
Decidability Questions in
Ostrowski Numeration

Systems

Fabian Schmitthenner
fabian@schmitthenner.eu

30. März 2023

Version 1.0.1 from May 2023
(Revised version with minor corrections)

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Philipp Hieronymi

Zweitgutachter: Dr. Christian d’Elbée

Mathematisches Institut

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

mailto:fabian@schmitthenner.eu

Contents

1. Introduction 1

2. Notation and basic concepts 4
2.1. Words and languages . 4
2.2. Finite state automata . 5
2.3. First-order formulas and structures . 7

3. Decidability questions 9
3.1. Decidability of Presburger arithmetic . 9
3.2. Decidability of ω-regular structures . 12

4. Ostrowski numeration systems 14
4.1. Definition of Ostrowski representations . 14
4.2. Sturmian words . 17

5. Addition of numbers in Ostrowski representations 25
5.1. Representation with a finite alphabet . 26
5.2. Addition on Lb . 28
5.3. Addition on Ud . 31
5.4. A Buchi automaton recognizing addition on Ud 35
5.5. Application to Sturmian words . 37

6. Proving theorems in practice 40
6.1. Introduction to Pecan . 40
6.2. Improving confidence in the adder automaton 42
6.3. Analyzing the runtime of Pecan programs 44
6.4. Sturmian words are not eventually periodic 48
6.5. Outlook . 50

A. Deutsche Zusammenfassung / German summary 51

B. Supplementary digital materials 53

C. Source code to produce the adder automaton 54

D. Source code of other needed automata 57

E. Pecan scripts 58

References 61

List of Figures

1. Buchi automata recognizing N , 0N and 1N 11
2. Buchi automaton for addition in N . 11
3. Examples of small numbers in different Ostrwoski numeration systems . . 17
4. Automata recognizing K and D . 27
5. An automaton recognizing Ū . 28
6. td(i) and pd(td(i)) for an exemplary d ∈ D 32
7. Automaton recognizing addition in Sturmian representation 34
8. Further edges of the addition automaton 35
9. Automata recognizing 0 and recognizing if a word is Sturmian 37
10. Various translations of formula in Pecan 42
11. Automata for eq and leq . 43
12. Number of states of automata involved in the addition base case 45
13. Automata involved in calculating succ(a,x,y) and succ2(a,x,y) 47
14. Number of states of automata showing Sturmian words non-periodic . . . 49

1. Introduction

In this thesis, we investigate the decidability of some first-order theories. Let S be a
finite or recursively enumerable set of relation and function symbols, which we also call
signature.1 A first-order theory T in the signature S is decidable when there is a decision
algorithm, that takes a formula ψ as an input and decides if T |= ψ.
Mojżesz Presburger showed around 1929, that the first-order theory of natural numbers
together with the addition operation is decidable (see [10] and [13]).

Theorem 1.1. Let S = {+} be the signature of Presburger arithmetic and let

M = (N, (x, y) 7→ x+ y).

ThenM is decidable.

In the original proof, formulas are translated to equivalent formulas without quantifiers.
These may include a few new relation symbols like the modulo operation. The quantifier-
free formulas can then be checked for their truth value. Büchi later showed the same
theorem using a different approach. In this approach, finite state automata are used to
show the decidability of Presburger arithmetic[4]. This approach can also be extended
to show that certain extensions of the theory of Presburger arithmetic are also decidable.
Which relations and functions can be added to this structure, such that the theory of
the resulting structure is still decidable? When adding multiplication to the structure,
the theory of the resulting structure is not decidable anymore. But we can add other
relations to this structure and keep the property of the decidability of its theory. One
interesting class of mathematical objects are sequences:

Definition 1.2. A function s : N → {0, 1} is called a sequence. Define the signature
S′ = (+, c). For a sequence s we define the S′-structure

Ms = (N, (x, y) 7→ x+ y, {x ∈ N | s(x) = 1}).

In this structure, many properties of s can be captured using first-order formulas. For
example, the following formula can be used to express, that the sequence s is eventually
periodic:

ϕ = ∃p∃n¬zero(p) ∧ ∀m(c(n+m)←→ c((n+m) + p))

where zero(p) = ∀m m + p = m. Then Ms |= ϕ if and only if s is eventually periodic.
Many other important properties can also be expressed using first-order-formulas. A list
of such properties and their expression as S′-formulas can be found in [12, Section 8 First-
order formulas for fundamental sequence properties]. IfMs is decidable, these properties
about s can all be decided computationally. However, the computational requirements for
executing such an algorithm can be extraordinary in terms of both runtime and required
memory. Thus it may not be possible to execute such an algorithm in practice.

1In model theory, such a set is usually called a language. However, this term conflicts with the use of
the term language in this thesis. We follow the convention also used in [5, footnote 1] and call such
a set a signature.

1

One class of sequences that lead to a decidable theory of Ms are the k-automatic se-
quences:

Definition 1.3. A k-automatic sequence is a sequence s : N→ {0, 1}, such that there is
a finite state automaton on the alphabet {0, . . . , k−1} that accepts exactly the numbers
n in base-k notation for which s(n) = 1.

Theorem 1.4. For k-automatic sequences s, the theory ofMs is decidable.

This topic of analyzing properties of sequences s for whichMs is decidable is analyzed
in great detail in [12]. In that book, the software Walnut is presented. Walnut can be
used to execute the decision algorithm on formulas for decidable theories of structures
of certain forms in practice[7]. One class of such structures are the structures Ms for
which s is a k-automatic sequence. These structures are supported by Walnut. A user
of Walnut needs to provide the automaton for the sequence s as well as a sentence ϕ.
Walnut can then determine if Ms |= ϕ. It works by assigning finite state automata
recursively to all sub-formulas of ϕ. In the end, an automaton is assigned to ϕ itself.
Walnut then checks if that automaton accepts any words. If so, the statement holds in
Ms, if not it doesn’t hold. Walnut may not always finish in any reasonable amount of
time, but does so for a wide range of interesting formulas and automata2.
We expand on this approach in two ways. Firstly, we use Ostrowski numeration sys-
tems instead of a standard base-k system. Sequences that are not automatic in a base k
numeration system may still be automatic in another numeration system. In Ostrowski
numeration systems, specific corresponding Sturmian words are automatic. A character-
istic Sturmian word is defined as follows:

Definition 1.5. Let α ∈ (0, 1) \Q be an irrational number between 0 and 1. Then the
characteristic Sturmian word of slope α is defined as cα : N→ {0, 1}

cα(n) = bα(n+ 1)c − bαnc

We will define Ostrowski numeration systems and elaborate on their relationship to
Sturmian words in section 4. Using this relationship, it has been shown in [3], thatMcα

has a decidable theory for quadratic α. Here, α is called quadratic when it is the solution
of a polynomial with integer coefficients of degree 2. One important contribution of that
paper is the definition of finite state automata that can recognize addition of numbers
in specific Ostrowski representations. The automata are more complicated than the
automata needed to recognize addition in base-k numeration systems.
Secondly, we use automata on infinite words instead of on finite words. There are more
infinite than finite words over a finite alphabet. The set of finite words are countable
whereas the set of infinite words is uncountable and has the same cardinality as R. The
approach of using infinite words allows to prove statements about larger sets. It was used

2According to [12, 1.3 Two simple examples, page 9], “the worst-case running time of the decision
procedure is quite bad. Nevertheless, [...] the procedure is still practical for a very wide range of
problems. It seems that most examples that people care about don’t result in the worst-case behavior.
Why this is so is still unknown.”

2

in [5] to show that the combined theory {T : ∀α ∈ (0, 1)\Q Mα |= T} is also decidable.
Intuitively, infinite words are needed here because we need to show statements for all α
which come from the set (0, 1)\Q. This set is uncountable, it also has the same cardinality
as R. The paper uses the combined adder automaton from [3], that was used there as an
intermediate step towards the adder automata for specific Ostrowski numeration systems.
[5] then continues to give a brief description how that automaton can be adapted to an
automaton working on infinite words with a finite alphabet. The main contribution of
the present thesis is to construct an adder automaton with the same goal. We give a
detailed description how to construct that automaton. Furthermore, we show that it is
correct. We do this in two ways. First, by using a conventional mathematical proof.
Secondly, by using software assistance. This improves the confidence in the correctness
of the construction. The automaton constructed here has just 24 states, less than the
automaton that emerges when following the steps outlined in [5, section 4]3.
In the first section after this introduction, we introduce important notions and concepts.
We introduce finite and infinite words, languages and Buchi automata – a type of au-
tomaton working on infinite words. This is followed by a definition of first-order formulas,
structures and the |= relation.
Afterwards, we assign Buchi automata to first-order formulas and show how the truth
value of first-order formulas in certain structures can be decided using this approach. As
a first application, we prove that the theory of Presburger arithmetic is decidable. This
approach can also be used to prove theorem 1.4, as the finite state automata for the
sequences can be translated into corresponding Buchi automata in this context.
In section 4, we introduce Ostrowski representations and their relationship to Sturmian
words. Ostrowski numeration systems are a numeration system where the individual
digits can be arbitrarily large. This is not good for our purpose because we want to
represent them with a finite alphabet. This is not an issue when considering only indi-
vidual quadratic Sturmian words – for them the digits of the corresponding Ostrowski
representation are bounded by some b that only depends on α. But in the more generic
case the digits are not bounded. Thus, in section 5 we will introduce a representation of
Ostrowski numbers with a finite alphabet. This is done by representing the individual
digits by a base-2 representation. This approach is taken from [5, section 3]. Finally, we
construct the adder on this representation.
In the last section, we apply the constructed adder using Pecan. Pecan is a software
program, that can be used to construct the automata automatically and check first-
order formulas for their truth value. It is similar to Walnut, but works with automata
on infinite words instead of automata on finite words. We give a short introduction to

3It is claimed there, that the automaton constructed there has 82 states. I followed that con-
struction myself and fixed a minor flaw in the argument, as one needs to start with an automa-
ton working on Ostrowski numbers in least significant digit first notation instead of most signifi-
cant digit first notation. Following that approach, I did not reach an automaton with 82 states,
but instead one with 53 states. I have no idea where this number 82 comes from. There is
also an explicit automaton given in https://github.com/ReedOei/SturmianWords/blob/master/
ostrowski-automata/bco_adder.txt which has 221 states. I also don’t understand how that au-
tomaton has been constructed.

3

https://github.com/ReedOei/SturmianWords/blob/master/ostrowski-automata/bco_adder.txt
https://github.com/ReedOei/SturmianWords/blob/master/ostrowski-automata/bco_adder.txt

Pecan. We then show the correctness of our adder automaton, that was constructed in
section 5, using Pecan. This will show that it has indeed been constructed correctly.
Afterwards, we will show, that no characteristic Sturmian word is eventually periodic
using Pecan4. In the end, we will analyze the complexity of the involved automata when
proving statements with Pecan and discuss how small changes in the formulas can have
a big impact in the runtime of Pecan.

2. Notation and basic concepts

We write ω = N = {0, 1, 2, . . . } for the natural numbers including 0 and N+ = N\{0} for
the natural numbers without 0. We sometimes use the set-theoretic notions of natural
numbers where n = {0, . . . , n− 1}.

2.1. Words and languages

Definition 2.1. Let Σ be a set, which we call alphabet. We define the set of finite words
over Σ by

Σ∗ :=
⋃
i∈ω

(i→ Σ)

An element of this set is called a finite word. We write |w| = dom(w) for the length
of a finite word (which is a natural number) and write wi = w(i) ∈ Σ for the (i+1)-st
symbol of the finite word. That is, the first symbol of a word has position 0. We also
write w = w0w1 . . . w|w|−1 to denote finite words.

Definition 2.2. A subset L ⊆ Σ∗ of finite words is called a language (of finite words).

The set of finite words over a finite alphabet is countable. The set of all languages over
a finite alphabet, however, is uncountable. Let L be a language over a finite alphabet
Σ. Then it might be interesting to find out for a given word w ∈ Σ∗ if w ∈ L or w 6∈ L.
For some languages, this question is easier to answer than for other languages. On the
easier side are regular languages. These are languages, that can be recognized by a
(non-)deterministic finite state automaton.
There are only countably many words over a finite alphabet. Thus, it’s not possible to
represent R – or some large subset of it like (0, 1) \ Q – by finite words over a finite
alphabet. To allow an identification with such large sets, we introduce the notion of
ω-words.

Definition 2.3. The set of ω-words over an alphabet Σ is defined as

Σω := ω → Σ

Similarly to Definition 2.1, we call an element of this set an ω-word. We sometimes
omit ω and just say word, if it’s clear from the context. We write wi = w(i) ∈ Σ for

4This was also done in [5, theorem 7.1]. We give more details what happens during the execution of
the proof here.

