,...,δn0

(

m0∑
j=1

εjf(ξ(yj), ι(xj)), ξ(z1), . . . , ξ(zn0))

− f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(ξ(yj), ι(xj)), ξ(p1), . . . , ξ(pn1))

= f−1
δ1γ1,...,δn0γn1

(

n1∑
i=1

m0∑
j=1

εjγif(f(ξ(pi), ξ(yj)), ι(xj))

−
n0∑
i=1

m1∑
j=m0+1

εjδif(f(ξ(yj), ξ(zi))), ι(xj)),

f(ξ(z1), ξ(p1)), . . . , f(ξ(zn0), ξ(pn1)).

We can conclude that for s1, s2 ∈ ⟨A ∪ P1⟩ we have ι′(s1)− ι′(s2) = ι′(s1 − s2).

Note that we can do the same calculation for + to get ι′(s1) + ι′(s2) = ι′(s1 + s2).

Now, we show that s1 < s2 implies ι′(s1) < ι′(s2).

We only need to consider s0 > 0 since for any s1, s2, we have that s2 > s1 implies
s2−s1 > 0, s1−s2 is again an element of ⟨A∪P1⟩ and ι′(s2−s1) = ι′(s2)−ι′(s1) (thus
ι′(s2−s1) > 0 implies ι′(s2) > ι′(s1)). Suppose s1 = f−1

δ1,...,δn
(
∑m

j=1 εjf(yj, xj), z1, . . . , zn).
Like in the proof of P (S) = P1, either, we have s0 = 0 and thus ι′(s0) = ι(s0) = 0,
or, we can assume that the yi are distinct modulo P (A) and that the zi are dis-
tinct. Because ξ is an embedding, the ξ(yi) are again distinct modulo ξ(P (A)) =
ζ(P (A)) = ι(P (A)) and the ξ(zi) are distinct as well.

We can do a case distinction:

Case 2.1 (
∑n

i=1 δizi = 0): This is a contradiction to the assumption that the zi are
distinct.

Case 2.2 (
∑n

i=1 δizi > 0): Let i∗ be the index such that zi∗ = max{zi}. Since the
zi are distinct elements of P , we have that zi∗ >

∑
i ̸=i∗ zi and thus,

∑n
i=1 δizi > 0

implies δi∗ = +1. Since ξ is an embedding, we have ξ(max{zi}) = max{ξ(zi)}.
Because all of the ξ(zi) are distinct, it follows that

∑n
i=1 δiξ(zi) > 0. Thus, the

following inequalities are equivalent:

s0 > 0

f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn) > 0

m∑
j=1

εjf(yj, xj) >
n∑

i=1

δif(zi, 0) = 0
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and the following inequalities are again equivalent:

ι′(s0) > 0

f−1
δ1,...,δn

(
m∑
j=1

εjf(ξ(yj), ι(xj)), ξ(z1), . . . , ξ(zn)) > 0

m∑
j=1

εjf(ξ(yj), ι(xj)) >
n∑

i=1

δif(ξ(zi), 0) = 0

If m = 1, we know that ε1f(ξ(y1), ι(x1)) > 0 if and only if ε1 = 1, and ε1f(y1, x1) >
0 if and only if ε1 = 1. Thus, we can conclude s0 > 0 if and only if ι′(s0) > 0.

If m > 1: Let i∗ be the index such that f(yi∗ , xi∗) = max{f(yi, xi)}. This means
that f(yi∗ , xi∗) ≥ f(yi, xi) and therefore f(yi∗ , λ(xi∗)) ≥ f(yi, λ(xi)). Since all the
yi are distinct modulo P (A), f(yi∗ , λ(xi∗)) > f(yi, λ(xi)) for all i ̸= i∗. This is
equivalent to f(yi∗ , λ(xi∗)) ≥ f(yi, f(λ(xi), 2)). Again, the fact that the yi are
distinct modulo P (A) implies f(yi∗ , λ(xi∗)) > f(yi, f(λ(xi), 2)). Since ξ is an
embedding,

ξ(f(yi∗ , λ(xi∗))) > ξ(f(yi, f(λ(xi), 2)))

f(ξ(yi∗), ι(λ(xi∗))) > f(ξ(yi), ι(f(λ(xi), 2))).

