A structure
with a weak pole

that is not field-type

Laura Caspers

Bachelorarbeit Mathematik
Betreuer: Prof. Dr. Philipp Hieronymi
Zweitgutachter: Dr. Christian d’Elbée

MATHEMATISCHES INSTITUT

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTAT DER

RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITAT BONN






Deutsche Zusammenfassung (German Summary)

Eine zentrale Eigenschaft von Theorien in der mathematischen Logik ist die Quan-
torenelimination. Dadurch vereinfacht sich der Formelaufbau wesentlich und es
konnen zum Beispiel definierbare Mengen in Modellen der Theorie besser beschrieben
werden. Dies kann genutzt werden um zu zeigen, dass (R, <, +, ¢g) nicht field type
ist [HW21].

In dieser Bachelorarbeit arbeiten wir zunédchst in Kapitel 5 die Quantorenelimini-
ation fiir die in [Del97] eingefithrte Theorie T" aus. Dafiir nutzen wir das Theorem
5.24, welches besagt, dass es ausreicht, eine Erweiterung fiir jede Einbettung zwis-
chen einem Modell M mit |[M| < k und einem Modell N, das x*-saturiert ist, zu
finden [Hie21, Corollary 4.2.6].

Fiir die konkrete Konstruktion der erweiterten Einbettung nutzen wir dieselbe Fal-
lunterscheidung und dhnliche Eigenschaften von Modellen von 7" aus wie in [Del97|
genannt werden. Allerdings nutzen wir im Gegensatz zu [Del97| nicht, dass die
algebraischen Eigenschaften der Modelle es zulassen, jedes Modell als geordneten
Vektorraum iiber dem Quotientenkorper der endlichen Summen von Elementen aus
P zu interpretieren. Stattdessen wenden wir konkret die Axiome der Theorie 7" an
und zeigen damit alle Eigenschaften, die sich aus der Interpretation als Vektorraum
ergeben, direkt wenn wir sie fiir die Konstruktion benétigen. Aufserdem werden in
dieser Arbeit manche Beweisideen von [Del97] genauer ausgearbeitet und die dafiir
benotigten Eigenschaften der Presburger Arithmetik zuvor in Kapitel 4.2 gezeigt.

Anschliefend diskutieren wir kurz, eine Anwendung der Quantorenelimination.
Die Struktur (R, <,+, g) ist nicht field type. Eine Struktur nennen wir field type,
wenn es in der Struktur definierbare Funktionen gibt, mit denen die Struktur (ggf.
eingeschrankt auf ein Intervall) isomorph zum geordneten Korper (R, <, +, -) ist.

Aus einer kurzen Rechnung in Kapitel 6 folgt, dass (R, <,+,g) eine weak pole
zulésst. Dies ist eine in [HW21] eingefiirte Notation, die eine Abschwéichung der
Definition einer pole ist und die beschreibt, ob es eine definierbare Menge von
Funktionen gibt, die einen bestimmten Definitionsbereich haben und in deren Bild
ein kompaktes Intervall liegt.

Dieses Ergebnis, dass die betrachtete Struktur sowohl field type ist, als auch eine
weak pole zuldsst, wurde in [HW21] gezeigt. Dafiir wird die in dieser Arbeit aus-
gefiihrte Quantorenelimination genutzt. Aufserdem wird in [HW21| die Bedeutung
dieses Ergebnisses herausgestellt. In der Quelle wird bewiesen, dass o-minimale
Modelle nur eine weak pole zulassen, wenn diese field type sind. Dasselbe Ergeb-
nis wird fiir Expansionen, die eine dichte w-anordnenbare Menge definieren (dense
w-orders), gezeigt. Somit ist das hier analysierte Modell ein interessantes Beispiel,
welches belegt, dass sich dieses Ergebnis nicht fiir alle Expansionen der geordneten,
additiven Gruppe der reellen Zahlen verallgemeinern lésst.
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1 Introduction

In this Bachelor thesis we are considering a specific model and its properties.
Namely, we follow the ideas from Delon [Del97| to show that the theory T of R =
(R, 2%, (2"2),ens, <, +, —, g, A, 0, 1) admits quantifier elimination. This structure is
an expansion by definitions of (R, <, +, g) which is the real ordered additive group
expanded by g, where g denotes the usual multiplication but with the first factor
restricted to 2Z.

Proving this quantifier elimination will be the main result of this thesis and will
take some work. First, we will prove certain results for Presburger Arithmetic in
Section 4.2 which we can later translate into results for 7. Then we will prove
basic results for T in Section 5.2. Applying these results, we will do an embedding
test to show that T" admits quantifier elimination in Section 5.3.

This quantifier elimination was applied by [HW21] in order to conclude that
(R, <,+, g) is not field type. We will shortly discuss this application in Section 5.5.

With a quick calculation in Chapter 6, we show that (R, <,+,g) admits a weak
pole since g is one. The concept of a weak pole is introduced in [HW21] and is a
weakening of the more commonly used notion of a pole.

This concludes the result from [HW21] that (R, <, +, ¢) is not field type but admits
a weak pole. This result is the main motivation for this thesis and its relevance
gets clear from [HW21]. Assuming o-minimality, it is known that structures can
be classified into two groups: linear structures and field-type structures [PS98].
Hieronymi and Walsberg used this to show that o-minimal structures could only
admit a weak pole if they are field-type. They also showed the same result for
expansions which define a dense w-orderable set: “An w-orderable set [...] is a
definable set that is either finite or admits a definable ordering with order type w”
[HW21]. However, as proven by the example considered in this thesis this result
cannot be generalized to all first order expansions of (R, <, +).

In conclusion, the rather technical and specific constructions in this thesis lay the
foundation for this interesting result from [HW21] that there is indeed a structure
with a weak pole that is not field-type. This example demonstrates that not all
expansions of the additive ordered group of the reals can be classified in the same
way as expansions with additional properties like o-minimality.

2 Notations

In the following, we will work in a language that has a binary relation symbol <
and some unary relation symbols. In order to shorten the notation, we will use
t1 > t9 to abbreviate —(t; < to Vt; = t3), t1 < to to abbreviate t; < to V t; = to,
and t; > t9 to abbreviate t; > ty V t; = t9, with ¢; and 5 being arbitrary L£-terms.
Note that this agrees with the usual definition of the relation symbols >, <, >.
Another commonly used abbreviation which we use in this thesis is t; < t5 < t3
instead of t; < tg Aty < t3.



For a unary relation symbol R, we will occasionally use the notation x € R to
mean that z is an element such that R(z) holds. For a subset A of the universe
of a model of the theory, we use the notation P(A) to refer to the set of all a € A
such that P(a) holds.

For any symbol s in some language £, we will use the notation s™ to denote the
interpretation of s in M for some L-structure M. If it is clear from the context

which structure is meant, we will often omit the structure and just write s to mean
M
sM.

We will use N* = {1,2,3,4,...} to denote the smallest inductive set without 0
and Ny to denote N* U {0}.

3 Definitions

In this chapter we will introduce mostly commonly known definitions which will
be used in this thesis.

The following seven definitions are taken from [Hie21, Definition 5.1.1, 3.5.1, 2.3.1,
2.3.2, 2.2.4].

Definition 3.1 (universal formula). We say an L£-formula v is universal if there
is a quantifier-free L-formula ¢ and an n € N* such that ¢ is the formula
V$1 ce Vxn¢1

Definition 3.2 (k-saturated). Let x be an infinite cardinal. We say that an
L-structure M is k-saturated if every type p(xy,...,z,) over A is realized in M
for all A C M with |A| < k and every n € N*.

Definition 3.3 (definable set). Let M be an L-structure with universe M. A set
X C M™ is called definable in M (without parameters) if there is an £-formula
o(x1,...2,) such that X = {m : M = p(m)}.

Definition 3.4 ((first order) expansion). Let L', £ be languages with £’ O L. Let
M’ be an L'-structure and M be an L-structure on the same universe M. M’ is
an expansion of M if

1. M = M for each constant symbol ¢ in L,
2. fM = fM for each function symbol f in L,
3. RM' = RM for each relation symbol R in L.

Definition 3.5 (expansion by definitions). Let £, £ be languages with £ D L.
Let M’ be an L'-structure and M be an L-structure on the same universe M. M’
is an expansion by definitions of M if M’ is an expansion of M and

1. the set {z : M’ |= (z = ¢)} is definable in M for each constant symbol
ce L,

2. the set graph(f) = {(z,y) : M’ = (y = f(z))} with € M' is definable in
M for each [l-ary function symbol f € L',



3. the set {x : M’ |= (R(z))} is definable in M for each relation symbol R € L'.

Definition 3.6 (definable function). Let M be an L-structure with universe M.
A function F': M™ — M™ is called definable if there exists an L-formula
O(Y1y -+ s Ymans 21, - - -, 25) and b € M7, such that:

graph(F) == {(z,F(x)) : 2 € M} = {a € M™*" : M |= p(a,b)}.

Definition 3.7 (embedding). Let M, N be L-structures. A map ¢ is an em-
bedding if it is an injective map from the universe of M onto the universe of N
and

M)

1. o(c™) = ¢V for each constant symbol ¢ in £,

2. o(fM(ma,....,my)) = N (p(my),...,¢(m,)) for each function symbol f in
L and all mq,...,m, in the universe of M ,

3. RM(my,...,m,) holds if and only if RV (p(m1), ..., w(m,)) for each relation
symbol R in £ and all mq,...,m, in the universe of M .

4 Properties of Presburger Arithmetic

In this chapter, we will introduce Presburger Arithmetic and analyse it. Presburger
Arithmetic is one of the most fundamental theories in mathematical logic and has
therefore been well studied (see e.g. [PD11, p. 51, pp. 132 ff.| and [Mar(02, pp. 81
— 84]). In the theory 7', on which we will focus in this thesis, one of the axioms
will be that a certain subset models Presburger Arithmetic. Therefore, we want to
understand some of the known properties of Presburger Arithmetic here, in order
to translate them into results for T later.

Since the Presburger Arithmetic contains the theory of linear ordered abelian
groups we will begin by stating that theory, then state Presburger Arithmetic and
some of its properties.

4.1 Linear ordered abelian groups

The following theory can be found in [Mar02, p. 17].



Let £ = {+,<,0} be a language with a binary function symbol +, a binary
relation symbol < and a constant symbol 0. The theory Ty, of linear ordered
abelian groups consists of the following axioms:

Tool. Ve x +0=12x

Topio2. VeVyVz x+ (y+2) = (z+y) + 2
Topio3.- Yedyz+y =0

Twpiod. VeVyx+y=y+=x

Topiod. Yz —(z < )

Taniob. Ve VyVz (z <y Ay <z) = (x < 2))
TonoT- VaVy ((z <y)V(z=y) V (y <))
TonioS. VeVyVz (x <y) — (z+2<y+2))

Remark 4.1. Let £ = LU {—} be a language with an additional binary function
symbol —. In that case we call the extension by definitions 7., of Ty, such that

Thiw = Tupto U{V2VyVz (z —y=2) < (r=2+vy)}

a

the theory of linear ordered abelian groups as well.

We call every structure modelling the Ty, or 17, a linear ordered abelian group.

4.2 Presburger Arithmetic
For the following theory and Remark 4.2 confer [Mar02, pp. 81 f.|.

Let £ = {(P.)nen+, +, —, <,0,1} be a language consisting of unary relation sym-
bols P,, binary function symbols + and —, a binary relation symbol < and two
constant symbols 0,1. Let Tp, be the theory given by the set of the following
sentences:

Tp,1. the theory of linear ordered abelian groups 7,
Tp2. 0<1
Tpr3. Vx (x <0Va>1)

Tp,4.n. This is a collection of sentences for all n € N*:

Vo (Pu(z) < yz=y+---+y)
N—_——

n times

Tp,.5.n. This is a collection of sentences for all n € N*:

n—1
Vo \/(Pa(e+14- -+ DAN\-Pile+1+---+1)
1=0 i times J#i J times



We call Tp, Presburger Arithmetic.

Remark 4.2. This theory is an expansion by definitions of Th(Z,+, <,0,1), the
theory of the ordered group of integers. We call a model of this theory a Z-group.