4

the (i+1)-st symbol in the ω-word. For w ∈ Σ∗, v ∈ Σω, we write wv ∈ Σω for the
concatenation

i 7→

{
wi i < |w|
wi−|w| i ≥ |w|

For w ∈ Σ∗, we write wω for the ω-word

i 7→ wi mod |w|

A subset L ⊆ Σω is called an ω-language.

As for languages over finite words, it’s also interesting to ask for ω-languages what kind
of structure they have. The question of wether a specific ω-word is part of the language
is not as easy to ask in this case though. It’s not even possible to characterize all ω-words
in a finite manner (at least when |Σ| ≥ 2). Thus, there is also no algorithm that takes an
ω-word as input, as not all ω-words can be encoded. Some questions can still be asked
though. For example, given an ω-language, we can ask if it is non-empty; and if so, we
can ask for a witness.

2.2. Finite state automata

We start by defining a nondeterministic finite state automaton (NFA). This motivates
the subsequent definition of Buchi automata.

Definition 2.4. Let Σ be a finite alphabet. A NFA over Σ is a tuple (S, I, T, F) where

S is the finite set of states.

I ⊆ S is the set of initial states.

T ⊆ S × Σ× S is the transition relation.

F ⊆ S is the set of final states.

Let’s define the words this automaton accepts.

Definition 2.5. Let A = (S, I, T, F) be an NFA over Σ and let w ∈ Σ∗. Then σ : (|w|+
1)→ S is a run of w over A when

σ(0) ∈ I and

∀j ∈ |w| (σ(j), wj , σ(j + 1)) ∈ T

When σ(|w|) ∈ F , the run is an accepting run. For a given word w, A accepts w when
there is an accepting run of w over A.

This definition can be generalized to ω-words. The definition works similarly, the only
problem is that the definition of an accepting run can’t be based on the last state that
is reached, as there is no last state. There are various different ways these acceptance
criteria can be transformed such that they work for infinite words. Throughout this thesis,
we will use Buchi automata, which use a certain acceptance condition. In section 6 we
will also briefly touch automata for infinite words with different acceptance conditions.

5

Definition 2.6. Let Σ be a finite alphabet. A Buchi automaton over Σ is a tuple
(S, I, T, F) where

S is the finite set of states.

I ⊆ S is the set of initial states.

T ⊆ S × Σ× S is the transition relation.

F ⊆ S is the set of final states.

This definition is exactly the same definition as the definition of an NFA. However, we
define accepted runs differently:

Definition 2.7. Let A = (S, I, T, F) be a Buchi automaton over Σ and let w ∈ Σω.
Then σ : ω → S is a run of w over A when

σ(0) ∈ I and

∀j ∈ ω (σ(j), wj , σ(j + 1)) ∈ T

Define the infinity set l(σ) of a run as

l(σ) = {s ∈ S : {i ∈ ω : σ(i) = s} is infinite}

Then σ is accepted by A when l(σ)∩F 6= ∅. A word w ∈ Σω is accepted by A when there
is an accepting run of w over A. The language of A is the set of all words w ∈ Σω, that
are accepted by some run of w over A. We denote this language by L(A). A language
L ⊆ Σω is called ω-regular when there is a Buchi automaton B with L(B) = L. w ∈ Σω

is ω-regular when {w} is ω-regular.

We draw automata by using circles for each of the states in S and draw an arrow from
s to u annotated with b for each (s, b, u) ∈ T . Furthermore, the states in F are denoted
by double circles and the states in S are denoted by inbound arrows.
Buchi automata have nice closure properties, as the following proposition shows.

Proposition 2.8. Let Σ be a finite set and let L1, L2 ⊆ Σω be ω-regular. Then

L1 ∪ L2 is ω-regular.

L1 ∩ L2 is ω-regular.

Σω \ L1 is ω-regular.

Furthermore, the resulting automata can be computed algorithmically.

Proof. For the first two statements, we give explicit automata recognizing these lan-
guages.
Let A = (SA, IA, TA, FA), B = (SB, IB, TB, FB) be Buchi automata with L(A) = L1 and
L(B) = L2. Without loss of generality, let SA ∩SB = ∅. Then define C = (SA ∪SB, IA ∪
IB, TA ∪ TB, FA ∪ FB). Then L(C) = L1 ∪ L2.

6

For the second statement, set S = SA×SB×{∅, {A}, {B}, {A,B}}. We take the product
of the states of the original automata to remember these states. Furthermore, we add
some more information to remember if we have recently seen a final states of the A or B
parts. Once we’ve seen a final state in both parts, we also produce a final state and set
back this part of the state to ∅.
Formalizing this, set

I = IA × IB × {∅}
F = SA × SB × {{A,B}}

T =

((sA, sB, g), c, (dA, dB, h)) :

(sA, c, dA) ∈ TA
(sB, c, dB) ∈ TB

h = t(g) ∪ l(dA, dB)


where

t(x) =

{
∅ x = {A,B}
x x 6= {A,B}

l(a, b) =


∅ a 6∈ FA, b 6∈ FB
{A} a ∈ FA, b 6∈ FB
{B} a 6∈ FA, b ∈ FB
{A,B} a ∈ FA, b ∈ FB

Then L(S, I, T, F) = L1 ∩ L2.
The third statement is more complicated and we will not show it here. A construction
can be found for example in [6, Section 3.4.4 Complementation of Buchi Automata].

Remark 2.9. We can compute the number of states the resulting automata will have.
The first construction uses at most |SA| + |SB| states and the second construction at
most 4|SA||SB| states. The number of states needed for the complementation automaton
is much bigger and may need 2O(n logn) states, where n is the number of states of the
original automaton (see [6]).

2.3. First-order formulas and structures

Definition 2.10. A signature is a pair (S, ar) where S is the set of relation symbols and
ar : S → N is a function mapping each relation symbol to its arity. We may also denote
signatures by a tuple of their relation symbols. An (S, ar)-structureM is a tuple (M, I)
where I has domain S and for R ∈ S

I(R) ⊆Mar(s).

We also write RM for I(R) and may denote a structureM = (M, I) over the signature
(R1, . . . , Rn) by the tuple (M,RM1 , . . . , RMn).

7

Usually, signatures are defined such that there can also be function and constant symbols
in the signature. We only consider signatures without function and constant symbols
here. Each signature S′ with function and constant symbols can be converted to a
signature S without those by converting each function symbol f in S′ into a relation
symbol R with ar(R) = ar(f) + 1. Theories and formulas can also be transformed
back and forth[11]. Thus the decidability of the corresponding theories can also be
transformed. For example, take the structureMs from definition 1.2 in the introduction.
Instead of defining + as a 2-ary function symbol, we would define it as a 3-ary relation
symbol with +Ms = {(x, y, z) | x+ y = z}.

Definition 2.11. Let L = (S, ar) be a signature. Then we define the set of formulas
F(L) as the smallest set, such that

• vi ≡ vj ∈ F(L) for i, j ∈ ω

• R
(
vi1 , . . . , viar(R)

)
∈ F(L) for R ∈ S, i1, . . . , iar(R) ∈ ω.

• ϕ ∧ ψ ∈ F(L) for ϕ,ψ ∈ F(L)

• ϕ ∨ ψ ∈ F(L) for ϕ,ψ ∈ F(L)

• ¬ϕ ∈ F(L) for ϕ ∈ F(L)

• ∃vjϕ ∈ F(L) for j ∈ ω, ϕ ∈ F(L)

We define the set of free variables of a formula ϕ, denoted by free(ϕ) recursively in the
usual way:

free(vi ≡ vj) = {vi, vj}

free
(
R
(
vi1 , . . . , viar(R)

))
= {vi1 , . . . , viar(R)

}

free(ϕ ∧ ψ) = free(ϕ ∨ ψ) = free(ϕ) ∪ free(ψ)

free(¬ϕ) = free(ϕ)

free(∃vjϕ) = free(ϕ) \ {vj}

For a finite signature L, F(L) is countable. We write ∀vjϕ for ¬∃vj¬ϕ, > for ∀v0v0 ≡ v0
and ⊥ for ¬>. An L-sentence is a formula without free variables. An L-theory is a set
of L-sentences.

Definition 2.12. Let M be an L-structure and let ϕ be an L-formula with free(ϕ) =
{x1, . . . xn}. Let m1, . . .mn ∈M . We defineMm1,...,mn

x1,...,mn
|= ϕ(x1, . . . , xn) recursively by

Mm1,m2

x1, x2
|= x1 ≡ x2 ⇐⇒ m1 = m2

Mm1, . . . ,mk

x1, . . . , xk
|= R(xi1 , . . . , xiar(R)

)⇐⇒ RM(mi1 , . . . ,miar(R)
)

Mm1, . . . ,mk

x1, . . . , xk
|= ϕ ∧ ψ ⇐⇒Mm1, . . . ,mk

x1, . . . , xk
|= ϕ andMm1, . . . ,mk

x1, . . . , xk
|= ψ

8

Mm1, . . . ,mk

x1, . . . , xk
|= ϕ ∨ ψ ⇐⇒Mm1, . . . ,mk

x1, . . . , xk
|= ϕ orMm1, . . . ,mk

x1, . . . , xk
|= ψ

Mm1, . . . ,mk

x1, . . . , xk
|= ¬ϕ⇐⇒Mm1, . . . ,mk

x1, . . . , xk
6|= ϕ

Mm2, . . . ,mk

x2, . . . , xk
|= ∃x1ϕ⇐⇒ there is m ∈M s.t. Mm,m2, . . . ,mk

x1, x2, . . . , xk
|= ϕ

For sentences ϕ we write M |= ϕ. Let T be an L-theory. Then M |= T when M |= ϕ
for all ϕ ∈ T . For a sentence ϕ, we write T |= ϕ when for all L-structuresM, ifM |= T
then M |= ϕ. The theory of an L-structure is the set of L-sentences {ϕ : M |= ϕ}.
An L-theory T is complete, if for each L-sentence ϕ either T |= ϕ or T |= ¬ϕ. It is
consistent, when T 6|= ⊥. An L-theory T is decidable, if there is an algorithm that gets
ϕ as input, finishes on all inputs and decides whether T |= ϕ.

3. Decidability questions

In this section, we introduce a framework that can be used to show that theories of cer-
tain structures are decidable. We will later use this to show that the combined theory
of characteristic Sturmian words is decidable. To give a first example of an application
of this framework, we will use it to show that Presburger arithmetic is decidable. Af-
terwards, we will show that the main theorem needed to apply this framework is true.
This theorem states, that certain structures are decidable. We give the precise statement
below in theorem 3.3.

3.1. Decidability of Presburger arithmetic

As mentioned already in the introduction, it is well-known that Presburger arithmetic is
decidable. We reformulate theorem 1.1 using the notations introduced in the previous
section, that is using only relation symbols. We also add relation symbols for 0 and 1
here, although that would not not be necessary as 0 and 1 are also definable by +.

Proposition 3.1. Let S = (0, 1,+) be the signature of Presburger arithmetic, where 0, 1
are one-ary relation symbols and + is a 3-ary relation symbol. LetM = (N, 0M, 1M,+M)
be the standard structure, that is 0M = {0}, 1M = {1} and +M = {(x, y, z) ∈ N3 | x+y =
z}. Then the theory ofM is consistent, complete and decidable.

Let’s now introduce the main theorem we will use to show this proposition. To do so,
we introduce the following definition beforehand.

Definition 3.2. Let Σ be finite, M ⊆ Σω, n ∈ N and R ⊆ Mn. For w ∈ (Σn)ω, let
w(i) = j 7→ w(j)i be the projection of the word to its i-th component (for 1 ≤ i ≤ n).
Then we call a language L ⊆ (Σn)ω M -compatible with R when for all w ∈ (Σn)ω such
that w(1), . . . , w(n) ∈M the following holds:

R
(
w(1), . . . , R(n)

)
⇐⇒ w ∈ L

9

The idea is to say that the language L is M -compatible with the relation R when it
behaves the same way after projection for words that are projected to valid words in M .
We don’t care if other words are part of the language or not.

Theorem 3.3. Let L = (S, ar) be a signature. Let Σ be finite, and let M ⊆ Σω. Let
M = (M, I) be a structure. Let M be ω − regular. Furthermore, for each relation
symbol R ∈ I, let there be an ω-regular language, that is M -compatible with RM. Then
the theory ofM is decidable.