Since the yi are distinct modulo P (A), the f(yi, f(λ(xi), 2)) are distinct and we
have

f(yi∗ , xi∗) ≥ f(ξ(yi∗), λ(xi∗)) ≥
∑
i ̸=i∗

f(yi, f(λ(xi), 2)) >
∑
i ̸=i∗

f(yi, xi).

Because the ξ(yi) are distinct modulo P (A), the f(ξ(yi), f(λ(ι(xi)), 2)) are distinct
and we get

f(ξ(yi∗), ι(xi∗)) ≥ f(ξ(yi∗), λ(ι(xi∗)))

≥
∑
i ̸=i∗

f(ξ(yi), f(λ(ι(xi)), 2)) >
∑
i ̸=i∗

f(ξ(yi), ι(xi))

It follows that
∑m

j=1 εjf(yj, xj) > 0 if and only if εi∗ = +1, and εi∗ = +1 if and
only if

∑m
j=1 εjf(ξ(yj), ι(xj)) > 0. Thus, we can conclude that s0 > 0 is equivalent

to ι′(s0) > 0.

Case 2.3 (
∑n

i=1 δizi < 0): With a consideration similar to the one in Case 2.2, we
get that the following are equivalent

s0 > 0

f−1
δ1,...,δn

(
m∑
j=1

εjf(yj, xj), z1, . . . , zn) > 0

m∑
j=1

εjf(yj, xj) <
n∑

i=1

δif(zi, 0) = 0
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and the following inequalities are again equivalent

ι′(s0) > 0

f−1
δ1,...,δn

(
m∑
j=1

εjf(ξ(yj), ι(xj)), ξ(z1), . . . , ξ(zn)) > 0

m∑
j=1

εjf(ξ(yj), ι(xj)) <
n∑

i=1

δif(ξ(zi), 0) = 0.

Like in Case 2.2, we can show that
∑m

j=1 εjf(yj, xj) < 0 if and only if εi∗ = −1, and
εi∗ = −1 if and only if

∑m
j=1 εjf(ξ(yj), ι(xj)) < 0. Thus, we can again conclude

that s0 > 0 is equivalent to ι′(s0) > 0.

In conclusion s0 < s1 implies ι′(s0) < ι′(s1).

We can also show the other direction: ¬(s0 < s1) implies s0 > s1 ∨ s0 = s1. Thus,
as just shown, ι′(s0) > ι′(s1) ∨ ι′(s0) = ι′(s1) and ¬(ι′(s0) < ι′(s1)).

Therefore, we have that indeed s0 < s1 is equivalent to ι′(s0) < ι′(s1).

ι′ is injective: Let s1, s2 be in ⟨A ∪ P1⟩. s1 = s2 if and only if
(¬(s1 < s2)) ∧ ¬(s1 > s2). By the previously proven statement, this holds if
and only if (¬(ι′(s1) < ι′(s2))) ∧ ¬(ι′(s1) > ι′(s2)) which holds if and only if
ι′(s1) = ι′(s2).

ι′ is an embedding: constant symbols: ι′(0) = ι(0) = 0, ι′(1) = ι(1) = 1.

function symbols: Let s0, s1 ∈ ⟨A ∪ P1⟩.

We have shown before in the paragraph “s1 < s2 is equivalent to ι′(s1) < ι′(s2)”
that ι′(s1 + s2) = ι′(s1) + ι′(s2) and ι′(s1 − s2) = ι′(s1)− ι′(s2).

If s0 ≤ 0, we have ι′(s0) ≤ 0 and ι′(λ(s0)) = ι′(0) = 0 = λ(ι′(s0)). If s0 > 0,
we have that λ(s0) is the unique element in P fulfilling λ(s0) ≤ s0 < f(2, λ(s0)).
We have shown before that ι′ is injective and strictly increasing. Thus, λ(s0) ≤
s0 < f(2, λ(s0)) implies ι′(λ(s0)) ≤ ι′(s0) < ι′(f(2, λ(s0))) = ι′(λ(s0) + λ(s0)) =
ι′(λ(s0))+ ι

′(λ(s0)) = f(2, ι′(λ(s0))). Since this is the characterizing inequality for
λ(ι′(s0)), we have λ(ι′(s0)) = ι′(λ(s0)).