Notation 4.3. We define the following abbreviations in order to shorten the nota-
tion:

Alx (x) denotes Jx (Y(x) AVy (Y(y) — y = z)),
ny=y+---+yandi=1+---+1.
n times 1 times

Remark 4.4. Let n € N*. By Tp,4.n and Tp,.5.n, the following sentence has to
hold in Tp,:

n—1
Va \/(Ely ny:x+i)A/\(—|E|z nz=x+j).
i=0 ji

This is equivalent to
n—1

Va 3ly \/(ny =z +1).

i=0
Notation 4.5. Let ny, ... ,n, € N*. We write lem(ng,...,n,) to denote the least
common multiple of ny, ..., ng,.
Lemma 4.6. Tp, = (R, () A+~ ARy, (7)) < (Riem(na,..nm) (€))

Proof. The statement follows from Tp,4.n. and the fact that A", n; | z if and only
if lem(nqy,...,ny) | 2. O

We now want to introduce a universal theory that is similar to the Presburger
Arithmetic. Let T}, be the following theory which is taken from [Mar02, p. 82]
T5.1.,2.,3.,5.n. are the same as Tp,1.,Tp,2., Tp,.3. and (Tp.5.n.)pen
T5,6.n. This is a collection of sentences for all n € N*:

Ve iy ((P(x) A P(y)) = (Px +y) A Pz —y)))
T%,7.n. This is a collection of sentences for all n € N*:

VeVy (y+---+y=12) = P,(2)
T

T},8.m.n. This is a collection of sentences for all n,m € N* with m | n:
Vo (P,(x) = Pp(x))
T5,.9.n.k. This is a collection of sentences for all n,k € N*:

Vo (Pep(x 4+ -+ +2) = Py(x))

k times



Remark 4.7. It is easy to check that T}, C Tp, (i.e. every sentence from 77, holds
true in T'p,). Thus, every model of Tp, is also a model of T},.

The following is a reformulation of the proof of [Mar02, Lemma 3.1.19] modified
slightly at the end to show a similar lemma:

Lemma 4.8. Let G |= T}, be a structure with universe G. Then there is a su-
perstructure H O G with H = Tp, and universe H such that for every model
H' | Tp, with universe H' and every embedding  : G — H' there is an embedding
&: H — H' such that £ [¢= (.

Proof. Let H = {%: 2z € G,n € N*, P,(z)}. This is a subset of the divisible hull
of GG which is closed under addition and subtraction:

2 ¢ Hand % ¢ H imply P,(x) and P,,(y). Thus P,,(mx) and P,,,(ny). Since
P, is closed under subtraction and addition (by 75,.6.n.), we have P, (mx +ny)
and £ 4 £ =TIV o ff

Let ‘H be the ordered additive subgroup with universe H of the divisible hull of G.
Define P = nH.

We can check that H = Tp,:
1. H=(0<1)since G | (0 < 1).

2.Let 2 € H 0 < % < 1 would imply 0 < z < n in G and therefore
x€{0,1,...,n—1}. However, P,(n) holds by T} 7.n. and thus —P,(x)
by Tp,5.n. Contradiction to £ € H.

3. H = Tp,4.n by definition of P
4. Take any £ € H. Then, P,(z) holds in G. By T},5.n there is a unique

ie€{0,1,. N ,mn — 1} such that P,,,(x + 7). It follows with 7} 8.n.m and
T},6.n that P, (z + i) and thus P, (7). P, (i) implies that there is a unique
1€{0,1,...,n— 1} with ¢ = Im. Then, since P,(z + Im) holds, we also
have that P, (% 4+ [) holds by writing out the definition from the previously

proven Tp,.4.n. The uniqueness follows from the uniqueness of i.
Thus, H D G with H = Tp,.

Let H' = Tp, with universe H' and an embedding ¢ : G — H'. Let g € G. Since (
is an embedding, P,(g) holds if and only if P,({(g)) holds. H' = P,(¢(g)) implies
that there is a unique y,, € H' such that ny,, = ((g). It is easy to check that
§:H— H', 2 y,, is an embedding fixing G. ]

Corollary 4.9. Let M, N = Tp, be structures with universes M, N. Let G = T},
with universe G be a substructure of M. Let ( : G — N be an embedding. Then
there is some substructure &7 \= Tp, of M such that G C A and some embedding
.9 — N extending (. Here A denotes the universe of <.

Proof. First, apply Lemma 4.8 to G to get some superstructure H | Tp, with
the properties of Lemma 4.8. Since we have the identity (; : G — M,g — g as



a canonical embedding, we get an embedding & : H — M such that & [g is the
identity. Because & is an embedding, the image of &, im(&;), is a substructure of
M and im(&;) | Tp,. To prove this, realize that & : H — im(&;) is an surjective
embedding and thus an isomorphism and use [Hie21, Proposition 2.2.3|.

Define &7 |= Tp, as this substructure of M with universe A = im(&;). Since
im(¢1) C im(&), we have G C A. By the property of H, there is an embedding
& H — N with & [¢= (. & @ H — A = im(&) is an isomorphism and has
an inverse map &' : A — H which is an embedding as well. Clearly & '(g) = ¢
for all g € G. Thus, if we define ¢ := & (&), € : A — N is an embedding with

§la=& la=C. O

5 ‘R admits quantifier elimination

Now we come to the main part of this thesis. In this chapter we introduce T,
show some basic properties for it and apply these to show quantifier elimination
for T. We will then introduce a model R |= T with universe R and conclude that
T = Th(R). In the last part of this chapter we shortly consider the application of
this quantifier elimination that (R, <,+, ¢g) is not field type.

5.1 Definition of T

Fix a language £ = {P,(R,)nen+, <, +,—, f, A,0,1} where P and R, are unary
relation symbols, < is a binary relation symbol, 4+, — and f are binary function
symbols, A is a unary function symbol and 0,1 are constant symbols.

We define the theory T'= {T'1,...,713} in this language that was introduced in
[Del97] as the set of the following axioms:

T1. (M, <,4+,—,0) is a linear ordered, abelian group for any M being the universe
of a structure modelling the theory. (This is axiomized by T7,,, as listed in
Section 4.1.)

T2. P(1) AVx (P(z) +» P(x + x))

T3. VaVy (P(x) Nz <y <z+z)) = -P(y)

T4. Vz P(x) — (0 < 2)

T5. Yz (0 <) — 3p (P(p) A (p<2) A=(Jq P(g) Ap < g <))
T6. Vp¥z =P(p) = f(p,x) =0



T7.n. This is a collection of sentences for each n € N*

V?h,yz,---,ynV€17€2,---,€n
(AP)ANE=1Ve==-1)A) e >0)
j=1 i=1 i=1

= [(Vy3z > eif (i x) =)
A (Vo Vo (Y eaf (gien) = Y eif (yi x2)) = (21 = 5)))
A (Vi Vs (21 < 22 = (O eif (1) <> eif (i, w2))
AN eif e +m2) =D eif (i, m1)) + Y eif (4i22)))]

(This means that if ((AJ_, P(y;)) A A\iZi(ei = £1) ASZ1, wiei > 0) holds,
> eif(yi, —) is an automorphism of the group defined in 7'1.)

T8. Va,y,z f(z, f(y.2) = f(f(2,9),2) A [(L,2) = 2
T9. Vx (x > 0) = (Vy1 Vya (P(y1) AP(y2)) = (y1 < y2) = (f(y1,2) < f(y2,7))))

(This means that the restriction of f(—,z) to P is strictly increasing for
every = > 0.)

T10. (P, (R, 1p)nen+, f | P?,<,1,1+ 1) forms a Z-group

(This is axiomized by Tp, (see Section 4.2) with every 3x ¢(x) being replaced
by 3z (P(z) A(x)) and every Va 1(x) being replaced by Yz (P(x) — 1(x))
in order to restrict these axioms to P.)

T11. Vo f(1+ l,z) =z +=x

T'12. This is again a collection of sentences for each n € N*:

Vo Ry(x) < [P(x) A3y (P(y) A fly, [y, fly,1)...)) = z)]
L ¢ LY

n times n times

T13. VaVy Mz) =y < [(0<2) A(Py) ANy Sz <y+y)))
V(0>zAy=0)]

By T'10, P forms a Z-group, and thus f applied to P acts on P like the usual
multiplication and it makes sense to introduce a similar notation:

Notation 5.1. For any p € P we will use the notation p” to mean 1 and p" to mean
f(p, f(p,... f(p,1)...)), Let p~" be the inverse of p" in the multiplicative Z-group
N ~~ AR

n times n times

P. This means p~" is the unique element such that f(p~™,p") = f(p",p™™) =1
and P(p~™) holds.

Remark 5.2. With a case distinction and a simple calculation one can check that
in this notation f(p*,p?) = p*™*2 and f(p*,¢*) = (f(p,q))* for p,q € P.



Notation 5.3. In the following let 2 := 1 + 1. Clearly P(2) holds true. Thus we
define 2", 27" with the definition in Notation 5.1.

For the following remarks regarding 7'7 and T'10 confer [Del97].
Remark 5.4. Note the following direct consequences of the axioms of 7"

T'1: In particular, there are unique additive inverses for all elements in a structure
modelling 7. We denote the additive inverse of 1 by —1.

T7: I Y0 yie; <0, set & = —¢g;. Then >, y;&; > 0 and by T'7 the map = —
> &:f(yi, ) is an automorphism in (M, <, 4, —,0). Then using T'1 the map
—(2&f (i, x)) = > (=&)f(yi, ) = d_&f(yi,x) is an automorphism

in (M, 4+, —,0) as well, that is, however, strictly decreasing.

T8: This implies that f | P? defines a group action on the Z-group introduced
in T'10.

T'10: By Remark 4.4, there is a unique element y for every x € P such that

\/ L fly1). )= fR7L R R ) )
=0 —— — e
n tlmes n times J times J times

holds.

T13: This implies that for all x > 0, A\(x) is the unique element p that fulfills the
condition (P(p) A (p < x) A—=(3q P(q) Ap < ¢ < x)) from T5.

Remark 5.5. T is clearly satisfiable (e.g. by the structure R we define in Section
5.4). In the following let .# be an arbitrary model of T. By T'10 every model of
T must be infinite.

Remark 5.6. Although we do not explicitly use the construction from [Del97| that
models of T" can be interpreted as ordered vectorspaces over the field of fractions
of finite sums of elements of P, it might be useful to keep this idea in mind for
the following sections. This might give an intuition for the definitions and the
properties we show in the following.

In that setting > . ;& f(yi, —) is the multiplication by > " | &;9;, an element of
the field.

5.2 Properties of T

The following three definitions, the statement from Lemma 5.13 and the main
ideas of the first part of the proof can be found similarly in [Del97].

Definition 5.7 (f;! _ ). Forn € N*, ¢1,...,¢, € {~1,1} and y1,...,yn € P
such that > " | gy > 0 the automorphism in 7'7 is defined and has an inverse
map. For n € N* ¢q,...,¢e, € {—1,1} and y1,...,y, € P such that Y, &4; <0
the automorphism from the remark regarding 77 in Remark 5.4 is defined and has
an inverse map.



Let n € N* and €y,...,¢, € {—1,1}. Define f7' ., tomap (z,p1,...,pn) to ¥y,
such that the automorphism from T'7 maps y to Z eif(piry) = x,if P(p1),..., P(pn)
and > e;p; > 0. And define _tomap (x,pi1,...,ps) to y, such that the au-
tomorphism from Remark 5. 4 maps yto > eif(pi,y) ==z, if P(p1),...,P(p,) and

Remark 5.8. By this definition, f1_ (1,p") = p~™ for every p € P with the notation
that is introduced in Notation 5.1.

Remark 5.9. f21 _ (—,p1,...,pn) is strictly increasing if Y e;p; > 0, and strictly

,,,,,

decreasing if Z gipi < 0 since it is the inverse map of Y &; f(p;, —).

Definition 5.10 (¢,). For each n € N, define the map ¢,,: If z € P, let ¢, map
x to the unique element y such that the formula

\/ (v, [y, fly,1)..)) = f7f27, . f272)...)
—— v =

Vv
n tlmes n times 7 times 7 times

from Remark 5.4 holds. If x € P define ¢, (z) := 0.

_____ ., and ¢, are definable functions.

Definition 5.12 (<A>) Let .# be a model of T. Let A be a subset of the
universe of .#. Define (A) to be the closure of the set A regarding the func-
tions A, +, —, f, (@n)nen, (f5,] o, JneNer,.ene{-1,1}- This means that (A) con-
tains the interpretations in .# of all terms consisting of the function symbols
A+, —, f (0n)nens (fg_l},_gn)neN,sl ..... ene{—1,1} and with variables in A. This corre-
sponds to [Hie21, Definition 4.2.1] if we consider .# as a structure in the language

El = £ U {<g0n)n€N7 (fgl 5n>n€N E1yeeny EnE{ 1 1}}

Lemma 5.13. Let 4 be a model of the theory T. Let A be a non-empty subset

of the universe of M. Then (A) =T and (A) can be embedded into every model
of T whose universe contains A.

Proof. (A) models T: The existence of additive inverses and 0 is given because
we are closed under —: If a € (A), then a —a =0 and a —a — a = —a are in (A).
That we are closed under + is explicitly claimed in the definition of (A). All other
properties of T'1 follow directly because they can be formulated universal and need

to be satisfied in ..
The same argument also applies to T2,73,74,76,78,79,T11 and T'13.
T5 is satisfied because of the condition that (A) is closed under A.