We use Buchi automata instead of deterministic or nondeterministic finite automata
here. Later, when we will show that a more complicated structure is also decidable, we
will need Buchi automata. It is a good opportunity now to show the concept of using
Buchi automata to show the decidability of a structure in this easier example already. I
have not seen a proof of the decidability of Presburger arithmetic using Buchi automata
in the literature. That being said, the transformation from the proof using finite state
automata, as done for example in [12, Section 6.3 Decidability of Presburger arithmetic]
is straight-forward. Interestingly, one aspect of the proof is also easier: We don’t need
to make sure that words that only differ by a prefix or suffix of 0 are handled the same
way by our automata. As our words have infinite length, there are no such alternative
words. We also don’t need to align words to the same length.
Let’s now start with the actual proof. We assume for a moment already that theorem 3.3
is true. We will give a proof, that the theory ofM is decidable:

Proof of proposition 3.1. The idea is to encode natural numbers as binary ω-words.
Therefore, let Σ = {0, 1} and let N be the language of all words that are eventually
always 0:

N = {w ∈ Σω | {j | wj 6= 0} is finite}

We define f : N → N by
f(w) =

∑
i∈ω

2iwi.

f is a bijection. Furthermore, let’s define the following sets:

0N ⊆ N x ∈ 0N ⇐⇒ f(x) = 0

1N ⊆ N x ∈ 1N ⇐⇒ f(x) = 1

+N ⊆ N3 (x, y, z) ∈ +N ⇐⇒ f(x) + f(y) = f(z)

Define the structure N = (N, 0N , 1N ,+N). N is isomorphic toM and thus its theories
are the same. Thus, by theorem 3.3, it’s enough to show that N is ω-regular and there
are ω-regular languages that are N -compatible with 0N , 1N and +N resp. As 0 and 1
are one-ary and (Σ1)ω = (Σω)1 = Σω, 0N is N -compatible with itself and the same holds
for 1N . N , 0N and 1N are ω-regular by the automata given in figure 1.
It is only left to show that there is an ω-regular N -compatible language with +N . The
remainder of the proof is about showing this fact. The idea is the following:

10

S F

0

1

0

0

S

0

S F
1

0

Figure 1: Buchi automata recognizing N(left), 0N (middle) and 1N (right)

0 1

(0,0,0)
(0,1,1)
(1,0,1)

(1,1,0)

(0,0,1) (0,1,0)
(1,0,0)
(1,1,1)

Figure 2: A Buchi automaton recognizing a language that is N -compatible with +N

1. We recursively define a sequence ck for fixed x, y, z ∈ N . Furthermore c0 = 0⇐⇒
f(x) + f(y) = f(z).

2. We show, that when f(x) + f(y) = f(z) all ck are in a small finite set; in our case
here ck ∈ {0, 1}.

3. We construct an automaton where we have one state for each element of this finite
set, such that for any accepting run σ, σi = ci and conversely, if f(x)+f(y) = f(z)
then c is an accepting run.

4. We conclude that the language accepted by the automaton is N -compatible with
+N .

Now let x, y, z ∈ N . We start by defining (ck)k∈ω by

ck =

∞∑
i=k

(zi − xi − yi)2i−k

Then ck ∈ Z, and f(x) + f(y) = f(z)⇐⇒ c0 = 0. Also,

ck = (zk − xk − yk) + 2
∞∑

i=k+1

(zi − xi − yi)2i−(k+1) = (zk − xk − yk) + 2ck+1

=⇒ ck+1 =
ck + xk + yk − zk

2
(3.1)

11

Now let f(x) + f(y) = f(z). We show, that in this case ck ∈ {0, 1}. We do this by
induction over k. For k = 0 we have ck = 0. Now let ck ∈ {0, 1}. Then

ck+1 =
ck + xk + yk − zk

2

{
≤ 1+1+1−0

2 = 3
2

≥ 0+0+0−1
2 = −1

2

As ck+1 ∈ Z, the only possible values inside that range are ck+1 = 0 and ck+1 = 1.
Now, we can construct the Buchi automaton with states 0 and 1 such that for any
accepted run σ, σ = c. We set the transitions according to (3.1), that is for c, c′ ∈ {0, 1}:
(c, (x, y, z), c′) ∈ T ⇐⇒ 2c′ = c+ x+ y − z. Additionally, 0 is the only initial state and
both states 0 and 1 are accepting states. This resulting automaton is shown in figure 2.
The language of this automaton is ω-regular by its construction. We still need to show,
that it is N -compatible with +N . Therefore, let w ∈ (Σ3)ω be accepted by the automaton
and let w(1), w(2), w(3) ∈ N . Set x = w(1), y = w(2) and z = w(3). Let σ be an accepting
run. As w(1), w(2), w(3) ∈ N , there is k ∈ N such that wj = (0, 0, 0) for all j ≥ k. There
is only one transition labeled (0, 0, 0) (the unique solution to 2c′ = c with c, c′ ∈ {0, 1})
which starts and ends in state 0. Thus, σj = 0 for all j ≥ k. By definition, we also have
cj = 0 for j ≥ k (where c is the sequence on x, y, z). Because cj−1 is uniquely defined by
(3.1) and the transitions of the automaton are defined according to the same formula,
we have cj = σj ⇒ cj−1 = σj−1. By induction, it follows that c = σ. As the only initial
state of the automaton is 0, we have c0 = σ0 = 0 and thus f

(
w(1)

)
+ f

(
w(2)

)
= f

(
w(3)

)
.

Conversely, let w ∈ (Σ3)ω be such that w(1), w(2), w(3) ∈ N and f
(
w(1)

)
+ f

(
w(2)

)
=

f
(
w(3)

)
. Set x = w(1), y = w(2), z = w(3). We need to show, that c is an accepting run.

We start by showing that it is a run by noting that c0 = 0, 0 is an initial state and the
transitions of the automaton are defined according to (3.1). It is also an accepting run
as all states are accepting.

3.2. Decidability of ω-regular structures

We want to turn back to theorem 3.3 now. Therefore, let (S, ar) be a signature, Σ be a
finite set, M ⊆ Σω be ω-regular and letM be an (S, ar)-structure. Furthermore, for any
R ∈ S let LR ⊆

(
Σar(R)

)ω be an M -compatible ω-regular language with RM. In this
setup, we recursively define Buchi automata for formulas.
Let ϕ ∈ F (L) and let (ij)j=1,...,n be a strictly ascending sequence (that is i1 < i2 < · · · <
in) such that free(ϕ) = {vi1 , . . . , vin}. We define a Buchi automaton B(ϕ) over Σn, s.t.
for all w ∈ (Σn)ω with w(1), . . . , w(n) ∈M the following invariant holds:

w is accepted by B(ϕ) if and only ifMw(1), . . . , w(n)

vi1 , . . . , vin
|= ϕ (3.2)

We construct these recursively, starting with atomic formulas. For each of the construc-
tions below, it can be verified that (3.2) holds.

• For formulas of the form vj ≡ vj we take the automaton, that consists of just one
state and accepts any word:

B(vj ≡ vj) := ({s1}, {s1}, {(s1, c, s1) : c ∈ Σ}, {s1})

12

• For formulas of the form vj ≡ vk for j 6= k, we take the automaton, that consists
of just one state and accepts all words consisting of letters of the form (c, c) for
c ∈ Σ:

B(vj ≡ vk) := ({s1}, {s1}, {(s1, (c, c), s1) : c ∈ Σ}, {s1})

• Now let R ∈ S be a relation symbol with arity m. Let ϕ = R(vik1 , . . . , vikm).
Then {k1, . . . , km} = {1, . . . , n}. Let D = (S, I, T, F) be the Buchi automaton
recognizing LR. Let

T ′ = {(s1, (c1, . . . , cn), s2) : (s1, (ck1 , . . . , ckm), s2) ∈ T}

We set B(ϕ) := (S, I, T ′, F).

• Let ϕ,ψ ∈ F (L). Let vi1 , . . . , vin be the free variables in any of these formulas with
i1 < · · · < in. Let vij1 , . . . , vijk be the free variables of ϕ with 1 ≤ j1 < · · · < jk ≤ n.
Let B(ϕ) = (S1, I1, T1, F1). We construct a Buchi automaton B′ = (S1, I1, T

′
1, F1)

for ϕ over Σn by

T ′1 = {(s1, (c1, . . . , cn), s2) : (s1, (cj1 , . . . , cjk), s2) ∈ T1}

Intuitively, B′ is the Buchi automaton recognizing ϕ with all free variables in ϕ and
ψ as input. By the same construction, let B′′ be the Buchi automaton recognizing
ψ with all these free variables as input. B′ and B′′ are both Buchi automata over
Σn. Thus by proposition 2.8, we can construct Buchi automata B∪ and B∩ with
L(B∪) = L(B′) ∪ L(B′′) and L(B∩) = L(B′) ∩ L(B′′). We can now define the
automata for ϕ ∨ ψ and ϕ ∧ ψ:

B(ϕ ∨ ψ) := B∪

B(ϕ ∧ ψ) := B∩

• By proposition 2.8 we can also construct the automaton B¬, that recognizes exactly
the words not recognized by B(ϕ). We set

B(¬ϕ) := B¬.

• Now let ϕ be a formula with free variables vi1 , . . . , vin with i1 < · · · < in. We want
to construct the automaton for ∃vkϕ. First, let’s consider the case where k is not
among i1, . . . , in. In this case, vk does not appear freely in ϕ. Thus, we can just
set

B(∃vkϕ) := B(ϕ).

Next, let k ∈ {i1, . . . , in}. Let k = ij . Our idea is to just "forget" the j-
th component of our words, as we don’t care about the concrete word in that
component, there just needs to be some word. But there is one complication:
The word also needs to be ∈ M . So it is slightly more complicated. There-
fore, let U = (SU , IU , TU , FU) be an automaton recognizing M and let U ′ =

13

(SU , IU , {(s1, (c1, . . . , cn), s2) : (s1, cj , s2) ∈ TU}, FU). Let D = (S, I, T, F) be
an automaton that recognizes words that are recognized by both B(ϕ) and U ′.
Finally, we define B(∃vkϕ) := (S, I, T ′, F) with

T ′ = {(s1, (c1, . . . , cj−1, cj+1, . . . , cn), s2) : ∃cj ∈ Σ(s1, (c1, . . . , cn), s2) ∈ T}.

All these constructions are constructive and can be done in an algorithm. So we can now
give an algorithm to decide ifM |= ϕ.

Definition 3.4. We define the following algorithm, that decides ifM |= ϕ.
Input: L-sentence ϕ
Output: true whenM |= ϕ, false otherwise
Algorithm:

Calculate B(ϕ) = (S, I, T, F). This is a Buchi automaton over the alphabet Σ0 =
{()}. Thus all edges are annotated with the same letter.

Let G = (V,E) be a directed graph with vertices V = S and edges E = {(s, t) :
(s, (), t) ∈ T}.

Calculate the vertices R, that are reachable from I. This can be done for example
by doing a breadth-first search. Set P = R ∩ F .

For each vertex v ∈ P , check if there’s a cycle from v to itself. This can also be
done by a breadth-first search. If that’s the case for any such vertex, return true.

If there is no such cycle, return false.

4. Ostrowski numeration systems

In the base-n system, the factor of a digit in position k is nk which is a multiple of the
factor of the digit at position k − 1. The Ostrowski numeration system is an alternative
numeration system, where the factor is instead a sum of the factors at the digits at
position k − 1 and k − 2.

4.1. Definition of Ostrowski representations

Definition 4.1. Let B = N+ → N+ be the set of sequences of positive integers. For
b ∈ B also write bi instead of b(i). For such a sequence b, we define sequences pi and qi
recursively as follows5

p−1(b) = 1 q−1(b) = 0

p0(b) = 0 q0(b) = 1

pk(b) = bkpk−1(b) + pk−2(b) qk(b) = bkqk−1(b) + qk−2(b)

5I’ve taken these equations from [2, theorem 2.4.1] and [12, lemma 3.5.6]. These books define these
sequences as the numerator and denominator of continued fractions and this definition is a deduction
of that definition. Instead, we define these sequences directly in this way here.

14

We define the language L′b ⊆ Nω as the set of words w ∈ Nω, that have the following
properties:

1. {j ∈ ω | wj 6= 0} is finite.

2. for all i ∈ ω, wi ≤ bi+1.

Let Lb ⊆ L′b be the language where each word additionally has the following properties:

3. w0 < b1

4. For all i ≥ 1 if wi = bi+1 then wi−1 = 0.

Define fb : L′b → N as
fb(w) =

∑
j

wjqj(b) (4.1)

fb is well-defined because of property 1. We will now show, that fb : Lb → N is a bijection.
An alternative proof of this theorem can be found in [2, theorem 3.9.1].