For f , first, we show that s0 ∈ P if and only if ι′(s0) ∈ P . ι′(s0) ∈ P if and only if
ι′(s0) = λ(ι′(s0)) = ι′(λ(s0)). Since ι′ is injective, this is equivalent to s0 = λ(s0).
However, this is true if and only if s0 ∈ P .

Now, we can apply this property: Suppose s0 ̸∈ P and thus ι′(s0) ̸∈ P , then

ι′(f(s0, f
−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1))) = ι′(0) = 0

= f(ι′(s0), f
−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1)).

43



If s0 ∈ P1, we have shown before that

f(s0, f
−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1))

= f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(f(s0, yj), xj), p1, . . . , pn1).

Again, a similar calculation leads to

f(ξ(s0), f
−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(ξ(yj), ι(xj)), ξ(p1), . . . , ξ(pn1)))

= f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(f(ξ(s0), ξ(yj)), ι(xj)), ξ(p1), . . . , ξ(pn1)).

for s0 ∈ P also implying ξ(s0) ∈ P . Thus,

ι′(f(s0, f
−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1)))

= ι(f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(f(s0, yj), xj), p1, . . . , pn1))

= f−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(f(ξ(s0), ξ(yj)), ι(xj)), ξ(p1), . . . , ξ(pn1))

= f(ξ(s0), f
−1
γ1,...,γn1

(

m1∑
j=m+1

εjf(ξ(yj), ι(xj)), ξ(p1), . . . , ξ(pn1)))

= f(ι′(s0), ι
′(f−1

γ1,...,γn1
(

m1∑
j=m+1

εjf(yj, xj), p1, . . . , pn1))).

relation symbols: s1 < s2 is equivalent to ι′(s1) < ι′(s2) and P (ι(s1)) if and only if
P (s1) was shown before.

Suppose Rn(s0) holds. Thus, P (s0) holds, and hence, s0 ∈ P1. This implies
ι′(s0) = ξ(s0) since ξ is an embedding, Rn(ι(s0)) = Rn(ξ(s0)) holds. Suppose
Rn(ι

′(s0)) holds. Thus, P (ι′(s0)) and P (s0) hold. Again, this implies ι′(s0) = ξ(s0)
and since ξ is an embedding Rn(ι(s0)) = Rn(ξ(s0)) holds.

Case 3: If neither of the previous two cases hold (i.e. a ̸∈ P but P (⟨A ∪ {a}⟩) ̸=
P (A)), then define

λ̃(a) :=

{
λ(a) if a > 0

λ(−a) if a < 0.

Remember that a ̸∈ A and thus a ̸= 0. In particular λ̃(a) ∈ P . By Case 2,
there is an embedding ι′1 : ⟨A ∪ {λ̃(a)}⟩ → N extending ι. Clearly, we have
A ⊂ ⟨A ∪ {λ̃(a)}⟩ ⊂ ⟨A ∪ {a}⟩.
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We can show that: P (⟨A ∪ {λ̃(a)}⟩) = P (⟨A ∪ {a}⟩).

Suppose q ∈ P (⟨A ∪ {a}⟩). This means q = λ(q). Then by the construction of
⟨ ⟩, there are a1, . . . an ∈ A and a term t(x, x1, . . . , xn) consisting of λ, + , − , f
, (φn)n∈N , (f−1

ε1,...,εn
)n∈N,ε1,...,εn∈{1,−1} such that q = t(a, a1, . . . , an).