For T'7, let a € (A) and take any yi,...,y, € (A) such that A’_, P(y;) holds
and any e,...,6, € {—1,1} such that 37 y;c; > 0. Since (A) is closed
under +,— and f, we get 7, ¢;f(y;,a) € (A). This shows that the map
m: (A) = (A),a >0 €;f(yj,a) is well defined. Since this is a restriction of
an automorphism, we only need to check that it is surjective in order for it to be
an automorphism. m is surjective because we are closed under f;lg . For any

n
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b € (A), we have b == f' _ (b,y1,92,-..,yn) € (A). Then m(b~") = b, and
since b was chosen arbitrarily, m is surjective. Thus, 77 holds for (A).

For T10 we need to check that f(z,y), on(x), 27! = f; (x,1) € P((A)) for any
x,z € P((A)) and any n € N. This is the case since (A) is closed under f, ¢, and
frt(=,1). The rest of the properties are again inherited from ..

For T'12, we need to check for any = € (A) that the existence of an m € M such
that P(m) holds and = = f(m, f(m,... f(m,1)...)) implies m € (A). This is

vV
n times n times

indeed true: If such a m exists, m = ¢, (z) and ¢, (x) € (A).

(A) embeds into every model of T' whose universe contains A: For any
model containing the set A, the interpretation of all terms containing only elements
of A must be in the model again. Thus, it has to be closed under the function
symbols A, +,—,f. Due to 77 and Remark 5.4(7'7,710), any model must be
closed regarding (¢n)nen, (f5 ., JneNey,.enef—1,1}- Thus, any model containing A
contains (A). O

Later on we will use, that from this lemma follows that (A) is a submodel of any
model containing A.

Next, we will prove some basic properties of f and f;ll

theory T"

_ which follow from the

Lemma 5.14. The following sentences hold in T':
1.Va,y, 2 f(x,y+2) = fla,y) + flz,2) A flz,y — 2) = fla,y) — fz,2),
2. Va,y € P f(x,y) = f(y,©),
3.vpe P f(p,1) =p,
4. Vp,x P(p) = flp+p.x) = f(p, ) + f(p 7),
5. Va,y ~P(y) = ~P(f(2,y)).

11



Proof.

1. follows from T'7 if x € P (and thus also z > 0). If x ¢ P, all the terms are
0.

2. follows from 710 since a Z-group is abelian.

3. Since P(1) and P(p) hold, we have f(p,1) = f(1,p). With T8 the claim
follows.

4. By T11, f(p+p,x) = f(f(1+1,p),x). By T10, f is abelian for elements of P,
and thus f(p+p,x) = f(f(p, 1+ 1),x). Applying T8 gives us f(p + p,x) =
f(p, f(A + 1,z)). Applying T'11 again we have f(p + p,z) = f(p,x + ).
Applying the property from the first claim of this lemma leads to the desired
equality.

5. If =P(z), then f(z,y) = 0 and =P (f(z,y)). If P(x) holds: Suppose P(f(x,y))
holds. Let #=! be the unique inverse of = regarding f. This exists due to
T10. Then P(z~') holds as well. Since the Z-group must be closed under f,
we get P(f(z7!, f(z,y))) and by T10 P(f(f(z~*,z),y)). Thus P(y) holds.

]

Notation 5.15. For the next lemma (and also later in this thesis) we will use
5151, Ce 75m5n to abbreviate 5151, ce 751571’ 6281, c. 7525717 ceey (Smﬁl, Ce 75m5n
and f(z1,71), ..., f(2m,n) to abbreviate

fz,m1)s oo fz,mn), flz2,m1), oo f(225mn)s oo s f(Zons T1)s - ooy [ (2, 7).
Lemma 5.16. The following sentences hold in T':

1. Foralln € N* and eq,...e, € {—1,1}:

Vo Yy, ri,...,rn € P
5_11 an(f(y7$)ar17 S 7rn) = f(yafg_ll an(x>rla s >Tn))'

----------

2. For alln e N* and e4,...¢, € {—1,1}:

Ve, y Vry,...,r, € P
f;l sn<x+yarl7"-7rn)

,,,,,

- 5_171“_76"(1',7“1, 7Tn) + fel,l...,sn(y7rla 7Tn)
A f;llsn(x — YTy Th)
= 5_171---7€7L(x7rla 7Tn) - sj,l...,an(vala 7Tn)

3. For alln,m € N* and €1,...€,,61,...,0,, € {—1,1}:

Vo Vzy, ..o 2m,T1, ..., €EP

7777777777

-----



4. If v is an embedding from M to N, v € M, e,..., € {—1,1} and
1y, T € P(M) with Y & # 0 we have:

Faren @1 mn)) = fo e, (@), (), elrn))-
Proof.

1. Either Y77 | &;r; = 0 and thus by definition Vz f7! _ (z,71,...,7 = 0) (i.e.
both terms equal 0 and therefore they are equal) or using the Lemma 5.14
and T8 and T'10, we have:

fa_11 en(f(yax) 5. 7Tn)

.....

51, e y,Zgj [y, o0 ,En(x Tl ooy Tn))s Ty ey Tn))
61, HE ijfy f rjhfal, ,5n($ T, "'arn))arlv'--arn))

51, € Z€]f r]’ y7 811 ($,T1,--.,Tn>),7'1,...,7“n))
= f(y, 517 @)

2. Either Y 7", g;r; = 0 and thus Vz f2! _ (z,r1,...,7,) = 0 (ie. both terms
are 0 and therefore they are equal), or using the Lemma 5.14 and the property
just proven before, we have:

a;},..,an (IE + Y, 1. .. 771n)

- 817 € ijf TJ7 21 (-T,Tl,...,rn)

+Z‘€J (rjs fot e (U1 0)) T )

51, “En Zng r]’ 61 (ZE,T’l,...,T’n))

+ f<rj7 51,1 ,en(yvrlu v 7Tn))7,rly v 7rn)

517 “En Zgﬂf TJ’ 51 En (.T,Tl,...,rn)

+ 51, E (y,rl,...,Tn>>)77'1,...,7'n)

= ;71__7%(@7"1,...,7"”)—!— 5_11 o (Y1, ).

77777

The proof for — follows similarly.
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3. f 1! <f6_11 5, (@, 21,0, Zm), 71, ..., Ty) is either O or equal to an element e

.....

such that > " | &;f(ri, >0, 0;f(2),€)) = a. We have:
Zeif(n,zéjf(zj,e)) = Z&Z(ij(%f(zj’e))

=3 b f(flriz).e).

i=1 j=1

Thus

.....

= D lr) ) ey (@ ))).

Since ¢ is an embedding, > | €;e(r;) # 0. Thus > ; f(e(r;), —) is strictly
monotone and the previous equation is equivalent to

fe_l1 o (@), e(r), o el(rn) :L(fg_l1 s, ).

..........

]

< defines an order on any model .Z of the theory in which (M, <,+,—,0) is an
abelian ordered group by 7T'1. Now we want to describe how this order acts on
terms containing f and f~!. It is immediate to see that f(z,y) < f(z,z) if and
only if y < z (by 7'7), and f(z,y) < f(z,y) if and only if z < z Ay > 0 (by 79
and 7'7). In the following lemmata other important terms will be looked at.

Lemma 5.17. T EVr,y (z<y) w2 < f27hz+y) <v)

Proof. Let 4 =T and g1 < g2 be elements of the universe of .Z. Then

g1 < g2
g1+91 <G+ 92
f(2,01) < g1+ g2
fRTF2,0) < F27H 010+ g2
F(F2752),01) < f(271, g1 + g
f(Lg) <2701+ g2
g < f27 g1+ g2

by 177 applied to y; = 27!, e, = 1)

)
)
)
)

14



and

g1 < g2
g1+ 92<g2+ g2 (by T1)
g1+ 92 < [(2,92) (by T'11)
f g +g) < f27h F(2,92) (by T'7 applied to y; =27, e, = 1)
f@ g +g2) < f(f(271,2),92)  (by T8)
g +g) < f(1,92) (by definition of 271)
f27 g1+ 92) < g (by T8)

[]

Lemma 5.18. For any n > 1 and any y1,...y, € P, Y i yiei = 0 implies
> i €if (yi, ) = 0.

Proof. Define ST = {i:e; =1}, S™ ={i:e; = —1} and S = S~ U S*. Then,
Diest Yi = D jes-Yj > 0 since y; € P and thus y; > 0. We want to show that
>ies+ fWi ) =3 5cs- f(yj, x). With Lemma 5.14 we can assume that all y; with
i € S~ are distinct: If y;, = y;, with i;,i5 € S, replace S~ by (S~ \ {i1,i2}) Uy
with ¥ = yi, + 4i, = vi, +yi, € P. We have ZjeS— yi =y + Zjes—\{¢1,7;2} y; and

Y fWir) = flyn o)+ fue)+ > [y,

jes- J€S™\{i1,i2}
:f(yi1 +yi1’x)+ Z f(ij‘r)
Je€S~\{i1,i2}

=fWa)+ D [y

Je€ST\{i1,i2}

Since we always replace two elements of S~ by one and S~ is finite, we will have
distinct elements after finitely many steps. Similarly, we can argue that all elements
with indicies in ST are distinct.

Moreover, we can show that we can assume all elements with indicies in S~ to be
distinct from elements with indicies in S*. If y;+ = y;- with ¢t € ST and i~ € S~

we have 0=, g€y = 2 jeq (i+,-) Ei¥ and

Y et ) = flys, o) = fi o)+ Y eif (1)

jes jes\{it,i~}

= fly, o) = flye. )+ > gif(yn)

jeS\{it, i~}
= Z gjf(ij :C)

JjeS\{it,i~}

Here we consider the empty sum to equal 0. Thus, we can assume that all y; with
1 € S are distinct.

15



Since we only have finitely many elements, we can take the maximum. W.l.o.g.
assume Y, > Yp, > --- > 3 > 0 (since we could permute the indicies). Then
clearly y1 + y2 < y2 + y2 < ys3 since y3 € P and y, + y» is the smallest element of
P larger than y,. By induction we get that Z?;ll Vi < Yn-

Thus, |> 7, 52y1| < Zf;11|yz| = Z?;ll ;i < Y. Thisis a contradiction to > - | y;&; =
0. Thus {1,...,n} =S =0and >, & f(y,z)=0. O

Lemma 5.19. Let zy,...,z, € P be distinct. Let z, = max{z; :i € {1,...,n}}.
Let 0, =1 and 61,...,0,_1 € {1,—1}. For any x € P we have

£ f( ) £ D000 2) < F(2 F 7))

and

Frl e f@T ) 2 fo) s, (@2 2) 2 (@ (2, 2)).

77777

Proof. Like we showed at the end of the proof of the previous lemma, we have
Z?;ll 8izi < zy. Thus Y"1 0;2; < 2p + 2, = (2, 2,). Moreover, since the z; are
distinct,

n n—1
Y ez =t ) ez
7j=1 =

For p € P we have:

f Z(Szl < f(2, 2z
flp, f277 20)) < f p,Zé z) < f(p, f(2,20))
f(2_n+17 f(p7 Zn)) < Zélf(pa ZZ) < f(27 f(p7 Zn))

This shows the first statement.