Lemma 4.2. Let u ∈ Lb and k ∈ N such that um = 0 for all m ≥ k. Then fb(u) < qk.

Proof. Prove by induction over k. For k = 0 u = 0ω, so fb(u) = 0 < 1 = q0. For k = 1
we can write u = u00

ω, so fb(u) = u0 < b1 = q1. Now let k ≥ 1 and let the statement be
true for k and k − 1. We show the statement for k + 1. Therefore, let u be as defined in
the statement. We separate the following cases:

Case 1: uk = bk+1. Then uk−1 = 0 by property 4 and thus

fb(u) < qk−1 + ukqk = qk+1

Case 2: uk < bk+1. Then uk ≤ bk+1 − 1 and thus

fb(u) < qk + (bk+1 − 1)qk = bk+1qk = qk+1 − qk−1 ≤ qk+1

Theorem 4.3. fb : Lb → N is a bijection.

Proof. We start by showing surjectivity. We show inductively over n ∈ N, that there is
w ∈ Lb, such that fb(w) = n. n = 0 is true by choosing w = 0ω ∈ Lb.
Now let the statement be true for n−1. Let u ∈ Lb be an element, such that fb(u) = n−1.
We now define the sequence u(0), u(1), · · · ∈ L′b by

u
(i)
j =


uj j > i+ δuibi+1

uj + 1 j = i+ δuibi+1

0 j < i+ δuibi+1

where δxy = 0 if x 6= y and δxy = 1 if x = y.

15

First, let’s verify that u(i) ∈ L′b. Property 1 clearly holds for u(i), as property 1 holds for
u and the sequences u(i) and u only differ in one position. If ui < bi+1, property 2 also
clearly holds. If ui = bi+1 then ui+1 < bi+2 by property 4 and thus property 2 also holds
in this case. Together, u(i) ∈ L′b.
Now let k be minimal, such that u(k) ∈ Lb. Such a k exists as u(maxj{uj 6=0}+2) ∈ Lb. We
will now show inductively for all l ≤ k, that

fb

(
u(l)
)

= n (4.2)

To see this for l = 0, note that u0 < b1 and thus δu0b1 = 0.
Now let l = 1 and k ≥ 1. Then u(0) 6∈ Lb, so u

(0)
0 = b1 or u(0)1 = b2 (or both). Let’s look

at these two cases separately (considering the both case as part of case 1).

Case 1 u
(0)
1 = b2. By property 4 of u ∈ Lb and u1 = u

(0)
1 = b1 we can follow, that

u0 = 0. Thus, u(0)0 = u0 + 1 = 1 and

fb(u
(1)) = (u2 + 1)q2 +

∑
j≥3

qjuj

=

q2=︷ ︸︸ ︷
1︸︷︷︸

=u
(0)
0

q0 + b1︸︷︷︸
=u

(0)
1

q1 +u2q2 +
∑
j≥3

qjuj

= fb(u
(0)) = n

Case 2 u
(0)
0 = b1 and u(0)1 < b2. Then we have q1 = q−1 + b1q0 = b1 = u

(0)
0 q0 and

fb(u
(1)) = (u1 + 1)q1 +

∑
j≥2

qjuj

= u
(0)
0 q0 + u1q1 +

∑
j≥2

qjuj

= fb(u
(0)) = n

So (4.2) holds for l = 1.
Now let k ≥ l ≥ 2 and let the statement hold for l − 1. Then again u(l−1) 6∈ Lb (as
otherwise k ≤ l − 1). We distinguish the following two cases:

Case 1 ul−1 = bl. In this case ul < bl+1 by property 4 of u and thus u(l) = u(l−1) = n.

Case 2 ul−1 < bl. Then ul−1 = 0 and ul = bl+1 as otherwise u(l−1) ∈ Lb. So u(l−1)l−1 =

1, u
(l−1)
l = ul = bl+1 and

fb

(
u(l)
)

= (ul+1 + 1)ql+1 +
∑
j≥l+2

ujqj = ql+1 +
∑
j≥l+1

ujqj

= 1 · ql−1 + ulql +
∑
j≥l+1

ujqj = fb

(
u(l−1)

)
= n

16

1 2 i ((12)ω)i 2i

1 01 1 01 1 1
2 001 01 02 01 01
3 0001 11 001 001 11
4 0101 02 011 101 02
5 00001 001 021 011 12
6 01001 101 002 002 03
7 00101 011 012 102 13
8 000001 111 022 0001 04
9 010001 021 003 1001 001
10 001001 002 0001 0101 101
11 000101 102 0101 00001 011
12 010101 0001 0201 10001 111
13 0000001 1001 0011 01001 021

Figure 3: Examples of small numbers in different Ostrowski numeration systems
bi = 1, bi = 2, bi = i, bi = ((12)ω)i and bi = 2i

So (4.2) holds for l as well. This completes the inner induction and thus (4.2) holds
for all l ≤ k. Thus u(k) ∈ Lb and fb(u(k)) = n, which completes the proof of the outer
induction. In total, we have shown the surjectivity of fb.
It’s left to show that fb is injective. Therefore, let’s assume that fb is not injective. Then
there are u,w ∈ Lb with fb(u) = fb(w) and u 6= w. Let k be maximal, such that uk 6= wk.
Without loss of generality, let uk < wk. Define u′ and w′ by

u′j =


uj j < k

0 j = k

0 j ≥ k
w′j =


wj j < k

wk − uk j = k

0 j > k

Then u′, w′ ∈ Lb and fb(u′) = fb(w
′) by construction. But by lemma 4.2, fb(u′) < qk;

and by equation (4.1) fb(w′) ≥ (w′k−u′k)qk ≥ qk. This contradicts the assumption, so fb
is injective. Thus, fb is both injective and surjective.

Let’s now look at some examples. In figure 3 we can see how small numbers are rep-
resented in a few Ostrwoski representations. Each cell contains the first letters of the
corresponding word without any 0s in the end. The Ostrowski representation bi = 1 is
also called Fibonacci representation and the representation bi = 2 is called Pell represen-
tation[12, Section 3]. We represent them in least-significant-digit first notation here.6

4.2. Sturmian words

Sturmian words are sequences, that can be defined in the following way:
6In the literature I reviewed, the use of most-significant-first notation was more common. We use
least-significant-digit first notation, as this is the only way to represent them as infinite words.

17

Definition 4.4. Let α ∈ (0, 1) \ Q. The characteristic Sturmian word with slope α is
the ω-word cα ∈ {0, 1}ω, defined as follows:

cα(n) = bα(n+ 1)c − bαnc

The goal of this subsection is to show a relationship between characteristic Sturmian
words and Ostrowski representations.

Proposition 4.5. For each α ∈ (0, 1) \Q there is a unique b ∈ B, such that

lim
i→∞

pi(b)

qi(b)
= α

Furthermore, for such α and corresponding b there is the following relationship between
cα and fb: for all n ∈ N+

cα(n) = 1⇐⇒ min
i
{f−1b (n)i > 0} is odd

This theorem is also shown in [2, theorem 9.1.15]. Towards the goal of showing propo-
sition 4.5, let’s start with some facts. In the following, we sometimes write pi and qi
instead of pi(b) and qi(b) when b is clear from the context.

Lemma 4.6. Let b ∈ B. Then for every i the following equation holds:

piqi−1 − pi−1qi = (−1)i+1 (4.3)

Proof. We show this by induction over i. For i = 0, we have 0 · 0− 1 · 1 = −1. Now, let
the formula be true for m. Then the formula holds for m + 1 as well, as the following
calculation shows:

pm+1qm − pmqm+1 = bm+1pmqm + pm−1qm − bm+1pmqm − pmqm−1
= − (pmqm−1 − pm−1qm)

= −(−1)m+1 by induction hypothesis

= (−1)m+2

Lemma 4.7. Let k be even. Then, for all l > k, the following equation holds

pk
qk

<
pl
ql

(4.4)

Similarly, let k be odd. Then for all l > k the following holds:

pk
qk

>
pl
ql

(4.5)

Proof. We use lemma 4.6 and divide both sides of (4.3) by qkqk−1. This leads to the
following equation

pi
qi
− pi−1
qi−1

=
(−1)i+1

qiqi−1
(4.6)

18

As a first step, let l−k be even. Then the following sum has an even number of summands,
and we can thus make groups of two terms that are always positive or negative:

pl
ql
− pk
qk

=

l−k∑
i=1

(−1)k+i+1

qk+iqk+i−1

=
l−k∑
i=1
2|i

(−1)k+i+1︸ ︷︷ ︸
=(−1)k+1

(
− 1

qk+i−1qk+i−2
+

1

qk+iqk+i−1

)
︸ ︷︷ ︸

<0{
> 0 2 | k
< 0 2 - k

(4.7)

Now let l − k be odd. In this case l + 1 has the same parity as k and thus

pl
ql
− pk
qk

=
pl−1
ql−1

− pk
qk︸ ︷︷ ︸> 0 2 | k

< 0 2 - k

+
(−1)l+1

qlql−1︸ ︷︷ ︸> 0 2 | k
< 0 2 - k{

> 0 2 | k
< 0 2 - k

This is the same inequality as (4.7), which thus holds in all cases. It is also an equivalent
formulation of (4.4) and (4.5).

Definition 4.8. Let b ∈ B. Then define

α(b) = lim
k→∞

pk(b)

qk(b)

Lemma 4.9. α is well-defined

Proof. Using lemma 4.6 and dividing both sides by qkqk−1 we have

pk
qk
− pk−1
qk−1

=
(−1)n

qkqk−1

By definition, qk is strictly monotonically increasing, so 1
qkqk−1

is strictly monotoni-
cally decreasing, and because qk ∈ N its limit is 0. Furthermore, by (4.4) and (4.5),
{pi/qi | i > k} ⊆ (pk/qk, pk−1/qk−1). Thus, pk/qk is a Cauchy sequence and thus con-
verges.

Definition 4.10. Let α ∈ (0, 1) \Q. Define the sequence (αi)i∈ω recursively by

α0 = α (4.8)

αi+1 =
1

αi
−
⌊

1

αi

⌋
(4.9)

19

Lemma 4.11. (αi)i∈ω is well-defined and αi ∈ (0, 1) \Q for all i.

Proof. We show this by induction over i. For i = 0, the statement is true by definition.
Let the statement now be true for i. To show, that αi+1 is well-defined, we need to show,
that we don’t divide by zero in (4.9). That is, αi 6= 0. But this holds already by the
induction hypothesis. Furthermore, as αi is irrational, so is 1

αi
and after subtracting an

integer, that property is still true. Thus αi+1 is also irrational. Also, by definition αi+1 ∈
[0, 1); and because of irrationality it is also in the slightly smaller interval (0, 1).

Theorem 4.12. α : B → (0, 1) \Q is a bijection.

Proof. We start by showing that α is surjective. Therefore, let α ∈ (0, 1) \Q. Let αi be
defined as in definition 4.10. Define (bi)i∈ω by

bi+1 =

⌊
1

αi

⌋
(4.10)

We now show the following statement by induction over i:

α =
pi + αipi−1
qi + αiqi−1

For i = 0 we have

p0 + α0p−1
q0 + α0q−1

=
0 + α · 1
1 + α · 0

= α

Now let the statement be true for i. We show, that the statement is also true for i+ 1.
By (4.9) and (4.10), α−1i = αi+1 + bi+1 and thus

pi+1 + αi+1pi
qi+1 + αi+1qi

=

=α−1
i︷ ︸︸ ︷

(bi+1 + αi+1) pi + pi−1
(bi+1 + αi+1)︸ ︷︷ ︸

=α−1
i

qi + qi−1
expand by αi

=
pi + αipi−1
qi + αiqi−1

= α

So α ∈
[
pi
qi
, pi−1

qi−1

]
. As the sequence pi

qi
converges by lemma 4.9, α is its limit. In other

words α(b) = α and thus α is surjective.
We still have to show, that α is injective. Therefore, let b, c ∈ B and let b 6= c. Let k be
minimal, such that bk 6= ck. Without loss of generality, let bk > ck. Clearly pj(b) = pj(c)
and qj(b) = qj(c) for j < k. We also write pj and qj without parameter for such j in
what follows.