Let t0(x, x1, . . . , xn), t1(x, x1, . . . , xn), . . . , tm(x, x1, . . . , xn) be arbitrary terms con-
sisting of λ, + , − , f , (φn)n∈N , (f−1

ε1,...,εn
)n∈N,ε1,...,εn∈{1,−1}. In order to shorten the

notation, we will write ti to mean ti(a, a1, . . . , an)

We collect some properties of terms: t1 − t2 = t1 + (−t2), λ(λ(t1)) = λ(t1),
λ(−λ(t1)) = 0

λ(t1 + t2) =



0 if t1 + t2 ≤ 0

f(2, λ(t1)) if t1 + t2 ≥ 0 ∧ t1 ≥ t2 ≥ f(2, λ(t1))− t1

λ(t1) if t1 + t2 ≥ 0 ∧ t1 > t2 ∧ t2 < f(2, λ(t1))− t1

f(2, λ(t2)) if t1 + t2 ≥ 0 ∧ t2 > t1 ≥ f(2, λ(t2))− t2

λ(t2) if t1 + t2 ≥ 0 ∧ t2 > t1 ∧ t1 < f(2, λ(t2))− t2

(Note that for t1 = t2 we always have t2 ≥ f(2, λ(t1))− t1.) Similarly:

λ(−(t1+t2)) =



0 if t1 + t2 ≥ 0

f(2, λ(−t1)) if t1 + t2 ≤ 0 ∧ t1 ≤ t2 ≤ −f(2, λ(−t1)) + t1

λ(−t1) if t1 + t2 ≤ 0 ∧ t1 < t2 ∧ t2 > −f(2, λ(−t1)) + t1

f(2, λ(−t2)) if t1 + t2 ≤ 0 ∧ t2 < t1 ≤ −f(2, λ(−t2)) + t2

λ(−t2) if t1 + t2 ≤ 0 ∧ t2 < t1 ∧ t1 > −f(2, λ(−t2)) + t2.

λ(f(t1, t2)) =

{
0 if t1 ̸∈ P or t2 ≤ 0

f(λ(t1), λ(t2)) else

λ(−f(t1, t2)) =

{
0 if t1 ̸∈ P or t2 ≥ 0

f(λ(t1), λ(−t2)) else

λ(φn(t1)) =

{
0 if t1 ̸∈ P

φn(λ(t1)) else

λ(−φn(t1)) = 0

Lastly, we want to consider λ(f−1
ε1,...εm

(t0, t1, . . . , tm)) and λ(−f−1
ε1,...εm

(t0, t1, . . . , tm)).
It is immediate to see that λ(f−1

ε1,...εm
(t0, t1, . . . , tm)) = 0 if (

∧m
i=1 ti ̸∈ P )∨(

∑m
i=1 εiti =

0)∨ (
∑m

i=1 εiti > 0∧ t0 ≤ 0)∨ (
∑m

i=1 εiti < 0∧ t0 ≥ 0). If
∑m

i=1 εiti > 0 and t0 > 0
we have t0 ≥ λ(t0) > 0. We can apply Lemma 5.20 and use the monotonicity of
f−1
ε1,...,εm

(−, t1, . . . , tm) to get

f−1
1 (f(λ(t0), 2), λ(

m∑
i=1

εiti))

≥ f−1
ε1,...,εm

(f(λ(t0), 2), t1, . . . , tm)

> f−1
ε1,...,εm

(t0, t1, . . . , tm)
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and

f−1
1 (λ(t0), f(2, λ(

m∑
i=1

εiti)))

≤ f−1
ε1,...,εm

(λ(t0), t1, . . . , tm)

≤ f−1
ε1,...,εm

(t0, t1, . . . , tm).

Thus, λ(f−1
ε1,...,εm

(t0, t1, . . . , tm)) = f(2−1, f−1
1 (λ(t0), λ(

∑m
i=1 εiti))) or

λ(f−1
ε1,...,εm

(t0, t1, . . . , tm)) = f−1
1 (λ(t0), λ(

∑m
i=1 εiti)).

If
∑m

i=1 εiti < 0 and t0 < 0, notice that

f−1
ε1,...,εm

(t0, t1, . . . , tm) = f−1
ε1,...,εm

(−t0,−t1, . . . ,−tm)

and by the previous calculation

f−1
ε1,...,εm

(t0, t1, . . . , tm) = 0

∨ f−1
ε1,...,εm

(t0, t1, . . . , tm) = f(2−1, f−1
1 (λ(−t0), λ(

m∑
i=1

εi − ti)))

∨ f−1
ε1,...,εm

(t0, t1, . . . , tm) = f−1
1 (λ(−t0), λ(

m∑
i=1

εi − ti)).