We will prove the second statement with a contradiction, using the first statement:
Suppose

flil(xvf(ZinH’Zn)) < f(;ll dn($7217 s 72")

-----

or

~~~~~~
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Then, since 0, = 1, we have >  d;z; > 0. Thus, by T7, we have for z < y:
Sor 0if(zi ) < >0 0if (2, y). Hence

.....

D 0 o S, f27 2 Zaf g fil s (@, ) =
=1

or

= 0if(zi £y s @ a e 2) <> 6if (i i (@ (2, 20)))

.....

i=1 i=1

and since z € P implies f;(z, f(27"*1, 2,)) € P and f; '(x, f(2,2,)) € P, we
have:

FETHL PO (o, f27 Z«s FOfH f27 M 2)2) <@
or
T < 25 ST, £(2,20)),20) < F@ U, F(2,20)), 20))-
This shows x < x or < z. Contradiction. O

Lemma 5.20. Let p € P. Then for any ¢; € {—1,1} and any y; € P with
v e > 0, we have

Yp, A Zé‘@yz > o Py Yn).

Proof. Since 2—1 gy > 0, we have > ey > MO, &iyi) > 0. Moreover,
p € P implies f; ' (p, A3, €i4:)) € P. Then we can conclude:

Zéz UL oy, yn) ) =D
FUT A Z&yz Zgzyz
< f(f (o, A(Zl £iyi)), Zl i)
- ieiﬂf;l(p, A(ﬁ; ).

We have >  e;y; > 0 and thus Y ., &;f(—, ;) is strictly increasing. Therefore

-----

f1_1<p7)\(251yz)) 2 511 (payla'--7yn)-
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5.3 T admits quantifier elimination
For the following definition confer [Hie21, Definition 4.2.2].

Definition 5.21 (Sub(M,N)). Let £ be a language and M, N be L-structures.
Sub(M, N) is the set of all maps ¢ such that ¢ is an embedding of some substructure
A of M into N.

Remark 5.22. For any ¢ € Sub(M,N) we have that the image of the map im(.)
is a substructure of N.

Proof. Realize that for some embedding ¢ : A — N we have that // : H — im(¢) ,
x — 1(x) is an surjective embedding. This means (' is an isomorphism. Applying
[Hie21, Proposition 2.2.3| the claim follows. ]

The following theorem and a proof of it can be found in [Hie21, Corollary 4.2.6].

Theorem 5.23. Let T' be an L-theory and let k be a cardinal such that k > |L|.
Suppose for all models M, N of T with universes M,N and |M| < k and N being
kT -saturated and for every v € Sub(M,N') either the domain of v is M or ¢ has a
proper extension ' € Sub(M,N'). Then, T has quantifier-elimination.

For the following theorem and its proof confer [Del97|. In the proof we distinguish
the same cases as in [Del97| and apply ideas regarding how we can describe the
elements of (A U a) from [Del97]. However, as mentioned earlier we elaborate
these ideas further, we use a slightly different method for proving the quantifier
elimination and we do not focus so much on the underlying algebraic properties.
The proof to show that p(z) is finitely satisfiable in Case 1 is a slightly modified
version from a similar proof for ordered vectorspaces in [Hie21, Theorem 4.2.7|.

Theorem 5.24. The theory T' that is stated above, has quantifier elimination.

Proof. We will show this using Theorem 5.23.

Take N, M to be models of T. Let |M| < k and N k*-saturated, let & be a
submodel of M. Let A, N, M be the universes of .o/, N, M. Take any ¢ : A —
N € Sub(M,N) and any a € M. Let & = im(t) be the image of « and thus a
substructure of A/. Let B be the universe of 2.

If the domain of ¢ is M, we are done. If it is not, we can find a € M \ A. We
will show that in this case we can find an extension ' € Sub(M,N') with a in its
domain (i.e. in particular this is a proper extension) using a case distinction.

Case 1 (PM(A) = PM(A U {a})): This means for all z € (AU {a}), P(z)
implies © € A. Define the type

p(x)={c)<z:c<Ma,cc AAU{z <i(d):a<Md dec A}

Note that since PM(A) = PM(AU{a}), we have \(a) < a < A(a) + A(a) and thus
{ifc)<z:c<Ma,ce A} #0and {x < 1(d) :a <M d,d € A} # 0.

18



Definition of b: Let ¢y,...,¢c,,dy,...dy be in A, such that ¢; < a and a < d;
for all i € {1,...,n},7 € {1,...,m}. Because {i(c) <z :c<Ma,c€ A} # 0 and
{x <u(d):a<Md,de A} # 0 we can assume that n > 1,m > 1.

Then, max{ci,...,¢,} <min{dy,...,d,} and because ¢ is a partial isomorphism,
we get that max{c(c1),...,t(c,)} < min{e(dy),...,e(dy)}. Set

V= f(27, max{i(cy), ..., t(cy)} +min{e(dy), ..., e(dn)}).
Then by Lemma 5.17,

max{c(c1),...,t(cpn)} < b <min{c(dy),...,u(dy)}.

Therefore, p(x) is finitely satisfiable in N'. Since |p(z)| = |A] < k and N is
kT-saturated, p(x) is realized in N. Let b be a realization of p(x) in N.

Show that b € P: Since we have that PM(A) = PM(AU {a}), it follows that
Aa), Ma) + Na) € A. By T2,T13 and since a ¢ P which implies a # A(a), we
have PM(\(a)), PM(A(a)+A(a)), Ma) < a < A(a)+ A(a). Since ¢ is an embedding
and b satisfies p(x), we have that P(c(A(a))) and t(A(a)) < b < t(A(a) + N(a)) =
t(A(a)) + t(A(a)) hold. Because b, t(A(a)), t(A(a)) + t(A(a)) € N and T'3 holds for
N, we can conclude b & P.

Elements of (AU {a}) All elements of (AU {a}) are of the form
zo+ Yoy &if (yi f&,1 .... 5 (@ 2iy5 -5 2, ) Withn € N* my, .. ym, € N*, 29 € A

and y;, z; € PM((AU{a})) = PM(A), i, 0; € {—1,1}.

In order to show this, define S to be the set of all elements of this form. We have
@< <A U{a}) and A C (AU {a}). By definition (AU {a}) is closed under +,—,f,
(f(s 5; _)ie{l ,,,,, ny and it follows that

(SRR im,;

To + Zeif(yi, f(s_ill ..... i, (@ Zins 5 i ) € (AU {a}).
=1

Thus, S C (AU{a}).

For the other direction, we have a = 0+3.1_, f(1, fi *(a, 1)) € S and for any a; € A
we have a; = ay + f(1, f; *(a, 1)) — f(1, f{*(a,1)) € S. Thus A C S. Hence, we
just have to show that the set S is closed regarding the functions \,4,—, f, (¥n)nen,

( o;{,,.jan)nEN at,...,an€{—1,1}-

(a, ziys -+ 20y, ) and

7777 i .
m;

S1 =T+ Yt (pz, %1 » (a Girs - - - iy, )) De arbitrary elements of S. Then

,,,,, "
sp € (AU{a}) and thus A(sg) € (AU{a}). By the definition of A we have A(sy) € P
or A(sg) = 0. We have PM(A) = PM(AU {a}). Thus, A\(sg) € A C S.
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By T'1 we get
so+ 81 = (2o + Z&f(yu f(s;l ..... 5 i(a, Zigy s Zig, )
xﬁZm pis [. % ..... Yoy, (@, qiys -+ Gy, )
(xo + x1) Zel yz,f(S
+ Z:Nif(piaf';ll,...,%ki (a,qiys -+ Qi) €S
Define f1; = —p; € {—1,1}. Then

no
so— 51 = (2o + Z&f(yi, f(;;l ,,,,, 5 (@ 2igs s 2i,)))

=1

Either ¢, (s9) = 0 € S or sy € P, and since PM(A) = PM(A U {a}), we get
p(sg) e ACS.

We have f(s1,80) =0€ Sif s; & P. If s; € P, we again have s; € A. Then
no
f(s1,80) = f(s1,m0+ Y eif (i, 5!
i=1
no
= f(st,00) + f(s1, ) _eif Wi f3) o, (@700 20,)))
i=1
no
- f(sla CCO) + Zgif<sl) f(yz, f(S_ill
i=1
by Lemma 5.14. With T8, we can conclude that

f(s1,80) = f(s1,20) +Z5z flsi, ), f5! 5 (@5 Zins s %))

This is an element of S since f(sq,y;) € P.
Let n be in N* and 74, ..., 7, be elements of S C (AU {a}).
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We have fi! . (s0,71,...,m) =0¢€ S if any r; is not in P or if 377" | a;r; = 0.
Assume 71, ..7, € P, and therefore rq,...r, € A, and > "  a;r; # 0. Then

07117'”70% (So, T1y... Tn>

_ -1
— Jai,..,«a .T0+ § g’b y17f5

(@5 Ziys s Zigy )5 Ty oo 5 )

1 m;

= fal (@071, )

no
+ Zeifojl%“_ﬂn( Yi, 5 (a, Zigs ooy Zig ) )3Ty e+ 5 Tn)
i=1

19 7

by Lemma 5.16. Since &/ |= T (in particular &/ is closed under f;' ) and
20,71, ..., 7n € A, we have fi' | (xg,7r1,...,7,) € A. On the other hand
(;11,.. ey (f(yz; f5z1, ) <a7 Rigy e e 7Zim->> Ty >Tn)
- f(y“ a,.. ,ozn<f§11, O, (a> Rigy -y Zimi)7 1. ,Tn>)
by Lemma 5.16. With the same lemma, we have
o ’an(f(;”’ 0 (a, Zigs oy Zig )y 15+, Tn) = 0 € S or there are k; € N,
5“,...,6% € { 1 .1} and wy,, ..., w;, € P such that
o ’an(féw 0 (a, Zigs o Zig )y Ty oy Tn) = fﬂ_”lﬁ% (a,wi,, ..., w;, ). Thus
-1
A1,...,0m (807 Ty e 7Tn)
no
= ;117._'7%(%, T1yeney o)+ Z eif (ys, fﬂ_llﬁk (@ Wiy ..y wy, ) €S
i=1 !

We can conclude that S = (AU {a}).

Having this, we can actually show an even stronger statement. Every element of
(AU {a}) is of the form: xo + > ., 8Z-f(yi,f5’1,1._75m(a, 21y .0y 2m)) With n € N*,
meN" 19 € A Y1, Yn, 21, -+, 2m € P:

e {-1,1}.

Let I; = {i1,...,im,} and I = U I;. Then applying the definition of f; !

Lemma 5.14 and Lemma 5.16, we have for some h € N, v,...,v, € {—1,1} and
wy,...,w, € P:

Let y1,.. . Yn, Wiy, ... w;, € Pand eq,...,0,04,...,0

im,

1100 7
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n
Z Eif(yi, f(g_ill ..... i (a, Zigy e 7Zimi))

—Zez (79 DETT R YRR Y M 0

ji1€l Ji—1€li—1 Jiv1€lit1 Jn€ln

f("'f(f("'f(17zj1)"'7Zji71)7zji+1> Z]n) f511 ..... 51m1< (51)

S (@5 Znys oy Zngy )r oo )y Z1as e o5 21, )

—ZZ Z Z Z&Jl" Gy 05, f(

i=1 j1€h Ji—1€li—1 jit1€Li41 J€EIn

f( f(f( "f(yi7zjl> - '7Zj¢71>7zji+1)7 Tt 7Zjn>7

Y1 yeees vh(a’wh"-awh))-

Definition of ¢': Define

:1:0+Z€Z yz,f(; ..... 5. (@, 21,5 2m))

t(zo +ng L(Yi), fél (b Uz1), -5 uzm))

i=1
In particular: a — b and z — «(z) if x € A.

V' is well defined: Take any sy = s1 in (AU {a}). Then either sy € A and thus
V(s0) = t(s0) = t(s1) = ¢/(s1) or we have 5 7ip; # 0A S\, aw; # 0. Since ¢ is
an embedding, the second case implies S°°_, 7ie(pi) # 0 A D', aie(w;) # 0 and it
follows

So = 51
s
(l‘g - xl) Z f(pza f ..... at(a’u Wi, 7wt>>
=1
f’r_l}, (IIZ'Q —Z1,P1,5--- aps) = 07117__,70%(0’7 Wiy .- 7wt)



oo (@o) = t(@1), 6(pr), - 1(Ps)) = fay o (B (1), - e(w))

-----

W) — t(11) = Z i (D), far i (0 t(w1), o e(wr))
! (s0) = L/(Sl).

We can conclude that sg = s; implies ¢/(sg) = ¢/(s1)

so < 81 s equivalent to V/(sg) < t/(s1): First, we show that sy < s; implies
! (sg) < U/(s1). Take sg < s in (AU {a}). Suppose

so =20+ yoroy gif (Uis [5, s (a 2y Zm))s

s1 =1+ Yt (— )f(yz,f (@, q1, ... qr)). Because T'1 holds for M, the

following are equivalent