20

Then

pk(b)qk+1(c)− pk+1(c)qk(b) = pk(b)(ck+1qk(c) + qk−1)− (ck+1pk(c) + pk−1)qk(b)

= ck+1(pk(b)qk(c)− pk(c)qk(b)) + pk(b)qk−1 − pk−1qk(b)︸ ︷︷ ︸
=(−1)k+1

Calculating the subterm further, we get

pk(c)qk(b)− qk(c)pk(b)
=(ckpk−1 + pk−2)(bkqk−1 + qk−2)− (ckqk−1 + qk−2)(bkpk−1 + pk−2)

=(ck − bk)pk−1qk−2 + (bk − ck)pk−2qk−1
=(ck − bk)(pk−1qk−2 − pk−2qk−1)
=(ck − bk)(−1)k

Putting that into the original equation, we get

pk(b)qk+1(c)− pk+1(c)qk(b) = ck+1(bk − ck)(−1)k + (−1)k+1

= (−1)k(ck+1(bk − ck)− 1)

And dividing by qk+1(c)qk(b) leads to

pk(b)

qk(b)
− pk+1(c)

qk+1(c)
= (−1)k (

≥1︷︸︸︷
ck+1

≥1︷ ︸︸ ︷
(bk − ck)−1)︸ ︷︷ ︸
≥0

1

qk+1(c)qk(b)︸ ︷︷ ︸
>0

(4.11)

Case 1 k even. Then by lemma 4.7 pk(b)
qk(b)

< α(b) and pk+1(c)
qk+1(c)

> α(c) and by (4.11),
pk(b)
qk(b)

≥ pk+1(c)
qk+1(c)

, so α(b) > α(c).

Case 2 k odd. Then by lemma 4.7 pk(b)
qk(b)

> α(b) and pk+1(c)
qk+1(c)

< α(c) and by (4.11),
pk(b)
qk(b)

≤ pk+1(c)
qk+1(c)

, so α(b) < α(c).

Thus in all cases α(b) 6= α(c), so α is injective.

Definition 4.13. Let b ∈ B. Define the k-th difference βk(b) = qk(b)α(b) − pk(b) for
k ∈ ω and define gb : Lb → R by

gb(w) =
∑
i

wiβi(b)

Lemma 4.14. Let b ∈ B. Let αi be defined as in definition 4.10 with α = α(b). Then
for all k ≥ −1

βk(b) = (−1)k
k∏
j=0

αj

21

Proof. We prove this by induction over k. For k = −1, β−1 = 0 · α − 1 = −1 = (−1)−1

and for k = 0, β0 = q0α − p0 = α = (−1)0α0. Now let k ≥ 0 and let the statement be
true for k and k − 1. By (4.10) and (4.9), bk+1 = 1

αk
− αk+1. Then

βk+1 = qk+1α− pk+1

= qkbk+1α+ qk−1α− pkbk+1 − pk−1
= bk+1(qkα− pk) + (qk−1α− pk−1)
= bk+1βk + βk−1

=
1

αk
βk − αk+1βk + βk−1

Applying the induction hypothesis on k and k − 1 we have βk = −βk−1αk. Putting this
into the equation we can transform it further in the following way:

= βk−1(−1 + αkαk+1 + 1)

= βk−1αkαk+1

Applying the induction hypothesis on k − 1 on this shows the equation for k + 1 which
concludes the induction step.

Proposition 4.15. Let b ∈ B. Then gb(Lb) ⊆ [−α(b), 1−α(b))

Proof. Let w ∈ Lb. Let α = α(b) and we also write βi for βi(b). As βi ≥ 0 for even i
and βi ≤ 0 for odd i, we can estimate gb(w) in the following way

∞∑
i=0

w2i+1β2i+1 ≤ gb(w) ≤
∞∑
i=0

w2iβ2i

Furthermore

bi+1βi =

(
−αi+1 +

1

αi

)
βi = βi+1 − βi−1 (4.12)

Thus

∞∑
i=0

w2i+1β2i+1 >
∞∑
i=0

b2i+2β2i+1

= lim
k→∞

k∑
i=0

b2i+2β2i+1

= lim
k→∞

(β2k+2 − β0)

= (lim
k→∞

β2k+2︸ ︷︷ ︸
≥0

)− α

≥ −α

22

and

∞∑
i=0

w2iβ2i < (b1 − 1)β0 + lim
k→∞

k∑
i=1

b2i+1β2i

= (b1 − 1)β0 + lim
k→∞

β2k+1︸ ︷︷ ︸
≤0

−β1

≤ b1β0︸︷︷︸
β1−β−1

−β0 − β1

= −β−1 − β0 = 1− α

Remark 4.16. It is possible to extend Lb to some Mb ⊇ Lb and extend the domain of gb
to that set, such that gb : Mb → [−α(b), 1 − α(b)) is a bijection, see [5, fact 2.7]. This
fact can be used to generalize the statements here about characteristic Sturmian words
to all Sturmian words as has been done in [5]. We don’t do this in this thesis and restrict
ourselves to characteristic Sturmian words.

Lemma 4.17. limi→∞ βi = 0

Proof. We show that for all i ∈ ω the product αiαi+1 ≤ 1
2 . Together with lemma 4.14

this is enough to show the statement of this lemma. We distinguishing two cases:

Case 1 αi ≤ 1
2 . As αi+1 ≤ 1 by lemma 4.9, the statement follows immediately.

Case 2 αi >
1
2 . Then

1
αi
< 2, so

⌊
1
αi

⌋
= 1. Then

αiαi+1 = αi

 1

αi
−
⌊

1

αi

⌋
︸ ︷︷ ︸
=1

 = 1− αi <
1

2

Lemma 4.18. Let b ∈ B, w ∈ Lb and fb(w) > 0. Let k = mini{wi 6= 0}. Then

gb(w) < 0⇐⇒ k is odd

and
gb(w) > 0⇐⇒ k is even

Proof. We start by noting that by applying (4.12) in the following sum we get

∞∑
i=0

bk+1+2i+1βk+1+2i =
∞∑
i=0

(−βk+2i + βk+2i+2)

= −βk + lim
i→∞

βk+2i+2 = −βk

23

The last equation holds, because limi→∞ βi = 0.
First, let k be odd. In this case, the two equivalences simplify to gb(w) < 0 and gb(w) ≤ 0
respectively. The second inequality follows easily from the first, so it is enough to show
gb(w) < 0 in this case. Indeed, this is the case:

gb(w) = wk︸︷︷︸
≥1

βk︸︷︷︸
<0

+
∞∑
i=0

≤bk+1+2i+1︷ ︸︸ ︷
wk+1+2i βk+1+2i︸ ︷︷ ︸

<−βk

+
∞∑
i=0

wk+2+2iβk+2+2i︸ ︷︷ ︸
≤0

< βk − βk + 0 = 0

The inequality is strict because wk+1+2i = 0 < bk+1+2i+1 for large enough i (because of
property 1 of definition 4.1). The case where k is even can be shown similarly. In that
case, we need to show gb(w) > 0 and this is the case by an analogous calculation:

gb(w) = wk︸︷︷︸
≥1

βk︸︷︷︸
>0

+

∞∑
i=0

≤bk+1+2i+1︷ ︸︸ ︷
wk+1+2i βk+1+2i︸ ︷︷ ︸

>−βk

+
∞∑
i=0

wk+2+2iβk+2+2i︸ ︷︷ ︸
≥0

> βk − βk + 0 = 0

Lemma 4.19. Let b ∈ B,w ∈ Lb. Let α = α(b). Then

gb(w)− αfb(w) ∈ Z

Proof. We note, that βi − αqi = qiα− pi − αqi = −pi ∈ Z. Thus

gb(w)− αfb(w) =

∞∑
j=0

wi(βi(b)− αqi(b)) ∈ Z

Proposition 4.20. For all b ∈ B and n ∈ N+ the following equivalence holds:

cα(b)(n) = 1⇐⇒ gb(n) < 0

.

Proof. Let α = α(b). Note, that gb(n) < 0⇐⇒ bgb(n)c = −1, so we need to show, that

cα(n) = −bgb(n)c.

By lemma 4.19, there are w, v ∈ Z such that

gb(n) = αn+ w

gb(n+ 1) = α(n+ 1) + v

24

Thus

v − w = gb(n+ 1)− α(n+ 1)− gb(n) + αn

= gb(n+ 1)− gb(n)− α.

By proposition 4.15, we have

gb(n+ 1)− gb(n)

{
< (1− α)− (−α) = 1

> (−α)− (1− α) = −1
.

so v−w ∈ (−1−α, 1−α). As v−w ∈ Z, it follows that v−w = 0 or v−w = −1. Now

cα(n) = b(n+ 1)αc − bnαc
= bgb(n+ 1)− vc − bgb(n)− wc
= w − v + bgb(n+ 1)c − bgb(n)c.

Case 1 v − w = 0. Then gb(n + 1) = gb(n) + α ≥ −α + α = 0, so bgb(n+ 1)c = 0 and
thus

cα(n) = w − v + bgb(n+ 1)c − bgb(n)c = −bgb(n)c

Case 2 v−w = −1. Then gb(n+1) = gb(n)+α−1 < 1−α+α−1 = 0, so bgb(n+1)c = −1,
and thus in this case cα(n) = 1− 1− bgb(n)c = −bgb(n)c as well.

Together, we now have the prerequisites to show proposition 4.5.

Proof of proposition 4.5. The first part of the proposition was shown by theorem 4.12.
We recall the second part of the proposition. Let b ∈ B and n ∈ N+. Then proposition 4.5
states that the following equation holds:

cα(b)(n) = 1⇐⇒ min
i
{fb(n)i > 0} is odd

By proposition 4.20 we already know that cα(b)(n) = 1⇐⇒ gb(n) < 0 and by lemma 4.18
gb(n) < 0⇐⇒ mini{fb(n)i > 0} is odd. Thus, the whole equivalence holds.

5. Addition of numbers in Ostrowski representations

The goal of this section is to construct a Buchi automaton that takes b ∈ B as well as 3
natural numbers x, y and z in the b-Ostrowski representation as input and accepts these
only when x+ y = z. To do this, we first need to clarify how exactly to represent b, x, y
and z.

25

5.1. Representation with a finite alphabet

To be able to apply the theorems about ω-regular structures, we need to represent the
Ostrowski representation as an ω-word with a finite alphabet. So far, we represented a
number in Ostrowski representation as an element of Lb ⊆ Nω, where the alphabet is not
finite. When {bi : i ∈ N+} is bounded, Lb only contains a finite number of symbols, but
when it’s not bounded – for example take bi = i – then Lb really contains all N (that is
{l | ∃w ∈ Lb ∃j wj = l} = N). Additionally, we also want to make some propositions
about all Sturmian words, and for those we also need a way to represent them all with
a finite alphabet. It would not be enough, that the number of digits needed for an
individual Ostrowski numeration system is finite.
To work around this, we will represent the individual digits of the Ostrowski represen-
tation by binary numbers. As we represent an individual Ostrowski digit by multiple
binary digits, we use an additional marker to recognize where the next Ostrowski digit
starts. This idea is taken from [5, Section 3 #-binary encoding].

Definition 5.1. Fix Σ = {0, 1,#}. Let

K = {w ∈ Σω | w0 = #, {j | wj = #} is infinite} .

For w ∈ K, let pw : N→ ω s.t. pw(n) is the position of the n+ 1-st occurance of # in w.
Note, that pw(0) = 0 for any w ∈ K. Define g : K → Nω by

g(w)i =

pw(i+1)−pw(i)−2∑
j=0

2jwpw(i)+1+j

That is, g(w)i is the number written between the (i+ 1)-st and (i+ 2)-nd #, interpreted
as binary number in least-significant-digit-first notation. We call two words w, v ∈ K
aligned, when pw = pv.

We note that g is surjective, but not injective.

Definition 5.2. Let D = {w ∈ K : ∀i ∈ ω(wi+1 = # =⇒ wi = 1)}, that is D is the
subset of K where each # except for the first one is preceeded by 1.7 Define µ : D → B
by

µ(w)i = g(w)i−1

Theorem 5.3. µ is well-defined and bijective.

Proof. Let w ∈ D. Then

µ(w)i =

pw(i+1)−1∑
j=pw(i)+1

2j−pw(i)−1wj ≥ 2

≥0︷ ︸︸ ︷
pw(i+ 1)− pw(i)− 2wpw(i+1)−1︸ ︷︷ ︸

=1

≥ 1

7The definition of D is slightly different than the definition of R in [5, section 3.1] which this definition
is based on. We restrict D a bit more such that µ becomes injective. This makes some arguments
easier, as we don’t need to consider equivalence classes of aligned words. Also, the automaton to
recognize D is slightly easier this way.

26

#

0

1

1

#

0

1

1
0#

Figure 4: automata recognizing K(left) and D(right)

So µ(w) ∈ B. The mapping is also bijective, because the mapping of the individual
allowed words between # signs to N+

{u ∈ {0, 1}∗ : |u| ≥ 1, u|u|−1 = 1} → N+

u 7→
|u|−1∑
i=0

2iui

is a bijection.