Moreover, λ(−f−1
ε1,...εm

(t0, t1, . . . , tm)) = λ(f−1
ε1,...εm

(−t0, t1, . . . , tm)). With the pre-
vious calculation we get that

(λ(−f−1
ε1,...εm

(t0, t1, . . . , tm)) = 0)

∨(λ(−f−1
ε1,...εm

(t0, t1, . . . , tm)) = f(2−1, f−1
1 (λ(−t0), λ(

m∑
i=1

εiti))))

∨(λ(−f−1
ε1,...εm

(t0, t1, . . . , tm)) = f−1
1 (λ(−t0), λ(

m∑
i=1

εiti)))

∨(λ(−f−1
ε1,...εm

(t0, t1, . . . , tm)) = f(2−1, f−1
1 (λ(t0), λ(

m∑
i=1

εiti))))

∨(λ(−f−1
ε1,...εm

(t0, t1, . . . , tm)) = f−1
1 (λ(t0), λ(

m∑
i=1

εiti))).

Using all these properties, one can prove inductively that there is a term
t̄(x, y, x1, . . . , xn, y1, . . . yn) in L = {0, 1,+, f, (f−1

ε1,...,εn
)n∈N,ε1,...,εn∈{1,−1}, (φn)n∈N}

such that t̄(λ(a), λ(−a), λ(a1), . . . λ(an), λ(−a1), . . . , λ(−an)) = t(a, a1, . . . , an).
Clearly t̄(λ(a), λ(−a), λ(a1), . . . λ(an), λ(−a1), . . . , λ(−an)) ∈ ⟨A ∪ λ̃(a)⟩.

Thus, we have p ∈ ⟨A ∪ λ̃(a)⟩.

Since P (⟨A ∪ {λ̃(a)}⟩) = P (⟨A ∪ {a}⟩), we can apply Case 1 to get an embedding
ι′2 : ⟨A ∪ {a}⟩ → N extending ι′1 and therefore also extending ι.
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Remark 5.25. The image of ι′ as it is defined in the proof is ⟨B ∪ {b}⟩.

For the following theorem and a proof of it confer [Del97].

Theorem 5.26. The theory T is complete.

5.4 Definition of R
Now, we want to introduce a structure that models the theory T .

Definition 5.27 (R). Let

R := (R, PR, (RR
n )n∈N∗ , <,+,−, g, λR, 0, 1)

be an expansion of the real ordered field with

g : R× R → R, (t, t′) 7→

{
tt′ if t ∈ 2Z

0 else.

PR(x) holds if and only if x ∈ 2Z,RR
n (x) holds if and only if x ∈ 2n·Z and

λR(x) =

{
max{y ∈ 2Z : y ≤ x} if x > 0

0 else.

It is easy to check that R |= T .

Corollary 5.28. T is the theory of R, i.e. T = Th(R)

Proof. Follows directly since T |= R and T is complete.

Lemma 5.29. R is an expansion by definitions of (R, <,+, g).

Proof. We can explicitly state the definition of the other symbols:

2Z = {x : f(x, 1) ̸= 0},

RR
n (R) = {x : P (x) ∧ ∃y (P (y) ∧ yn = x)},

graph(−) = {(x, y, z) : (x = z + y)},

graph(λ) = {(x, y) : (x ≤ 0 ∧ y = 0) ∨ (P (y) ∧ (y ≤ x ∧ x < y + y))},

0 = {x : x+ x = x},

1 = {x : ∀yf(x, y) = y}.

Remark 5.30. By Lemma 5.29, (R, <,+, g) and R have the same definable sets.
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5.5 R is not field type

In this chapter we will shortly discuss the application that mainly motivated us to
show the quantifier elimination for R. The quantifier elimination for R allows us
to define all definable sets by quantifier free formulas. Thus, the definable sets are
boolean combinations of sets defined by atomic formulas. As [HW21] suggested
one can use this quantifier elimination result to show that R is field type. Though
we will not prove this result, we want to take a short look on it.