.....

S < S

:EO - CCl Z 51 yza f51 (CL 21y - ,Zm))

.....

+Z/‘L’L yw «/1 ,,,,, (a’vqnw"aqmi))-

By the previously shown Equation 5.1, we can find s,t € N,
Piy--eyPss Wiy ..., Wy € Pand 11, ..., 7Ts, 1, ..., such that

ZE’L ylafél ,,,,, (a PARE +ZM1 Yi, fyl,l,,_, (a>Qi1>"'7Qiki))

If we do the same calculation for 7% & f(e(yi), f5." 5 (b;e(z1), ..., 1(zn))) and

,,,,,

Yoty i f (i) £ 5 (0, 1(gin), - lgsy,))) in N, we get

.....

252 yz f51 (b [’(Zl)a T L(Zm)))

-----

Then:
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Now we will use that by 77.n and the definition of f~' >°" & f(y;,—) and
(=41, -, yn) are strictly increasing if >_" ; g;y; > 0, and strictly decreas-

.....

ing if Y"1 | e;y; < 0. Therefore, we do a case distinction.

Case 1.1 (327, mipi = 0V Y'_, aw; = 0): We have, either by Lemma 5.18 or the
definition of f! ., that >° 7 f(p;, £ at(a wy,...,wy)) = 0. Additionally,

since ¢ is an embedding, 3%, 7(p;) = 0V 3°_, ae(w;) = 0 and thus

Yoo Tif (i), [0, (bye(wr), ... e(wy))) = 0. Then the following inequalities

.....

are equivalent smce ¢ is an embedding and 7'1 holds for N:

Sp < S1

(xo—x1) <0
t(xg —x1) < 1(0)

t(xg) — t(xy) <0

U(xo) — (1) < an(( s Jars e (01 (w1), - 1(wy)))

L —L l’1 Zgz yz f51 (b L(Zl)a"‘vb(zm)))

-----

+ Z ,Uz z 1,1,,,,% (ba L(Qh)v Tt 7[’(qiki)))
V(s0) < V(s 1)'

Case 1.2 (37, 7ipi >0 A Zﬁzl a;w; > 0): Since ¢ is an embedding, we have

S Ti(p) > 0A Y ai(w;) > 0. Therefore, the following inequalities are
equivalent:

So < S1

fT_ll Ts(x0_$l7p17"'aps)< 0711 at(a,wl,...,wt)

77777777

ZOQ U)Z, T1 77777 (-TO —21,P1 - 7p8>>) <b

.....



o) — tz1) < ZTif(L(Pi)a Jor by t(w1), o 1(wy)))
!(s0) < ! (s1)

Case 1.3 (327, mipi > 0A Z’;ﬁ:l a;w; < 0): Since ¢ is an embedding, we have

S Tie(p) > 0A Y ape(w;) < 0. Therefore, the following inequalities are
equivalent:

So < 81

S

-----

f;l,l,,,,fs(iﬂo—iCl,pla--wps)< 0711 o (@ W, wy)

.....

,,,,,

! (s0) < i/ (s1).

Case 1.4 (327, mipi < OA Y '_, ayw; > 0): Since ¢ is an embedding, we have

S Tie(p) < OA Y ape(w;) > 0. Therefore, the following inequalities are
equivalent:

So < S1

S

.....

=1

f7'_171---77'5 (xO —Z1,P1,5--- 7ps) > 07117__,@%(&) Wy, ... >wt)
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Since b satisfies p(z) and ¢ is an embedding, this is equivalent to:

.....

-----

Frvon W@o) = e(@1),e(pr)s - e(09)) > fo o (0 t(wn), s twr))

.........

! (s0) < L/_(Sl).

Case 1.5 (320, 7ips < O A Y'_, cw; < 0): Since ¢ is an embedding, we have
Yoo mt(p) < OA 22:1 a;t(w;) < 0. Therefore, the following inequalities are
equivalent:

So < S1
S
(xog—11) < Z 7, f (ps, 0711,...,0“(@: Wi, ..., W)
=1
7;,1,_,77-3 (:L‘O — 1,1, aps) > f(;ll,...,at(a’7 Wy, 7wt)

-----

-----

.........

U (s0) < (1)
We can conclude that so < s implies ¢/(s9) < ¢/(s1).

—(sg < s1) implies sg > s1 V 59 = s1. Thus, as just shown,
U(sg) > U/(s1) VU (s0) =t/ (s1) and —(d(s0) < ¢/(s1))-

Therefore, sy < s is indeed equivalent to ¢/(sg) < ¢/(s1).
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V' is injective: By Lemma 5.13, the domain of // is a submodel of M. Take sg # s;
in (AU {a}). W.Lo.g. assume sy < s;. As just shown this implies ¢/(sg) < ¢/(s1)
and thus indeed /'(sg) # ¢/(s1).

V' is an embedding: constant symbols: Since &/ is a model of the theory, we

have 0 € A and 1 € A. ¢ is an embedding, therefore ¢(0) = 0 and ¢(1) = 1. Thus
/(0) =0 and /(1) = 1.

function symbols: We know A(sg), (A(sg) + A(so)) € P(A) for all s € (AU {a}).
Thus ¢/(A(s0)) = t(A(s0)) € P and /(A(so) + A(s0)) = t(A(so) + A(sp)). We have
A(s0) < so < A(so) + A(so) and thus ¢(A(sg)) < (so) < (' (A(so) + A(so)) =
t(A(s0) + A(s0)) = t(A(s0)) + t(A(sp)). Being an element of P and fulfilling this
property uniquely characterizes A(¢'(so)).

Thus A(¢/(s0)) = t(A(s0)) = ' (A(s0))-

(Sl+80)_L ZL'0+Z€Z y’mf(; ,,,,, (a7217"‘72m))
=1

+a+ Zuz Floi £

=1

.....

V(o + 21 +Z€Z FWis f5,0 s, (@21, 2m)
i=1

+Z,u7, pza ’Yl ,,,,, (a7q17"'7q1€)))

.....

-----

-----

.....

= (s0) +¢'(s1)

The proof for — follows similarly.
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For f, first show that P(sg) holds if and only if P(//(sg)) holds. P(s) holds if and
only if s € A. This implies ¢/(s9) = ¢(sg) € P. Suppose P(¢/(so)) holds. Then
U(s0) = A('(s0)) = ¢'(A(so)). Since ¢/ is injective, we have sy = A(sg) and thus
s9 € P.

Now we can apply this statement: ¢/(f(so,s1)) = 0 = /(0) = f((s0),¢(s1)) if
so & P and therefore /(sg) ¢ P. If 5o € P and thus sy € A, we have

.....
.....
.....

.....

= f(u(s0), t(x1) + 21: i f (L(pi), Fnk (b e, - u(ar)))
= [(V(s0), ¢ (51))

relation symbols: sg < s1 is equivalent to ¢/(sg) < ¢/(s1) and P(sg) holds if and
only if P(¢/(s¢)) holds (see the previous two paragraphs).

Let so be in (AU {a}). Since (AU {a}) = T12, R,(s¢) holds if and only if P(sy),
and there is some s* € (AU {a}) with P(s*) and f(s*, f(s",... f(s",1)...)) = so.

vV
n times n times

This implies sg, s* € A and since ¢ is an embedding, we get

J(s™), f(us7), . f((s7),1) ) = e(s0) A P(e(s0)) A P(e(s7)).
——

v~

Thus,
S, f(U(s7), . fQU(s7), 1)) = (s0) A P(((s0)) A P(J(s7))
h t?;nes g n times

and therefore RV (i/(s0)) holds. Suppose R,(/'(s)) holds. Then P(i/(sy)) holds,
P(sp) holds and sy € A. Thus ¢/(s9) = t(sg). Therefore R,,(¢'(s¢)) is equivalent to

R, (t(s0)) and since ¢ is an embedding, we have that R, (¢(so)) implies that R, (so)
holds.

Case 2 (a € P): This means that P(a) holds in M. Since a ¢ A, it follows that
P(A) # P(AU{a}).

Definition of p(x): Define the type

p(x) ={P@)}u{c)<z:c<Ma,cec AJu{z <u(d):a<Mddc A}
U{R.(f(27,2%%)) : (M |E R, (27,a*))ANj€{0,...,n—1},e € {~1,1}, 2z € N*}
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Then |p(z)| < max{k,N*} = & since, by Tp,5.n, M = R,(2,a) for exactly one
j€{0,...,n—1}.

Since P(a) = Ry(a) holds, we have {R,(z) : M = R,(a)} # 0.
p(x) is finitely satisfied in N': Let p/(x) be a finite subset of p(z).
Assume ¢ = z =1 for all R,(f(27,2°%)) € p/(x).
Take any m,t,lo,l1,...,lti,k € Nog. Let ¢1,...,¢,,dq,...d, be in A such that
(¢; <x)ep(z)and (x < d;) € p'(z) forall i € {1,...,k}, j € {1,...,m}. Thus,
¢;<aanda<djforallie{l,... k},j€{l,...,m}.
Let Ry, (2),..., Ry, (z) € p'(x), and for j € {1,...,t} let
(f(@,2)),.... Rn_, (f(z,2)) €p(z)

n i—1
1+Zg:0 l; Zi:O l;

We can assume that l; # 0 since {R,(z) : M = R,(a)} # 0 and that [; # 0 for
je{l,...,t} since M = R, (27, a) for exactly one j € {0,...,n —1}.

Assume there are no other elements in p/(z).

Suppose m, k # 0. Then max{cy,...,c} < a < min{dy,...,d,}. Define e =
min{dy,...,d,}. Since P(a) holds, we have a > 0 and thus 0 < e, 0 < A(e) <e
and A(e) € P by T5. Moreover, since P(a) holds and because A\(x) or respec-
tively f(2, A(x)) are the closest elements to x that are in P U {0}, it follows that
max{cy,...,cxt < f(2, A(max{ci,...,cx})) <a<Ae) <e.

Then di,...,d,, € A implies e = min{dy,...,d,} € A. Since A T, we
have A(e) € A and since c¢y,...c; € A we have A\(max{cy,...,ct}) € A and
f(2, \(max{ci,...,c})) € A.

Let ng = lem(ny, ..., n;) and n} = lcm(n(sz_-:é by i) forj e {1, ¢}
By Lemma 4.6, R:(a) and R.:(f(a, 27)) hold for j € {1,...,t}.

Define

Sp = Spn(»;()\(e)) epP and a_1,0 = f(SOa f(307 s f($07 1 ) L ))
N S N~

-
ng times ng times

and for j € {1,...t} define

sj = pnr(f(M€),27)) € Pand a_y; = f(sj, f(sj,--- f(s5,1)...)).
N $ .

J

TV
n;‘ times n;‘ times

Define
a1 if a_yo # e,
Ap,0 =

ffl(a_lyg, 270)  else

and

o fit(a1;,27) if fi'(a1;,2) #e,
0,' M _ _ 5 n*
/ fi 1(f1 1(a_1,j,29),2 i) else.
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Define for all i € {1,...,n;[[,;(n;)*} and all j € {1,...,t}

*

ai,j = ffl(ai,u, 2”3)

Define m} = nj[],.;(n;)?* n* = [[,n; and m* = [[,(n})* = (n*)* = njmj.
Since A is a submodel of M, ¢, is a definable function and A(e) € A, we have
ai; € Aforalli € {-1,0,1,...,mj} and all j € {1,...,t}. It is easy to see that
Rn;(f(ai,j,?)) holds for 7 € {~1,0,1,...,m}} and j € {0,...,t}. Moreover, for
any j € {0,...,t} there is no u; € M such that a,:; < u; < e, Rp:(f(u;,27))
holds and w; # a;; for all i € {—1,0,1,...,m}}.

Claim: X = ﬂ;zo{am: i€{0,1,... . [[,ni}}t #0.
Proof of claim: Since R,:(f(a, 27)) holds for all j, we also have that

Ry (f71(f(a,27), (0m- (£(2,0)))™))-

Moreover,

Rus (F(f7 (F(a,27), (0 (f(2,0))™)), (9 (@0,3)™))

and thus for every j

an (f(f(fl_l(av (@m* (f(27 a)))m*)a (me* (ao,j))m*)7 2]))

With a short calculation, one can show that

2 < (fHa, (ome (£(2,0)))™)) < 1

and

£ (P (@0, ))™)
< fUTHa, (P (@)™), (e (a03))™)

*

< (pme(a0;))™

(To show this, note that we get 1 < f~1(z, (o« ()™ ) < 2™ with the defini-
tion and the axioms.) Since f(20™) (wm=(ao,;))™) > (27, (27 ag;)) =
f27m =™ ag;) and (= (ag;))™ < ag;, we have for every j

*

FETT ags) < FUHa, (@me (a)™), (@me (a0 )™ ) < oy

By definition a;n: = f(27™ =™ Jag ;). Thus,
FUT (@, (e (@)™ ), (9me (a0 ))™ ) € X.

Choose @’ := max X. By the definition of a;;, we have o’ < e and R+ (d’, 27) holds
for all j € {0,...,t}. By Lemma 4.6, R:(d’, 27) implies that
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J J 1
1+Eiéz(f(a 27)), ... anj l‘(f(a 27)) hold for all j € {0,1,...,t}.

By maximality and since the same has to hold for a, we get a < d’.

We conclude

max{cy,...,cx} < f(2, N(max{ci,...,c})) <a<d <e.

Because ¢ is an embedding, it follows

t(max{ey, ..., cx}) < o(f(2, N(max{ci,...,ck}))) < i(a’) < ile).