Theorem 5.4. K and D are ω-regular.

Proof. K and D are recognized by the automata in figure 4.

We have now transformed B to this finite alphabet, the next step is to also transform Lb
accordingly

Definition 5.5. Let d ∈ D. Define Ud = {w ∈ K | g(w) ∈ Lµ(d) ∧ pw = pd}.

Proposition 5.6. Let d ∈ D. Then g : Ud → Lµ(d) is a bijection.

Proof. g(Ud) ⊆ Lµ(d) by definition. It is injective by the restriction to words that are
aligned with d. For surjectivity, let w ∈ Lµ(d). Then wi ≤ µ(d)i+1. Then the 2-digit
representation of wi fits into pd(i+ 1)− pd(i)− 1 digits, as µ(d)i+1 = gi(d) also fits into
that. Thus, there is u ∈ K with g(u) = w and pu = pd.

Proposition 5.7. Let U = {(d,w) ∈ D×K | w ∈ Ud}. Let Ū = (i 7→ (di, wi)). Then Ū
is K-compatible with U and Ū is ω-regular.

Proof. Ū is K-compatible with U by definition. Ū is recognized by the automaton in
figure 5 and is thus ω-regular. The different states of this automaton relate to the different
properties of Lb defined in definition 4.1. F and F’ ensure the first property, that the
number is eventually 0. Properties 2-4 are ensured by the rest of the automaton. The
< and = states ensure, that wi < bi+1 whenever a path through < is taken. The 0 and
0′ states can only be taken, when they are followed by a number where wi = bi+1 in the
= state. This ensures, that wi = bi+1 is also possible, but only when wi−1 = 0. The
automaton also ensures, that the first component is in D.

Definition 5.8. Let d ∈ D. Define the bijection hd : Ud → N by hd = fµ(d) ◦ g.

27

S

<

=

0 0’

F’F

(#,#)

(#
,#)

(1,
0)

(1,0)

(0,0)
(1,0)

(0,0)
(0,1)
(1,0)
(1,1)

(#,#)

(0,0)
(1,1)

(1,0)

(1,1)

(#,#)

(1,0)
(0,0)

(1,0)

(#,#)

Figure 5: An automaton recognizing Ū

5.2. Addition on Lb

Let b ∈ B and let x, y, z ∈ Lb. We want to work towards an automaton, that can
recognize if fb(x) + fb(y) = fb(z). Therefore, set u ∈ Zω by uj = xj + yj − zj . Then
{i | ui 6= 0} is finite and

fb(x) + fb(y) = fb(z)⇐⇒
∑
j

ujqj(b) = 0 (5.1)

Now let n = maxi{(xi, yi, zi) 6= (0, 0, 0)}. We define two sequences rk, sk ∈ Z for k ∈ ω
recursively, s.t. the following invariant holds for all k ∈ ω:∑

j≥k
ujqj = rkqk + skqk−1 (5.2)

The idea of considering this equation is taken from [3, Section 2.2], but I have added a
few ideas of my own here, too. Notably, we take a slightly different sum here, s.t. the
definition of (ri, si) is also useful when fb(x) + fb(y) 6= fb(z).8

For all k > n we can fulfill this equation by setting rk = sk = 0. For k < n we can then
define rk, sk recursively, s.t. the equation is fulfilled. Let rk+1, sk+1 already be defined,

8We also switched r and s here compared to [3], so r here is s there and the other way around

28

s.t. (5.2) holds for k + 1. To motivate our choice for rk, sk, let’s see what choices there
are to make the invariant hold:

ukqk +
∑
j≥k+1

ujqj =
∑
j≥k

ujqj

⇐⇒ ukqk + rk+1qk+1 + sk+1qk = rkqk + skqk−1

⇐⇒ ukqk + rk+1bk+1qk + rk+1qk−1 + sk+1qk = rkqk + skqk−1

⇐⇒ (uk + rk+1bk+1 + sk+1 − rk)qk = (sk − rk+1)qk−1

This equation has multiple solutions for rk, sk, but setting both sides of this equation to
0 is a natural and easy choice.9 We will use this and define rk, sk in the following way:

Definition 5.9. Define sequences (rk, sk)k∈ω (depending on the choice of b, x, y, z) re-
cursively by rk = sk = 0 for k > n = maxi{(xi, yi, zi) 6= (0, 0, 0)} and

sk = rk+1 (5.3)
rk = uk + rk+1bk+1 + sk+1 (5.4)

for 0 ≤ k ≤ n.

Then (5.2) holds and applying it to k = 0 leads to∑
j≥0

qjuj = r0q0 + s0q−1 = r0.

Thus, we can rephrase (5.1) to

fb(x) + fb(y) = fb(z)⇐⇒ r0 = 0 (5.5)

Lemma 5.10. Let fb(x) + fb(y) = fb(z). Then for all i ∈ ω ri, si ∈ {−1, 0,+1}.

Proof. The proof here is written in my own words and adapted to the notation used here,
but highly influenced by [3, theorem 4] which contains a proof of the same statement. We
show it by induction over i. For i > n, ri = si = 0 ∈ {−1, 0,+1}. Now let the statement
be true for i + 1, that is ri+1, si+1 ∈ {−1, 0, 1}. We show that ri, si ∈ {−1, 0,+1}. By
(5.3) si = ri+1 ∈ {−1, 0,+1}. It’s left to show that ri ∈ {−1, 0,+1}. By lemma 4.2,∑

j≤k−1 xj < qk and the same is true when replacing x in that inequality with y and z.
Thus,

− qk + 1 ≤
∑
j≤k−1

ujqj ≤ 2qk − 2 (5.6)

9In [3, Proof of Proposition 3], it is argued that because qk and qk−1 are coprime, both sides have to
be zero; but I couldn’t follow that argument, as tqkqk−1 with t ∈ Z would be possible as well. It is
also not necessary as we can pick t = 0.

29

By the prerequisites of this lemma,
∑

j qjuj = 0, so∑
j≤k−1

ujqj = −
∑
j≥k

ujqj

= −ukqk −
∑
j≥k+1

ujqj

= −ukqk − rk+1qk+1 − sk+1qk

= −ukqk − rk+1bk+1qk − rk+1qk−1 − sk+1qk

= −(uk + rk+1bk+1 + sk+1)qk − rk+1qk−1

= −rkqk − rk+1qk−1 (5.7)

Putting (5.7) into (5.6) we get

−qk + 1 ≤ −rkqk − rk+1qk−1

=⇒ rkqk ≤ qk − 1− rk+1︸︷︷︸
≥−1

qk−1

≤ qk − 1 + qk−1︸︷︷︸
≤qk

≤ 2qk − 1 < 2qk

=⇒ rk < 2

In the other direction, we have

−rkqk − rk+1qk−1 ≤ 2qk − 2

=⇒ rkqk ≥ −rk+1qk−1 − 2qk + 2 (5.8)

Case 1 rk+1 ≤ 0. In this case rkqk ≥ −2qk + 2 > −2qk =⇒ rk > −2.

Case 2 rk+1 = 1. Then rkqk ≥ −qk−1 − 2qk + 2 ≥ −3qk + 2 > −3qk =⇒ rk > −3. Now
assume rk = −2. Then by (5.4)

−2 = uk + bk+1 + sk+1

=⇒ uk = −2− bk+1 − sk+1 ≤ −bk+1 − 1

But uk = xk + yk − zk ≥ −zk ≥ −bk+1 which contradicts the assumption. Thus,
also in this case, rk > −2.

In total, we have −2 < rk < 2, so rk ∈ {−1, 0, 1} as well.

Proposition 5.11. Let fb(x) + fb(y) = fb(z). Then for all i ∈ ω

(ri, si) ∈ {(0, 0), (0, 1), (0,−1), (−1, 0), (−1, 1), (−1,−1), (1,−1)}

30

Proof. This proof here is influenced by [3, Section 2.3], which also contains a proof of
this statement. By lemma 5.10, (ri, si) ∈ {−1, 0, 1} × {−1, 0, 1}. It is left to show that
(ri, si) 6= (1, 0) and (ri, si) 6= (1, 1).
We show this by contradiction, therefore let’s assume that there is some b ∈ B, i ∈ ω
with fb(x) + fb(y) = fb(z), ri = 1 and si ∈ {0, 1}. Pick the minimal i such that this is
the case. Then i > 0 as r0 = 0 by (5.5). Thus, by (5.4)

ri−1 = ui−1 + ribi + si = ui−1︸︷︷︸
≥−bi

+bi + si ≥ si ≥ 0

As ri−1 ≤ 1 by lemma 5.10, it follows that ri−1 ∈ {0, 1}.

Case 1 ri−1 = 1. By (5.3) si−1 = ri = 1, so (ri−1, si−1) = (1, 1) in this case. But that
means, that i is not minimal with that property, so this can’t be the case.

Case 2 ri−1 = 0. Then si = 0 and ui−1 = −bi. This is only possible when xi−1 =
0, yi−1 = 0, zi−1 = bi. Then i ≥ 2, zi−2 = 0 and by (5.2)

i−2∑
j=0

ujqj = −ri−1qi−1 − si−1qi−2 = −qi−2

On the other hand,
i−2∑
j=0

ujqj ≥ −
i−2∑
j=0

zjqj = −
i−3∑
j=0

zjqj︸ ︷︷ ︸
<qi−2

− zi−2︸︷︷︸
=0

qi−2 > −qi−2

So this case is also not possible.

This completes the proof by contradiction.

5.3. Addition on Ud

So far, we assigned tuples (r, s) to positions of w ∈ Lb. Our automaton will work on
Uµ−1(b) instead of Lb. This inspires the following definition 5.14. The idea of doing the
definition in the way it is done here and all the further statements in this section are my
own ideas.

Definition 5.12. Let d ∈ D. We define the function

td(n) = |{i < n | di = #}|

to be the number of occurrences of # before position n in d.

Lemma 5.13. Let d ∈ D. Then for any m ∈ N

td(pd(m)) = m

and for any n ∈ N
pd(td(n)) ≥ n.

31

di # 1 # 0 1 # 1 1 # 0 0 1 # 1 # 1 #
td(i) 0 1 1 2 2 2 3 3 3 4 4 4 4 5 5 6 6

pd(td(i)) 0 2 2 5 5 5 8 8 8 12 12 12 12 14 14 16 16
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6: td(i) and pd(td(i)) for an exemplary d ∈ D

Proof. By definition, pd(m) is the position of them+1-st occurrence of #. So dpd(m) = #
and {i < pd(m) | di = #} = m. For the second statement, note that pd(m) is the largest
number n′, s.t. |{i < n′ | di = #}| = m. So with m = td(n) we get n′ ≥ n. Intuitively,
this can also be seen in the example in figure 6.

Definition 5.14. Let d ∈ D and let x, y, z ∈ Ud. Let ri, si be sequences as defined
in definition 5.9 on µ(d), g(x), g(y) and g(z). We define sequences (r(i), s(i), c(i))i∈ω as
follows

r(i) = rtd(i) (5.9)

s(i) = std(i) (5.10)

c(i) = −
pd(td(i))−1∑

j=i

2j−i(rtd(j)dj + xj + yj − zj) (5.11)

Lemma 5.15. For any i ∈ ω

c(pd(i)) = 0

c(pd(i)+1) = si+1 − ri

Proof. For the first statement, pd(td(pd(i))) = pd(i) and thus the sum in (5.11) has no
summands and c(pd(i)) = 0. For the second statement, td(pd(i) + 1) = i+ 1 and thus

c(pd(i)+1) = −
pd(i+1)−1∑
j=pd(i)+1

2j−pd(i)−1(ri+1dj + xj + yj − zj)

= −(ri+1µ(d)i+1 + g(x)i + g(y)i − g(z)i)

= −(g(x)i + g(y)i − g(z)i + ri+1µ(d)i+1 + si+1︸ ︷︷ ︸
=ri by (5.4)

) + si+1

= si+1 − ri

Proposition 5.16. Let d ∈ D, x, y, z ∈ Ud. Then for i ∈ ω with di 6= #

r(i+1) = r(i) s(i+1) = s(i) c(i+1) =
1

2

(
c(i) + r(i)di + xi + yi − zi

)
(5.12)

32

and for i ∈ ω with di = #, the following holds

r(i+1) = s(i) c(i+1) = s(i+1) − r(i) c(i) = 0 (5.13)

Furthermore, when hd(x) + hd(y) = hd(z) also

r(0) = 0 c(1) = s(1) (5.14)

Proof. We start by showing (5.12). Let i ∈ ω with di 6= #. Then td(i + 1) = td(i)
and thus r(i+1) = rtd(i+1) = rtd(i) = r(i) and with the same argument s(i+1) = s(i).
Furthermore

c(i) = −
pd(td(i))−1∑

j=i

2j−i(rtd(i)di + xi + yi − zi)

= −2i−i(rtd(i)di + xi + yi − zi) +

− pd(td(i))−1∑
j=i+1

2j−i(rtd(j)dd + xj + yj − zj)


︸ ︷︷ ︸

=2c(i+1)

= −(r(i)di + xi + yi − zi) + 2c(i+1)

Solving this equation for c(i+1) leads to the right-most equation of (5.12).
Now let di = #. Then td(i+1) = td(i)+1 and thus by (5.3) r(i+1) = rtd(i+1) = rtd(i)+1 =

std(i) = s(i). The other two equations of (5.13) follow directly from lemma 5.15 applied
to td(i). It can be applied like this because di = # and thus pd(td(i)) = i.
For the last part of the proposition, d0 = # and r(0) = rtd(0) = r0 = 0 by (5.5). Then by
(5.13) applied to i = 0 we have c(1) = s(1) − r(0) = s(1) − 0 = s(1).