First, let us define the property to be field type. The following definition is taken
from [HW21].

Definition 5.31 (field-type). Let R = (R, <,+, . . . ) be a first order expansion
of the ordered additive group of the real numbers. R is field-type if there is a
definable, bounded, open, non-empty subinterval I ⊂ R and there are definable
functions ⊕,⊗ : I2 → I such that (I,<,⊕,⊗) is an ordered field isomorphic to
(R, <,+, ·).

Remark 5.32. By Remark 5.30, R and (R, <,+, g) agree on the definable sets.
Therefore, the structure (R, <,+, g) is field-type if and only if R is field-type.

Theorem 5.33. (R, <,+, g) is not field-type.

This theorem is taken from [HW21]. Main ideas, how to conclude this result from
the quantifier elimination we showed, can be found there.

6 (R, <,+, g) admits a weak pole
In this chapter we define a weak pole for (R, <,+, g). Together with the property,
that (R, <,+, g) is field type, which was discussed in the previous chapter, this
concludes the main outcome that motivates this thesis. (R, <,+, g) is an expansion
of the ordered additive group of real numbers that is not field type but admits a
weak pole.

First, we define what a weak pole is. The following definition is taken from [HW21].

Definition 6.1 (weak pole). Let R = (R, <,+, . . . ) be a first order expansion of
the ordered additive group of the real numbers. A weak pole is a definable family
{hd : d ∈ E} of continuous maps hd : [0, d] → R such that

1. E ⊂ R>0 is closed in R>0 and (0, ε) ∩ E ̸= ∅ for all ε > 0,

2. there is δ > 0 such that [0, δ] ⊂ hd([0, d]) for all d ∈ E.

For the following lemma we will prove the statement that the set {gt : t ∈ 2Z} is
a weak pole from [HW21].

Theorem 6.2. (R, <,+, g) admits a weak pole.

Proof. Set E = 2Z ⊂ R>0 and δ = 1. We can show that E is closed in R>0: Let
x be in the closure of E in R>0. Then x > 0. Clearly x ∈ (x

2
, 2x). However, it is

easy to check that for any x > 0, (x
2
, 2x) ∩ 2Z is finite. Since x is in the closure of
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a finite set and the closure of a finite set is the set itself, we have x ∈ 2Z. For all
ε > 0 we have f(λ(ε), 2−1) ∈ E ∩ (0, ε) and thus (0, ε) ∩ E ̸= ∅.

Take an arbitrary 2z ∈ E. We have to show that there is a continuous definable
function hz with [0, δ] = [0, 1] ⊂ hz([0, 2

z]).

Define φ(z1, z2) as

(0 ≤ z1 ≤ 2z ∧ ∃m((P (m) ∧ f(m, 2z) ≥ 1) ∧ (¬∃n(n < m ∧ P (n) ∧ f(n, d) ≥ 1))

∧ f(m, z1) = z2)).

Define µz := 2−z > 0. Then g(µz, 2
z) = 1 and by T9 there is no p ∈ P such that

p < µz and g(p, 2z) ≥ 1. Define hz(x) := g(µz, x). Then clearly

{(x, y) ∈ [0, 2z]× R : y = hz(x)} = {(a, b) ∈ R2 : (R, <,+, g) |= φ(a, b)}

and therefore hz is a definable function.

Let ε1 > 0. Define ε2 := ε1
µz
> 0. Then, |x1 − x2| < ε2 implies

|hz(x1)− hz(x2)| = |g(µz, x1)− g(µz, x2)| = g(µz, |x1 − x2|) < g(µz,
ε1
µz

) = ε1.

Thus hz is continuous.

x ∈ [0, 1] implies 0 ≤ x ≤ g(µz, 2
z) and by monotonicity of g (by T7) 0 ≤

g(µ−1
z , x) ≤ 2z. Thus g(µ−1

z , x) ∈ [0, 2z] and hz(g(µ−1
z , x)) = x. Since x was chosen

arbitrarily, [0, δ] = [0, 1] ⊂ hd([0, d]).
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