P(u(a")) holds since P(a’) holds and R, (¢(a’)) holds if and only if R, (a’).

t(max{cy, ..., cr}) = o(f(2, \(max{cy,...,c}))) if and only if
t(max{cy,...,cr}) = 0. However, a’ # 0 and thus, ¢(a") # 0.
Therefore, t(maz{cy,...,cx}) < d.

We can conclude O := 1(d’) is a finite realisation of p(z) in N. This means that

P/ (0') holds.

If kK =0, we can do the same calculation to find a " with p'(b'). We just do not
have a lower bound that b’ needs to fulfill.

If £ # 0 and m = 0, define ey := f(2, A(max{1,cy,...,c})).
Then max{1,¢ci,...,ct} > 1> 0 implies e; € P. Moreover, e > max{cy,...,c}.

By Tp,5.n., there is some i§ € {0,...,n§} such that R:(f(2,e;)) holds. Define
ap = f(2",eq).
=1«

Define i} to be an element of {0,...,n}} such that R (f(f(a]_ 1, 20 [lmomny 97Y)
holds.

It is possible to show with a similar calculation like in the setting where m # 0
that such a ¢} indeed has to exist if R,-(f(a, 27)) holds for all j.

Define a} == f(a}_,,2 5 Th=o "), Then b’ := d} is a finite realization of p(z) in .
We can assume that either k£ # 0 or m # 0 since 1 € A and either a > 1 or a < 1.

Suppose —(g; = z; = 1) for some . If f(2, \(max{cy,...,c})) = a, then clearly
t(f(2, M(max{cy,...,ck}))) is a realization of p/(x) in N. If A(e) = a, then «(A\(e))
is a realization of p/(x) in A. Thus, assume in the following that

f(2, A(max{eci,...,cx})) # a and e # a.

Note that R,(f(x,z1)) holds if and only if R.,(f(2°* (z1)*)) holds, and for
p,q,x € PU{0} we have p < = < ¢ if and only if p** < 2% < ¢**. Define
= [, zi. For any ¢* define 71 :== 2= j := Ji* Then R, (f(a%*#*,27)) holds if

and only if Rx(f(a*",27)) holds. f(2 )\(max{cl, oy a})) < a < Ae) if and only
if (f(2, \(max{cy,...,cx})))” <a* < (Ae))*.
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Define a new finite type

0 (y) = {R+ ()} U{Ra(f(5,2)) : Ru(f (27", 2)) € P'(2)}
U{(f(2, Amax{er, ..., })" <y < Ae)* }.
Then clearly ¢(a®") holds. Since this type is of the same form as the one above, we

can apply the previous calculation to get ¥’ € N satisfying ¢(y). Because R,«()
holds, it is easy to see with the previous calculations that p/(y,«(')) holds.

Defininition of b: Since N is k™-saturated and p(z) is finitely satisfiable in N,
p(x) is satisfiable in . Let b be a realization of p(z) in N.

Definition of G and (: Let G be be the closure under f and f;* of P(A) and
a. Then G C P(M) since P(A) C P(M),a € P(M) and P(M) is a Z-group and
thus closed under f and f; .

We have

(P(M), (Rn Tp(a))nens, f Tpnyz, <Ipy2, 1,14+ 1) = Tpy
and thus

(P(M), (Rn Tpn))nen+ [ Teany2s <lpauy2, 1,1+ 1) = Tp,.

(G, (Ry 1¢)nen+, [ Ta2,<,1,1+1) is well defined since G is closed under f and
1,1+1 € P(A) C G. All the axioms from T}, except for T,,,3. are universal
and thus also hold for (G, (R, [¢)nen+, f a2, <la2,1,1+ 1) since they hold for
(P(M),(Rn Tpn))nen+ f Tpauy2, <, 1,1+ 1). Toyoe3. (which states the existence of
an inverse) is satisfied since we assumed that G is closed under f; .

It is easy to show that all elements of G are of the form f(a®", a;) with a; € P(A),
n € Ny and € € {1,—1}. (for the notation see Notation 5.1).

Define ( : G — N, f(a*",a1) — f(b°",t(ay)). We can show that this is an embed-
ding in the language {(R,)nen+, f, <, 1,1+ 1}:

Let f(a*,ay), f(a*,as) € G be two arbitrary elements of G. Then the following
are equivalent

fla™, a
flay,ay
Prmn (flar,a3")) <
Uz (f (a17a2 )

) <

fa®,as)

z z
a 2—<1

oormn (F(t(ar), ()" (52

flar), e(az)”
fO07 (@) < f(*,1(az))
((f(a™,a1)) < C(f(a, az))
since first of all P(M) and P(N) are linear ordered abelian groups, secondly ., .,

is monotone and x*~*! is the smallest element such that ¢,, ., (z*27*') = x, thirdly
b satisfies p(z) and lastly ¢ is an embedding.

bZQ 21

) <
)<
) <
) <
) <
) <
) <
) <
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¢ well definded and injective: Let s1, so be in G. 57 = s if and only if (-8 < s9) A
(—s1 > $2). By the previously proven statement this holds if and only if (=((s1) <
C(s2)) A (=¢(s1) > ((s2)) which holds if and only if {(s1) = ((s2).

constant symbols: ((1+1) =¢(14+1)=¢(1)+¢(1) =1+ 1 and {(1) = (1) = 1.

function symbols: Let sy == f(a*',a;), s2 = f(a*,ay) be in G.

FC(f (@™, ar)), C(f(a™, a2)))
FUO™ ar)), (072, 0(a2)))
= F(f(67,0%), fear), (az)))
= f(077, u(f (a1, a2)))
q
¢l
q

~ s
—~~

fa®*%, f(a1, a2)))
f(f(a217 a1)> f(azza a2>))
f(

Q

relation symbols: s; < sy if and only if ((s1) < ((s2) was shown in Equation 5.2.

Let s = f(a* ay) be in G. R,(s) holds if and only if R,(f(a* a;)) holds. If
z = 0, we can apply the fact that ¢ is an embedding and get that R, (a;) holds
if and only if R,(f(¢(a1))) holds. Thus, for z = 0, R,(s) holds if and only if
R,(((s)) holds. Suppose z # 0. By Tp.5.n., there is a unique j* € {0,...,n}
such that R,(f(ai,277")) holds. Thus, by T 6.n., R, (f(a?,a;)) holds if and only
if R,(f(a%,277)) holds. Since b satisfies p(x), this is equivalent to R, (f(b*,27))
and since ¢ is an embedding R,(f(a;,2777)) is equivalent to R, (f(:(a1),277)).
We can conclude that R, (f(a? a;)) holds if and only if R,,(f(b*, ¢(a1))) holds (i.e.
Ru(¢(f(a*, 1)) holds).

Definition of P, and &: Apply Corollary 4.9 to G. This gives us a Z-group
P, = Tp, with G C P, C P(M) and thus P(A) C P, and a € P;. Moreover, there
is some embedding

¢:PL— P(N) (5.3)
such that & [¢= (.

Elements of (AU Py): Since AC M and P, C P(M) C M, we have (AUP;) C
M.

In the following, we will proof the claim that all elements of (AU P;) are of the

form f(Sl 77777 (Z] 16y, ), 21,0, z) With @) € A, 21,000, 20, Y1, - - Um € Py
dj, €5 € {1 —1} and Zzzlé 2 # 0.

Clearly each element of this form must be in (AU P;).
Let S be the set of all elements of the form f&1 5, (O im1 €1 (Y5, 5), 215 -+ o, 20) With

-----

nmeN x; €A 21, . 20, Y1, Um € P, 6j,6j e{l,—1} and "1, 0,z # 0.
Then we can show that P(S) = P;: Let f51 77777 o0 Qi1 €1 f (Y5, 75), 21,5 2a)) € S.
Bither A(f5! 5 (7L €5 f (yj,25) 21, 2)) = 0 or
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f(;_l1 5. Qi €if (Y5, 75), 21, - -+, 22) > 0. In the following assume

.....

fgl’lm’én(zy’:l eif(yj,z;),21,...,2,) > 0. We can assume that zq,...,2, > 0
since €; f (yi, xi) = (—&;) f(yi, (—2;)). We can further assume zi,...,x, # 0 since
f(yi,0) = 0. We can choose z1, ..., z, to be distinct and yy, ...,y to be distinct
modulo P(A) (i.e. fi ' (yi,y;) € P(A) if i # j). To show this, we do a similar cal-
culation like in the proof of Lemma 5.18: Suppose v;,y; € P, z;,x; € A, i # j and
p = fi " (yi,y;) € P(A). Denote with p~! the unique inverse of p in the Z-group
P(A). We have

fis i) + [y 25) = fyi, @) + F(f(y5, 1), 25)
= fyir i) + f(f(ys, (o, 07 1)), 5)
= (i, x:) + f(f(yzop), f (07" 25))
= (i, @) + fyss fF(07 1, 25))
= [y, zi+ f(p~ ', 25))

with y; € Py and (z; + f(p~ ', 2;)) € A.

For z; = z; and ¢; = d;, we have for all  that §; f(z;, ) +0; f (25, x) = 0, f (2 + 2, ¥)
and thus

—1
f51 ..... Sirer8renns 5n(x7217-~-72n)

_ 1
= fél,...,61',...,6];1,6j+1...,6n($7 By oy Zicly Zi b Ziy 21 ey 21, ZjhLy o5 Zn)-

If z; = z; and 0; # 0;, we have 0, f(z;,x) + 9, f(2;,2) = f(2,2) — f(z,2) =0 and
thus

-1
f51 S0y 5,L(377217-~-,Zn)

-----

— _1 . . . .
— f51,...,5¢,1,5¢+1,~--,5j—1,6j+1-~~:5n(x’ Py 21y Zigd - o 2415 Zjdds -« s Zn)

(Note: If n = 2, 21 = 25 and §; # J2 we have 0121 + 0220 = 0 and thus our
assumptions for elements of S are not fulfilled.)

Using this fact, we have since x; > 0 implies A(z;), A(z;) + A(z;) € P(A) and
Mxj) # Mxj) + AM(x;) for all j, that all elements which are either of the form
f(yi, A(z;)) or of the form f(y;, A(z;) + M(a;)) with ¢ € {1,...,n} are pairwise

distinct. Define
;) = (@) 1 i

Then all elements of the form f(y;, A(z;)) € P are pairwise distinct. Without loss

.....

We know that A(z;) < x; < A(z;) + A(x;) since ; > 0. Thus, by the choice of X,
we get €;f(y;, ;) > €;f(y;, AM(z;)) (by T7 and Remark 5.4, ¢;f(y;, —) is strictly
increasing if e; = 1 and strictly decreasing if ¢; = —1). Thus > 7%, €, f(y;, z;) >

S eif (s Azy)).
Since the f(y;, A(x;)) € P are distinct, we can apply Lemma 5.19 and get

34



Zgjf<yj7 5‘(1‘])) > f(2_(m_1)7 f(ym> /_\(Im)))

We can conclude

Zsjf(yj,xj Zéjf Yjs A 33])) > f(27 f(yma)‘( m)))-

Define
if g, — -1

)
AMzy) + AM(z;)  ifg; = 1.
Since f(Ym, M@m)) = F(Ym, Mm)) > f(y;, A(z;)), we also have

Yms M) + f (Yo M)
Y, M) + fy;, A(z;))
Yis M) + M)

(
i
i
f(ij)‘ ($J>>

AV | AVAR |

By Lemma 5.19, > 7% € f(y;, (%)) < (2, f(Ym, N'(zm))). By the choice of X,
we have ¢;f(y;,z;) < ¢e;f(y;, N(z;)) and thus
Do i (yiay) < 300 e f (v N (y)) < f(2, f(Yms N ()

We can conclude
FE F (Yo, A Z (W5 25) < F(2 f W, N ().

W.lo.g. assume z, = max{z; :i € {1,...,n}}. Since f(2=™ Y f(ym, M(x,))) and
F(2, f(Ym, N (2))) are elements of P, we further can apply Lemma 5.19 and get

P @ f s X (@), f27, 20))
> forro5n (P2 f s X (@), 21, 20)

.....

and

.....

Additionally, since » J7_, d;2; > 0, we have
it s, (F7 D F (Y M) 215+ 2)
<Lt s O eif i m), z, . z)
=1
< forro5a (P2 f s X (), 21, -5 20)-

.....
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We conclude
PO f oy X (@), f27MH, Zn))
>f51 77777 Zsj Yjs L), 21, - oy Zn)
> (P, F (Y Aam)s f(2020))-
We know that all elements of P between

FOH @ f s X (@))), f(27H, 20))
= f1 (f Q2 f (Y, M) + Aam))), F(277, 20))
= [ (f(f(2,2), f (Y, A (m))),f(T"“,zn))

and

PO s M) f (20 20))
= fH @Y F Yy M), (2, 20))

are elements of the form

ffl(f(2ia S (Yms A7), f(2j> Zn))