Lemma 5.17. Let hd(x) + hd(y) = hd(z). Then for all i the following holds

1. (r(i), s(i)) ∈ {(0, 0), (0, 1), (0,−1), (−1, 0), (−1, 1), (−1,−1), (1,−1)}

2. c(i) ∈ {−2,−1, 0, 1, 2}

Proof. The first statement follows directly from the definition and proposition 5.11. We
prove the second statement by induction over i. So let the statement be true for all j ≤ i.
We prove the statement for i by a case-by-case analysis.

Case 1 i = 0. In this case pd(0) = 0 and thus by lemma 5.15, c(0) = 0.

Case 2 i ≥ 1 and di−1 = #. Then by (5.13), |c(i)| = |s(i) − r(i−1)| ≤ 2

Case 3 i ≥ 1 and di−1 6= #. Then by (5.12)

c(i) =
1

2

(
c(i−1) + r(i−1)di−1 + xi−1 + yi−1 − zi−1

)
{
≤ 1

2 (2 + (+1) · 1 + 1 + 1− 0) = 5
2

≥ 1
2 (−2 + (−1) · 1 + 0 + 0− 1) = −4

2

So −2 ≤ c(i) ≤ 21
2 and because c(i) ∈ Z it follows that c(i) ∈ {−2,−1, 0, 1, 2}.

33

0,1
1

0,1
2

0,1
0

0,0
0

0,0
1

0,-1
-1

0,-1
1

0,-1
0

-1,0
0

-1,0
1

-1,0
-1

-1,-1
-1

-1,-1
0

-1,-1
1

-1,-1
-2

-1,1
-1

-1,1
0

-1,1
2

-1,1
1

1,-1
0

1,-1
1

1,-1
2

1,-1
-1

S

Figure 7: Addition automaton showing only edges labeled (#,#,#,#). All other edges
go from (r, s, c) to (r′, s′, c′) with (r, s) = (r′, s′). These are shown in figure 8.

Lemma 5.18. Let d ∈ D, x, y, z ∈ Ud. Let (r̄(i), s̄(i), c̄(i))i∈ω be a sequence that conforms
to (5.12) and (5.13). Furthermore, let there be a k such that (r̄(i), s̄(i), c̄(i)) = (0, 0, 0) for
all i > k. Then (r̄(i), s̄(i), c̄(i)) = (r(i), s(i), c(i)) for all i ∈ N.

Proof. Let n = maxi((g(x)i, g(y)i, g(z)i) 6= (0, 0, 0)). Then for all j > n we have
(rj , sj) = (0, 0) by definition 5.9. Let m = max(pb(n + 1), k). For any j ≥ m we
have (r̄(j), s̄(j), c̄(j)) = (0, 0, 0). Furthermore by definition 5.14 we have r(j) = rtd(j)︸︷︷︸

≥n+1

= 0

and s(j) = std(j) = 0 as well. Also,

c(j) = −
pd(td(j))−1∑

k=j

2k−j

rtd(k)︸ ︷︷ ︸
=0

dk + xk︸︷︷︸
=0

+ yk︸︷︷︸
=0

− zk︸︷︷︸
=0

 = 0

So for all j ≥ m we have (r̄(j), s̄(j), c̄(j)) = (r(j), s(j), c(j)). We now show by induction,
that this equation holds for all j. Let the statement already hold for j+ 1. We show the
statement for j. We show this statement separately in these 2 cases.

Case 1 dj 6= #. Then by (5.12) r(j) = r(j+1) = r̄(j+1) = r̄(j). With the same argument
s(j) = s̄(j). Solving the right equation in (5.12) for c(i) and substituting i for j we
get

c(j) = 2(c(j+1) − r(j)dj − xj − yj + zj)

34

r, s
-2

r, s
-1

r, s
0

r, s
1

r, s
2

2

0

-2 -1

1

3

2

0

-2

-1

1

3

-2

0

2

Figure 8: Edges of the form (d, x, y, z) with d, x, y, z ∈ {0, 1}. Edges labeled with v
contain all symbols (d, x, y, z) such that rd+ x+ y − z = v. The dotted edges
only exist for some values of r. v = 3 is only possible for r = 1 and v = −2 is
only possible for r = −1.

and
c̄(j) = 2(c̄(j+1) − r̄(j)dj − xj − yj + zj)

As c(j+1) = c̄(j+1) by the induction hypothesis and r(j) = r̄(j) by the argument
above, the right sides of these 2 equations are the same. Thus c(j) = c̄(j) as well.

Case 2 dj = #. Then by (5.13) s(j) = r(j+1) = r̄(j+1) = s̄(j), r(j) = c(j+1) + s(j+1) =
c̄(j+1) + s̄(j+1) = r̄(j) and c(j) = 0 = c̄(j).

5.4. A Buchi automaton recognizing addition on Ud

We now construct a Buchi automaton B on Σ4, such that for all d ∈ D,x, y, z ∈ Ud

hd(x) + hd(y) = hd(z)⇐⇒ B accepts (i 7→ (di, xi, yi, zi))

We do this by constructing an automaton with states labeled by (r, s, c) where r, s, c
are bounded as in lemma 5.17, which gives us our states S ⊆ {−1, 0, 1} × {−1, 0, 1} ×
{−2,−1, 0, 1, 2}. Let’s define the transition relation T ⊆ S × {0, 1,#}4 × S. Proposi-
tion 5.16 shows which transitions we need to add.
(5.13) show us which transitions on (#,#,#,#) we need to add:

((r, s, c), (#,#,#,#), (r′, s′, c′)) ∈ T ⇐⇒ r′ = s ∧ c = 0 ∧ c′ = s′ − r

That is, we add transitions from (r, s, 0) to (s, t, t− r) labeled (#,#,#,#).
In addition, we add transitions of the form

((r, s, c), (d, x, y, z), (r, s, c′))

for which c+rd+x+y−z = 2c′, as we can see from (5.12). From the resulting automaton
we can remove some states that don’t have any incoming transitions.

35

By definition 5.9, there is some k > 0, such that rj = sj = 0 for all j > k. Thus by
definition 5.14 and lemma 5.15, (r(pd(j)), s(pd(j)), c(pd(j))) = (0, 0, 0) for all j > k. This
inspires the choice to set (0, 0, 0) to be the only final state.
Now let hd(x) + hd(y) = hd(z). Then c(1) = s(1) by (5.14), thus the possible values for
(r(1), s(1), c(1)) are of the form (r, s, s). We add an initial state to the automaton with
transitions labeled (#,#,#,#) to all the 7 states of this form.
The final automaton has 24 states. It is displayed in figure 7. Figure 7 shows only the
transitions of the form (#,#,#,#), the remaining transitions are shown in figure 8.

Theorem 5.19. Let d ∈ D,x, y, z ∈ Ud. Then the adder automaton accepts (i 7→
(di, xi, yi, zi)) if and only if hd(x) + hd(y) = hd(z).

Proof. First, let the adder automaton accept (i 7→ (di, xi, yi, zi)). Then there is an
accepting run σ. Set (r̄(k), s̄(k), c̄(k)) = σ(k) for k ≥ 1 and (r̄(0), s̄(0), c̄(0)) = (0, r̄(1), 0).
Then (5.12) and (5.13) hold for this sequence by the definition of the automaton for
k ≥ 1. For k = 0 this is slightly harder to see. As d0 = # we need to show the 3
equations of (5.13) for k = 0. The first one, r̄(1) = s̄(0), holds by the definition of s̄(0).
The outgoing transitions from the initial state go to states of the form (r, s, s), so we have
c̄(1) = s̄(1). Thus, c̄(1) = s̄(1) = s̄(1) − r̄(0) as r̄(0) = 0 by definition. This is the second
equation of (5.13). The third equation, c̄(0) = 0 holds by definition. Together, (5.12) and
(5.13) hold for the whole sequence. Furthermore, as x, y, z ∈ Ud there is a k ∈ N such
that (xj , yj , zj) ∈ {(0, 0, 0), (#,#,#)} for all j > k. As (0, 0, 0) is the only final state of
the adder automaton, there is a l > k, such that σ(l) = (0, 0, 0). We show σ(j) = (0, 0, 0)
for all j > l as well. We show this by contradiction. Consider that there is j > l with
σ(j) 6= (0, 0, 0). Let j be minimal with that property. Then σ(j − 1) = (0, 0, 0) and
σ(j) 6= (0, 0, 0). We do a case-by-case analysis:

Case 1 (xj−1, yj−1, zj−1) = (0, 0, 0). Then dj−1 ∈ {0, 1} and by (5.12) we have

c̄(j) =
1

2

c̄(j−1)︸ ︷︷ ︸
=0

+ r̄(j−1)︸ ︷︷ ︸
=0

dj−1 + xj−1︸︷︷︸
=0

+ yj−1︸︷︷︸
=0

− zj−1︸︷︷︸
=0

 = 0.

Also r̄(j) = r̄(j−1) = 0 and s̄(j) = s̄(j−1) = 0, so σ(j) = (0, 0, 0) which is a
contradiction.

Case 2 (xj−1, yj−1, zj−1) = (#,#,#). Then dj−1 = # as well. Then by (5.13) we have
c̄(j) = s̄(j) − r̄(j−1) = s̄(j) and r̄(j) = s̄(j−1) = 0. We know, that dj 6= # and thus
by (5.13) we have

2c̄(j+1) = c̄(j) + r̄(j)dj + xj + yj − zj = s̄(j) + 0 · dj + 0 + 0− 0 = s̄(j).

So 2|s̄(j) and as s̄(j) ∈ {−1, 0, 1} it follows that s̄(j) = 0. Also, c̄(j) = s̄(j) = 0 and
r̄(j) = s̄(j−1) = 0. Thus, we have a contradiction in this case as well.

We conclude, that (r̄(j), s̄(j), c̄(j)) = (0, 0, 0) for all j > l. We now have all the prerequi-
sites to apply lemma 5.18 and we get r0 = r(0) = r̄(0) = 0. Then by (5.5) the addition
equality holds.

36

even odd F

#

#

1

0 0

0
1
#

0

#

Figure 9: Automata recognizing 0(left) and recognizing if a word in Ostrowski represen-
tation is Sturmian(right)

Conversely, let hd(x) + hd(y) = hd(z). Then

σ(i) =

{
(r(i), s(i), c(i)) i ≥ 1

S i = 0

is an accepting run by construction of the automaton and proposition 5.16.

5.5. Application to Sturmian words

With the definitions done so far, we construct a structure with a decidable theory now.
Let L0 ⊆ Σω, Lc ⊆ Σω be the languages of the Buchi automata given in figure 9 and let
L+ ⊆ (Σ4)ω be the language of the addition automaton constructed in the last section.

Definition 5.20. Define the signature S = {D,U, 0, c,+} with ar(D) = 1, ar(U) =
2, ar(0) = ar(c) = 1, ar(+) = 4. We define the S-structure K

K = (Σω, DK, UK, 0K, cK,+K).

with the following definitions for the relation interpretations:

DK = D as defined in definition 5.2

UK = U as defined in proposition 5.7

0K = L0

cK = Lc

+K = {(a, x, y, z) | (i 7→ (ai, xi, yi, zi)) ∈ L+}

Proposition 5.21. K has a decidable theory.

Proof. Σω is clearly ω-regular. D is ω-regular by theorem 5.4. U is Σω-compatible with
Ū which is ω-regular by proposition 5.7. 0K = L0, cK = Lc and +K is Σω-compatible
with L+. L0, Lc and L+ are all ω-regular by construction. Thus by theorem 3.3 K has
a decidable theory.