with i € {2,1,0,...,—(m —1)} and j € {1,0,—1,...,—n + 1}. Thus these ele-
ments are in P; because y,, € P, AN(z,,) € P(A) C P, and P is closed regarding
fand f;'. But

f51 ..... Zgj y]7x] 21y ey Z ))

is the largest element of P smaller than

f61 ..... Zgj yj,% AN )

and thus clearly between

ST @, F Wy M), F(27F 20)) and S (F(270 Y, f (Y M), £(2, 20)).
It follows that

Suppose 0, = —1. Then >  d;2; < 0 and f§ 7777 5. (= 215, 2) s strictly de-
creasing. Remember that we have

> eif (s a3) = £ f (g, Awm)) > 0.
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Thus,
f51 77777 Zéfjf yj,x] 21,004, % )<f(;:1 6n(0,21,...,zn):0.

-----

This is a contradlctlon to our assumptions.
Suppose &, = —1. Define
AMz;) = (i) 1 c

Then

I {f(wi, \(x:))} = f(Ym, M) and

enax {F i Mxi))} = F(Ynys Mamy))

imply
FWms AN@m)) = f Wms £(2, M) Zif(ymu;\(xml)) and .
I Y, X(xm)) = f(Yms Mxm)) < (Y, S‘(xm1))

Suppose €,,, = 1. Then we have f(ym, f(2, A(@n))) = f(Ym,, AM(Tm,)) and
f W, M) < f(Ymy, F(2, M(xn,))). The second inequality is equivalent to

f(2_1> S Wms Mxm))) < f(Ymy, ATy ). Thus,

F @ F(2,M@m))) 2 f Wy, M@ma) = F27, f Y M)

Since the only elements of P between f (Y, f(2, M) and f(ym, f(271 XMzm)))
are f(Ym, (2, X(xm))), fWm, M) and f(ym, f(271, A(z,,))), this is a contradic-

tion t0 f (ym, £ (2, AM(zm))), f (Ym, (2, A(&m))), f(Ym,; A(zm,)) and
F(Ymys £(2, M(z,))) being pairwise distinct. This proves that e, = 1.

Thus, we can apply the previous calculations to &, = —&y,...,&, = —&, and

8 = —01,...,0, = —0, and g; = 1 for maxeq1, .y {f (vi, M) = fyie, Azj)).
We have

et S 20 = ~fi S ) 2

..... E:SJ Yjs Tj)s 215+ -+ s 2n)

Thus, A(f5,. 5, (370 €5 f (. 25), 21, - 2)) € Pr.
In particular A(P(S)) = P(S) C P,.
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(AU Py) C S: We have to show that S is closed regarding the functions A, 4+, —,
Iy (©n)nen, (J”Ojll’m,%)neN@1 77777 anc{-1,1} since clearly A = 1 (f(1,4),1) € S and

was shown in the proof of P1 = P(S ) before.
By Lemma 5.16, we have

.....

_f5171_,_7 fyl ..... Tnq nyl phzgjf yj7xj pla"'apn1)7217"'7'zno)
mi
+ ’Yl ,,,,, Yny f51 ,,,,, bng Z(Sf Z’L) Z 6jf(yj7xj))’zl7"'7Zno)ap1a"'7pnl)
Jj=mo+1

f5171 Sngny Z% pzazgjf Yj, Tj ) f(Zlapl),---,f(Zno,pnl))

77777

+ f51’71 ,,,,, Sng¥ny 25 f Zi5 Z €]f(y],$])), f(Z17p1)7 B f(Z’erp'ru))
j=mo+1
ni
f&yyl ..... OngYny Zzgfﬁ pz:?/j $] + Z Z 5]6 f yj7z7,) )
i=1 j=1 =1 j=mo+1
f(zlapl)a s ,f(znoapn1)> € 5.
That S is closed regarding — follows directly if we define &; = —¢; for all j €
{my,...,my} and apply the previous equation to &;.

f(so7 ! %I(Z;mmﬂ f(y],x]) Piy--yDny)) =0€ AC Sifsy ¢ Pr. By Lemma

,,,,,

.....

j=m+1
my
- "/71}“-7'}%1 (f (so, Z gjf(yﬁ xj))vpla ceDny)
j=m+1
m1
= 7_1?...,%“( Z 5jf(f<807yj>’xj)vp17 o Pny) €5,
j=m+1
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Let n be in N*. Then ¢,(so) = 0 € S if 59 ¢ P(S). Suppose s € P(S) = P,.
Since P; is a Z-group, we have that ¢, (sg) € P, C S.

Let ng € N*, v,...,%, € {1,=1}, p1,...,pn, € P(S) = P;. Then by Lemma
5.16, we have

f'yl ,,,,, Tnq f(51 ,,,,, n Zgl Z/uﬂfz 217"'7Zn)7p17"‘7pn1>

m

fam Sy (Z eif Wi, i), f(21,01)5 -+, [ (20, Pny)) €S

7777 i=1
since f(z;,p;) € Py and €;0; € {1,—1}.
We can conclude that S = (AU P).
Definition of ¢': We define
(AU Py - N

m m

f(S_ll 6n(z gjf(yj7$j)>zlv e "Zn) = fci_ll 5n(25jf(§(yj),L(l'j)),f(zl), s ’g(zn))

..........

j=1 Jj=1
In particular x — «(z) if z € A and z — () if x € P;, with £ as defined in 5.3)
V' is well defined: Let

mi1

f51 ,,,,, Sng Zsjf y],:E] Zla--'vzno)_fyl ..... Yy ZT] TJ737]) pla---apm)

7=1

be in (AU P;). This is equivalent to

Z%f(pz» (Z eif(yj, ;) = Z oi f (2, (Z 7 f(rj; 25)))

and
ny  mo no mi
O_ZZ /Y’LE]f pzay] 'rj +ZZ§Tj Z’L?T] )
i=1 j=1 =1 j=1

Since we can do a similar calculation in N, we only need to show that for any
neN gz €A anyy € Py and any ¢; € {1,—1}: > " & f(yi, x;) = 0 implies
Yo €if(&(yi), t(z;)) = 0. This is easy to show: 0 € A 1mphes Yo eif(yz) € A
and thus

Zéif(é(yi), uz:)) = L’(Z eif (yi, i) = L(Z eif (yi 1)) = 1(0) = 0.

s1 < 83 is equivalent to 1'(s1) < t/(sz2): First, we want to show that
U(sy—s1) =1 (s2) — U(s1).
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Applying Lemma 5.16(3), we have

L/(féil,l..l,éno(Zgjf(yﬁxj)?Zl?'">zno) _f';l}...,ynl( Z gjf(yjaxj)aplv"'apnl))
Jj=1 j=m+1
f(slyl gy 2253% p’uyj )
=1 j=1
_Z Z Ejdf y]azl )f(zlap1)7"'>f(znoapn1)))
i=1 j=mo+1
f51’71 0ngYny 225]72 p’“yj ) ( ))
=1 j=1
Z Z —;0: F(E(F (Y5, 26)) 1)), E(F(21,01); - E(F (Zngs )
=1 j=mo+1
f5171 0ngYnq ZZ‘S]’W y])) ( J))
=1 j=1
=Y D> (W) ) ), FEEDEP))s s F(E(zn0) ()
i=1 j=mo+1

A similar calculation for

T (S S ) ) ) E))

j=m+1
in NV like the one we did for
mi
f61 ..... Ong Z{f]f Yj x] Rl - 7Zn0) - f'y_l}...;ynl( Z 5jf(yjaxj)>pl> s ?pnl)
j=m+1

in M leads to

f51 5710 Zgjf y]7Ij Zl)"‘azng))

77777

mi

- L/(ffy_l}...,wnl( Z Ejf(ijxj)apla s apnl))

j=m+1
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Fot oo O & (€ ) 1@) 1), - E(my))
= f15_171 ,,,,, SnpYny Zzgj% g(y])) ( J))
=20 D () ), ),

f(g('zl)? g(pl))a s :f(f(zn0)> S(pm))

We can conclude that for s1,s9 € (AU Py) we have J/(s1) — /(s2) = /(51 — $2).
Note that we can do the same calculation for + to get /(s1) + ¢/(s2) = /(81 + s2).
Now, we show that s; < sy implies ¢/(s1) < ¢/(s2).

We only need to consider sy > 0 since for any sp, s, we have that s, > s; implies
Sy—s1 > 0, s1—55 is again an element of (AUP;) and ¢ (32—31) =1/(s9)—1/(s1) (thus
/(sa—s1) > 0 implies ¢/(s5) > ¢/(s1)). Suppose s; = f; ' o0 Qi €1 f (Y, m5), 21, -5 Zn)-
Like in the proof of P(S) = Py, either, we have sy = 0 and thus ¢/(s9) = ¢(sg) =0,

or, we can assume that the y; are distinct modulo P(A) and that the z; are dis-
tinct. Because ¢ is an embedding, the £(y;) are again distinct modulo £(P(A)) =
C(P(A)) = t(P(A)) and the £(z;) are distinct as well.

We can do a case distinction:

Case 2.1 (3.1, 0;2; = 0): This is a contradiction to the assumption that the z; are
distinct.

Case 2.2 (31, 0;2z; > 0): Let ¢* be the index such that z;» = max{z;}. Since the
z; are distinct elements of P, we have that z;» > > iotix Zi and thus, Z?:l 0;2; >0
implies §;» = +1. Since £ is an embedding, we have &(max{z;}) = max{{(z)}.
Because all of the {(z;) are distinct, it follows that > | 6,£(z;) > 0. Thus, the
following inequalities are equivalent:

s >0

----- Zéjfyﬁl’ﬂ Rlyenes ” )>0

Zejf<yj,xj> > 6if(2,0) = 0
j=1 i=1

fiil
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and the following inequalities are again equivalent:

!(s9) >0

Frt5, Qe €y (), (1), - E(z)) > 0

.....

n

> eif(€y) dw) > D 0if(€(),0) =0

i=1

If m = 1, we know that €1 f(&(y1), ¢t(x1)) > 0if and only if ey = 1, and €1 f(y1, 21) >
0 if and only if & = 1. Thus, we can conclude sy > 0 if and only if //(sg) > 0.

If m > 1: Let i* be the index such that f(y;,x;<) = max{f(y;, z;)}. This means
that f(yp, xix) > f(yi, z;) and therefore f(y;, A(zs+)) > f(yi, A(z;)). Since all the
y; are distinct modulo P(A), f(yy, M) > f(ys, AM(z;)) for all 4 # ¢*. This is
equivalent to f(y;«, AM(x)) > flyi, f(A ( :),2)). Again, the fact that the y; are
distinct modulo P(A) implies f(yi, A(z)) > f(yi, f(A(x:),2)). Since £ is an
embedding,

E(f (i, Ai))) > €(f (43, F(A(24), 2)))
FE€ i), e(A(wir))) > [(E(wi), (f(A(2:), 2)))-

)
Since the y; are distinct modulo P(A), the f(y;, f(A(z;),2)) are distinct and we
have

Flyio,wie) > F(E@Wi), M) = ) i F(A:),2)) > Y f i i)
i#i* i

Because the £(y;) are distinct modulo P(A), the f(£(v:), f(A(¢e(z4)),2)) are distinct
and we get

JE(ir), (i) = F(E(Y), AMe(ir)))
> Zf yz Zf yz

1F£0* 1£L*

It follows that > 7" &;f(y;,z;) > 0 if and only if &;» = +1, and g+ = +1 if and
only if > 7" | &;f(€(y;), ¢(x;)) > 0. Thus, we can conclude that sy > 0 is equivalent
to ¢/(s9) > 0.

Case 2.3 (D1, 0;2; < 0): With a consideration similar to the one in Case 2.2, we
get that the following are equivalent

S0 >0

ZSJ Yjs L), 21,y -y 2n) >0

Zgjf(yjyl‘j) < Z&f(zi,o) =0

.....
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and the following inequalities are again equivalent
! (s0) >0

-----

Jj=1

D> eif (€l o)) < D 0if(€(=),0) = 0.

Like in Case 2.2, we can show that Z;"’:l e;if(y;,x;) < 0if and only if ¢;+ = —1, and
gi- = —1 if and only if 377", €; f(§(y;), (x;)) < 0. Thus, we can again conclude
that sop > 0 is equivalent to ¢/(sg) > 0.

In conclusion sy < s; implies ¢'(s9) < ¢/(s1).

We can also show the other direction: —(sy < s1) implies sg > s1V 59 = s;. Thus,
as just shown, ¢/(sg) > ¢/(s1) V ¢/(s0) = ¢/(s1) and =(¢(s0) < ¢/(s1)).

Therefore, we have that indeed sy < s; is equivalent to ¢/(sg) < ¢/(s1).

V' is injective: Let si,s9 be in (AU P}). sy = sy if and only if

(=(s1 < s2)) A =(s1 > sy). By the previously proven statement, this holds if
and only if (=(/(s1) < ¢(s2))) A =(d(s1) > ¢/(s2)) which holds if and only if
U(s1) = U (s9).

V' is an embedding: constant symbols: //(0) = +(0) =0, /(1) = ¢(1) = 1.

function symbols: Let sg,s1 € (AU Py).

We have shown before in the paragraph “s; < s is equivalent to J/(s1) < ¢/(s2)”
that ¢/(s; + s2) = /(s1) + ¢/(s2) and /(s1 — s2) = /(s1) — ¢/ (s2).

If s < 0, we have ¢/(sp) < 0 and ¢/(A(sp)) = ¢/(0) = 0 = A(¢/(s0)). If sp > 0,
we have that A(sg) is the unique element in P fulfilling A(sg) < so < f(2, A(s0))-
We have shown before that ¢/ is injective and strictly increasing. Thus, A(sg) <
so < f(2,A(s0)) implies ¢/(A(s0)) < ¢(s0) < /(f(2,A(s0))) = ¢'(A(s0) + A(s0)) =
(A(s0)) + ¢ (A(s0)) = f(2,¢(A(sp))). Since this is the characterizing inequality for
AV (s0)), we have A(¢/(s9)) = ¢/(A(s0))-

For f, first, we show that sy € P if and only if //(s9) € P. //(so) € P if and only if
U(s0) = M/ (s0)) = /(A(s0)). Since ¢/ is injective, this is equivalent to sp = A(sp).
However, this is true if and only if sy € P.

Now, we can apply this property: Suppose so &€ P and thus //(sqg) ¢ P, then

mi

L/(f(SOa ';1}...,7”1( Z 5jf<yj> xj)apla D)) = L/(O) =0
j=m+1
= f(L,(SO)7 «/_1}...,%“( Z 5jf(yj’xj>’p1’ e Dny))-
j=m+1
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If sy € P, we have shown before that

m1

f(807 fy_hl,,.,'ynl( Z 8jf(ija?j%plw"apﬂq))
j=m+1
mi

:f»y_11 Yn ( Z €jf(f(80>yj>7$j)7p17"'7pn1)'

7777 1
j=m+1

Again, a similar calculation leads to

mi

FEGS0) Frtom (D e (E)s (@), (o), -+ E(pny)))

j=m+1
my

= ';1 'ynl( Z 8jf<f(£(80>7’£<yj))7L<xj))>€(pl)7'"7€<pn1))'

77777 j=m+1
for so € P also implying £(sg) € P. Thus,

mi

U(F (00 Fort o (D € (W, 25), 1, D))
j=m+1
m

= L(f'yil?.‘.,'ynl( Z 8jf<f(807yj>7‘rj>7pl7 oo 7pn1))
j=m+1

mi

j=m-+1
mi

= [(6(s0), ot (D € (6(s) @) Epr), - € (D))

j=m+1
mi

= (¢ (s0), ' (Frrh o, > i) o pa))).

j=m+1

relation symbols: s; < sy is equivalent to /(s1) < ¢/(s2) and P(u(sy)) if and only if
P(s1) was shown before.

Suppose R, (sp) holds. Thus, P(sp) holds, and hence, sy € P;. This implies
U (s0) = &(sp) since £ is an embedding, R, (t(sg)) = Rn(&(sp)) holds. Suppose
R, (¢(s0)) holds. Thus, P(¢/(sg)) and P(sg) hold. Again, this implies ¢/(sg) = &(s¢)
and since ¢ is an embedding R,,(¢(s0)) = R, (&(s0)) holds.

Case 3: If neither of the previous two cases hold (i.e. a ¢ P but P({(AU{a})) #
P(A)), then define

) - Aa) ifa>0
| A(—a) if a <0.

Remember that @ ¢ A and thus a # 0. In particular Ma) € P. By Case 2,
there is an embedding ¢} : (AU {A(a)}) — N extending ¢. Clearly, we have
AC (AUu{X(a)}) Cc (AU{a}).
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We can show that: P((AU{\(a)})) = P((AU {a})).

Suppose ¢ € P((AU{a})). This means ¢ = A(g). Then by the construction of
( ), there are ay,...a, € A and a term t(z,x,...,x,) consisting of A\, + , — | f

) (Qpn)neN ) (fszl en)nEN,al ..... en€{l,—1} SuCh that q= t<a7 Qy, ... aan)-

,,,,,

Let to(x,z1,...,xn), (T, 21, ..., &), .., tm(z, 21, ..., T,) be arbitrary terms con-
sisting of A, +, — , [, (¢n)nen , (fg_l},“ﬁn)neN,gl ,,,,, enc{1,—1}- In order to shorten the

notation, we WlH write t; to mean ¢;(a, ay,...,a,)

We collect some properties of terms: ¢ — to = t1 + (—t2), A(A(t1)) = A(t1),
A(=A(t1)) =0

0 if t) 41, <0
F(2, (1)) ift 410> 0At >t > f(2,Mt)) —

Aty +ta) = { M(t) i 41y > 0Nt >t Ay < F(2,Mt1)) — 1
F(2,A(t2)) i 6+t > 0Nty >t > (2, ML) — b
(A(t2) ift 410> 0ALy >t Aty < f(2,A(t)) — L

0 ift; +t, >0
f(2,A(—t1)) ifty+ty SOAt <ty < —f(2,M—t1) + 1
)\( <t1+t2)) )\(—tl) if t1 4+t KONt <ty ANty > —f<2, ( t ) + 44

k)\(_t2) ift1+t2SO/\t2<t1/\t1>—f(2,)\( t ))+t2.

N 0 1ft1¢Port2§O
A, 1)) = {f()\(tl),)\(tg)) else
. 0 1ft1§§Port220
A {fwl), A) ek

0 ift, ¢ P

Mpn(tr)) = {Spn()\(tl)) else

A=en(t1)) =0
Lastly, we want to consider A(f7," . (to,t1,... tm)) and M(—f 1 (to,t1, ... tm))-

€1,---Em
It is immediate to see that A(f21 . (to,t1, ..., tm)) = 0if (A2, ts € P)V(O et =
0) V (2111 git; > 0Nty < 0) V (Z;il git; <OAty > O) If 2211 g;t; > 0 and to >0
we have ty > A(ty) > 0. We can apply Lemma 5.20 and use the monotonicity of

Sl (=t ) to get

77777

.....

,,,,,
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and

il 2)\Zst

yeeEm

< Em(to,tl,...,tm).

.....

Thus, A(f5. ., (to. t1, .. .t )) F@7Y f (A (t), AT €iti))) or
)‘< 51,1...,sm(t07t17"'7 m)) fl ( ( )7 (Zi:lgltl))'

T (totay e tm) = f2 (<t —try ey )

..........

and by the previous calculation

a:,l...,am (t0> b1y .. atm) =0

VL (ot t) = F27N FTH N (—0), A& — )
=1
VI e (ot ) = T (1), A & — 1)
=1

Moreover, A(—f5! _ (to,t1, ... tm)) = A(f5) ., (=to,t1, ... tm)). With the pre-
vious calculation we get that

A (=f5 L, (ot ) = 0)

V5t o (ot ) = F27 f7 Zeu
V5Lt t)) = f7 (M), A(Zlam)))
VNI o (ot b)) = 27 S A1), MY i)
V5 (fo e 1)) = S (A(fo), A(ieim))

Using all these properties, one can prove inductively that there is a term
t(-Tay?xla"'axnayl?" yn) in g - {071a+ f7 (fal gn)nGNsl ..... en€{l,—1}> (Spn)nEN}

such that £(A(a), A(—a), Max), ... Man), M(—=a1),. .., A(—a,)) = t(a,a1,. .. ay).
Clearly t(A(a), A\(—a), A(a1), . .. )\(an), A—ay), ..., \(—a,)) € (AU X(a)).
Thus, we have p € (AU \(a)).

Since P({(AU {\(a)})) = P({AU {a})), we can apply Case 1 to get an embedding
vy (AU {a}) = N extending ¢} and therefore also extending .

]
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Remark 5.25. The image of ¢/ as it is defined in the proof is (B U {b}).

For the following theorem and a proof of it confer [Del97].
Theorem 5.26. The theory T is complete.

5.4 Definition of R
Now, we want to introduce a structure that models the theory 7.

Definition 5.27 (R). Let
R = (R’ PR7 (RnR)nEN*a < +7 -9, )‘R7 07 1)
be an expansion of the real ordered field with

tt ift e 2z

g RXxR—=R,(tt)—
0 else.

PR(x) holds if and only if x € 2% R%(x) holds if and only if z € 2% and

max{y € 22 :y <z} ifz>0
() = {0 else.

It is easy to check that R = T.

Corollary 5.28. T is the theory of R, i.e. T'=Th(R)

Proof. Follows directly since T' =R and T is complete.

Lemma 5.29. R is an expansion by definitions of (R, <,+,g).

Proof. We can explicitly state the definition of the other symbols:
2% = {x: f(x,1) # 0},

RY(R) =A{z: P(z) ATy (P(y) Ny" =)},
graph(—) = {(z,y,2): (z = 2 + y)},

graph(\) = {(z,y): (+ <0Ay=0)V(Py)A(y<zAz<y+y))}

0={z:z+x=u2x}
1={z:Vyf(z,y) =y}

Remark 5.30. By Lemma 5.29, (R, <, +, ¢) and R have the same definable sets.
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5.5 7R is not field type

In this chapter we will shortly discuss the application that mainly motivated us to
show the quantifier elimination for R. The quantifier elimination for R allows us
to define all definable sets by quantifier free formulas. Thus, the definable sets are
boolean combinations of sets defined by atomic formulas. As [HW21| suggested
one can use this quantifier elimination result to show that R is field type. Though
we will not prove this result, we want to take a short look on it.

First, let us define the property to be field type. The following definition is taken
from [HW21].

Definition 5.31 (field-type). Let R = (R, <,+,...) be a first order expansion
of the ordered additive group of the real numbers. R is field-type if there is a
definable, bounded, open, non-empty subinterval I C R and there are definable
functions @, ® : I* — I such that (I, <,®,®) is an ordered field isomorphic to
(R, <, +,-).

Remark 5.32. By Remark 5.30, R and (R, <,+,g) agree on the definable sets.
Therefore, the structure (R, <, +, g) is field-type if and only if R is field-type.

Theorem 5.33. (R, <,+,g) is not field-type.

This theorem is taken from [HW21|. Main ideas, how to conclude this result from
the quantifier elimination we showed, can be found there.

6 (R,<,+,9) admits a weak pole

In this chapter we define a weak pole for (R, <, +, g). Together with the property,
that (R, <,+,¢) is field type, which was discussed in the previous chapter, this
concludes the main outcome that motivates this thesis. (R, <, 4+, g) is an expansion
of the ordered additive group of real numbers that is not field type but admits a
weak pole.

First, we define what a weak pole is. The following definition is taken from [HW21].

Definition 6.1 (weak pole). Let R = (R, <,+,...) be a first order expansion of
the ordered additive group of the real numbers. A weak pole is a definable family
{hq : d € E} of continuous maps hq : [0,d] — R such that

1. E C Ry is closed in Ry and (0,6) N E # () for all € > 0,
2. there is § > 0 such that [0,6] C hy([0,d]) for all d € E.

For the following lemma we will prove the statement that the set {g; : t € 2%} is
a weak pole from [HW21].

Theorem 6.2. (R, <,+,g) admits a weak pole.

Proof. Set E = 2% C R.y and § = 1. We can show that F is closed in Ry(: Let
x be in the closure of £ in Ryy. Then x > 0. Clearly = € (3,2z). However, it is
easy to check that for any « > 0, (%,2x) N 27 is finite. Since x is in the closure of
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a finite set and the closure of a finite set is the set itself, we have x € 2%. For all
e > 0 we have f(A(g),27') € EN(0,¢) and thus (0,e) N E # 0.

Take an arbitrary 2* € E. We have to show that there is a continuous definable
function h, with [0,6] = [0, 1] C h.([0,27]).

Define (21, 29) as
(0 <2z <22 AIm((P(m) A f(m,2%) > 1) A (=In(n < m A P(n) A f(n,d) > 1))
A f(m,z1) = 2z2)).

Define p, == 27% > 0. Then g(u.,2%) = 1 and by T'9 there is no p € P such that
p < u, and g(p,2%) > 1. Define h,(x) = g(u., z). Then clearly

{(z,9) €[0,2°] x R:y = h(2)} = {(a,b) € R?: (R, <, +,9) = ¢(a,b)}
and therefore h, is a definable function.

Let £; > 0. Define &4 :== Z—l > 0. Then, |x; — z5] < &9 implies

13
ha (1) = ha(22)] = |g(11, 1) — g(pas 32)| = g1, |21 — 2]) < g(pis, M—l) =z

z

Thus h, is continuous.

x € [0,1] implies 0 < = < g(ps, 2Z) and by monotonicity of g (by 77) 0 <
g(p;t, o) <27 Thus g(p;t,x) €10,2°] and h.(g(u;', z)) = 2. Since z was chosen
arbitrarily, [0,d] = [0,1] C hy(]0, d])

]
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