37

From the decidability of the theory of K we can follow the more natural statement,
that the combined theory of Presburger arithmetic with characteristic Sturmian words
is decidable.

Theorem 5.22. Let S′ = {+, 0, c} be the signature of Presburger arithmetic together with
a unary relation symbol. That is ar(0) = ar(c) = 1, ar(+) = 3. Let Mα = (N, {(x, y, z) ∈
N3 | x + y = z}, {0}, {n | cα(n) = 1}) be the S′-structure where c is mapped to the
characteristic Sturmian word with slope α. Let T = {φ ∈ F (S′) | free(φ) = ∅,∀α ∈
(0, 1) \Q Mα |= φ} be the combined theory. Then T is decidable.

Proof. The idea is to transform formulas φ ∈ F(S′) into formulas ψ ∈ F(S), such that
K |= ψ ⇐⇒ φ ∈ T . As K has a decidable theory, doing this transformation in a
computable way is enough to show this theorem.
We start by defining helper mappings uj : F (S′) → F (S). For this helper mapping, the
following invariant should hold:

Let ϕ ∈ F (S′) and j ∈ ω. Let vj not appear anywhere in ϕ (not even
inside some ∃). Let free(ϕ) = {vi1 , . . . , vin}. Then for all α ∈ (0, 1) \ Q and
m1, . . . ,mn ∈ N the following equivalence holds:

Mα
m1, . . . ,mn

vi1 , . . . , vin
|= ϕ⇐⇒ K d

vj

h−1d (m1) . . . h
−1
d (mn)

vi1 . . . vin
|= uj(ϕ) (5.15)

where d = µ−1(α−1(α)).

We define uj by recursion over the complexity of the formula and start with the atomic
formulas.

uj(vi ≡ vk) := vi ≡ vk
uj(+(vi, vk, vl)) := +(vj , vi, vk, vl)

uj(0(vi)) := 0(vi)

uj(c(vi)) := c(vi)

We show for these atomic formulas, that (5.15) holds, starting with ϕ = vi ≡ vk:

Mα
m1,m2

vi, . . . , vk
|= vi ≡ vk ⇐⇒ m1 = m2 ⇐⇒ h−1d (m1) = h−1d (m2)

⇐⇒ K d

vj

h−1d (m1), h
−1
d (m2)

vi, vk
|= vi ≡ vk

Next, let’s consider ϕ = +(vi, vk, vl). In this case

Mα
m1, ,m2,m3

vi, vk, vl
|= +(vi, vk, vl)⇐⇒ m1 +m2 = m3

⇐⇒ hd(h
−1
d (m1)) + hd(h

−1
d (m2)) = hd(h

−1
d (m3))

⇐⇒ (d, h−1d (m1), h
−1
d (m2), h

−1
d (m3)) ∈ +K by theorem 5.19

⇐⇒ K d

vj

h−1d (m1), h
−1
d (m2), h

−1
d (m3)

vi, vk, vl
|= +(vj , vi, vk, vl)

38

When ϕ = 0(vi), (5.15) holds as well:

Mα
m1

vi
|= 0(vi)⇐⇒ m1 = 0⇐⇒ h−1d (m1) ∈ L0 ⇐⇒ K

d

vj

h−1d (m1)

vi
|= 0(vi)

Let’s also consider the last case of an atomic formula, where ϕ = c(vi). Then

Mα
m1

vi
|= c(vi)⇐⇒ cα(m1) = 1

⇐⇒ cα(m1) = 1

⇐⇒ min
k
{f−1µ(d)(m1)k > 0} is odd by proposition 4.5

⇐⇒ td(min
k
{h−1d (m1)k = 1}) is odd

⇐⇒ h−1d (m1) ∈ Lc

⇐⇒ K d

vj

h−1d (m1)

vi
|= c(vi)

Let the mapping now be already defined for ϕ and φ. Then we recursively define uj

uj(ϕ ∧ φ) := uj(ϕ) ∧ uj(φ)

uj(ϕ ∨ φ) := uj(ϕ) ∨ uj(φ)

uj(¬ϕ) := ¬uj(ϕ)

uj(∃viφ) := ∃vi(U(vj , vi) ∧ uj(φ))

We now show, that (5.15) holds for all formulas. We do this by induction over the
complexity of the formula. For atomic formulas, we already showed above, that (5.15)
holds. For the first three of recursive definitions, it’s easy to see that (5.15) holds. We
show it for the last case, as that is a bit more complicated. Therefore, let (5.15) hold
already for φ. We show it for ϕ = ∃vi1φ:

Mα
m1 . . .mn

vi1 . . . vin
|= ∃vkφ

⇐⇒ there exists m ∈ N s.t. Mα
m

vk

m1 . . .mn

vi1 . . . vin
|= φ

⇐⇒ there exists m ∈ N s.t. K d

vj

h−1d (m)

vk

h−1d (m1) . . . h
−1
d (mn)

vi1 . . . vin
|= uj(φ)

⇐⇒ there exists m ∈ Ud s.t. K d

vj

m

vk

h−1d (m1) . . . h
−1
d (mn)

vi1 . . . vin
|= uj(φ) (5.16)

Now Ud ⊆ Σω and for m ∈ Σω

m ∈ Ud ⇐⇒ (d,m) ∈ Ū ⇐⇒ K d

vj

m

vk
|= U(vj , vk)

39

and we can further equivalently reformulate (5.16) to

⇐⇒ there exists m ∈ Σω s.t. K d

vj

m

vk

h−1d (m1) . . . h
−1
d (mn)

vi1 . . . vin
|= U(vj , vk) ∧ uj(φ)

⇐⇒ K d

vj

h−1d (m1) . . . h
−1
d (mn)

vi1 . . . vin
|= ∃vk(U(vj , vk) ∧ uj(φ))

Now let φ ∈ F(S′) be a sentence. Let j ∈ ω be minimal such that vj is not appearing
anywhere in φ. Then we define ψ ∈ F(S) by

ψ = ¬∃vj(D(vj) ∧ ¬uj(φ))

Then K |= ψ ⇐⇒ φ ∈ T as the following calculation shows:

K |= ψ ⇐⇒ there is no b ∈ Σω s.t. d ∈ D and K d

vj
6|= uj(φ)

⇐⇒ there is no α ∈ (0, 1) \Q Kµ
−1(α−1(α))

vj
6|= uj(φ)

⇐⇒ there is no α ∈ (0, 1) \Q Mα 6|= φ

⇐⇒ for all α ∈ (0, 1) \Q Mα |= φ

⇐⇒ φ ∈ T

6. Proving theorems in practice

We have now shown, that the theory of K is decidable. Thus we know that there is an
algorithm, that can check for a formula ϕ if it holds in K or not. But can we also run
such an algorithm in practice? Pecan is a software that can be used to show statements
about ω-regular structures and implements the ideas outlined in section 3.2 in a software
program. We will start by giving a short introduction into it and then use it to show some
statements. We will use it to get more confidence that the adder automaton constructed
in the last section is indeed correct and also use it to show that characterstic Sturmian
words are never eventually periodic. We will also analyze the possibilities and limits of
this approach in general and Pecan specifically.

6.1. Introduction to Pecan

Pecan is a software that can be used to check properties of formulas in practice. More
information about Pecan can be found in [9]. The code of Pecan is available on Github
at https://github.com/ReedOei/Pecan. A manual is also available there. Pecan im-
plements the decision algorithm as outlined in section 3.2. It is influenced by Walnut,
but works with automata on infinite words instead of on finite words. Pecan is writ-
ten in Python. It uses Spot[1], a library written in C++, to represent and manipulate
automata. All the complicated and resource-intensive computation that is needed to
manipulate automata is done in this layer.

40

https://github.com/ReedOei/Pecan

Spot uses a set of atomic propositions to represent the input alphabet. As a result,
the cardinality of the alphabet is always a power of 2. Having n atomic propositions
a1, . . . , an, the input alphabet consists of all the variations of

∧n
i=1 (¬)ai. Edges are not

labeled directly with letters from this alphabet, but instead with boolean formulas on
the atomic propositions. This makes operations like projection easier. To project some
part of the alphabet away, just leave out some of the atomic propositions. Combinations
of multiple automata is also easier this way. It also helps in having fewer edges. But it
also means, that the 3-letter alphabet needed to represent our Ostrowski numbers need
2 atomic proposition to have enough space (plus another two for the definition of the
actual Ostrowski representation used).
Pecan allows to represent one variable by multiple such atomic propositions in the un-
derlying representation in Spot. A variable can only be used at a place where a variable
with the same number of atomic propositions is expected. This helps abstracting the
underlying representation away, but it still sometimes “leaks” through the abstraction
and may thus be good to understand.
Spot can represent automata with various acceptance conditions. In general, every tran-
sition is labeled with a finite amount of colors. The acceptance condition can then be
formulated as a boolean formula on the expression Inf(color) and Fin(color), which
means that the particular color is only finitely often – resp infinitely often – visited in
a run. A Buchi automaton has just one color – let’s call it 1 – and the acceptance
condition Inf(1). Furthermore, all transitions leaving the same state are labeled with
the same set of colors10. A Co-Buchi automaton is an automaton with one color where
the acceptance condition is Fin(1). The result of some operations on Buchi automata
may result in automata, that are not Buchi. For example, complementing a Buchi au-
tomaton may result in a Co-Buchi automaton. At various times, Pecan will then call
some postprocess function to convert such an automaton to a Buchi automaton again.
Postprocessing can be a very expensive operation. Spot has some limitations what kind
of automata it can represent. For example, the states are referenced in edges in a 32 bit
integer, which means that an automaton cannot have more than about 4 billion nodes[1,
Section 8 Shortcomings and one Future Direction].
Pecan can read automata in different formats using the #load command and will assign
it to a relation symbol then. Using these relations, more complicated formulas can be
built. Pecan supports the normal operations like ∨, ∧, ∃ and ¬. Other operations are
supported, too, but translated to equivalent formulations. For example ∀v.ϕ is translated
to ¬∃v.¬ϕ. → and ↔ are also translated to equivalent formula consisting of only ∨,∧
and ¬. Pecan also supports restricting variables after ∃ and ∀ with a predicate. This
is often quite useful. Some of these translations are shown in figure 10. Pecan also
supports some “syntactic sugar” to write more complicated low-level formulas in short
expressive high-level forms. It supports the idea of having types assigned to variables
and can then interpret operators like + differently depending on the type. We will not
use this high-level syntactic sugar here and ignore its existence for the remainder of this
thesis.

10An automaton with that property is said to have “state-based acceptance”.

41

Original Translation
∀v.ϕ ¬∃v.¬ϕ
∀v is R(x, y).ϕ ¬∃v.(R(x, y, z) ∨ ¬ϕ)
∃v is R(x, y).ϕ ∃v.(R(x, y, z) ∧ ϕ)
if ϕ then φ ¬ϕ ∨ φ
ϕ→ φ ¬ϕ ∨ φ
ϕ iff φ (¬ϕ ∨ φ) ∧ (¬φ ∨ ϕ)

Figure 10: Various translations of formula in Pecan

Pecan can do various operations on formulas:

• Check if a formula is true

• If a formula with free variables is true for at least one assignment to the variables,
give an example of an eventually periodic such assignment to the variables. It is
shown by providing the prefix and the periodic part.

• Write the automata assigned to a formula to a file

6.2. Improving confidence in the adder automaton

We will now use Pecan to check that our adder automaton is correct, using the same
approach as was used in [5, Section 4], which itself lend it from [8, Remark 2.1].
We want to show, that for all d ∈ D and x, y, z ∈ Ud

K d, x, y, z

v1, v2, v3, v4
|= +(v1, v2, v3, v4)⇐⇒ hd(x) + hd(y) = hd(z) (6.1)

We can do this by induction over hd(y). For hd(y) = 0, we use the bijectivity of hd to
get the following equivalence:

K d, x, y, z

v1, v2, v3, v4
|= +(v1, v2, v3, v4)⇐⇒ x = z

In other words the base case of the induction is the following

K |= ∀a is R.∀x, y, z are U(a).zzero(y)→ (+(a, x, y, z)←→ eq(x, z))

We can formulate a successor predicate using just eq, leq and U predicates as defined in
figure 11 and figure 5. Here, eq is the automaton recognizing the = relation and leq is
an additional relation symbol that we add to K defined by the automaton in figure 11.
It is defined, such that for any d ∈ D and x, y ∈ Ud we have

K x, y

v1, v2
|= leq(v1, v2)⇐⇒ hd(x) ≤ hd(y).

With these definitions, we can define a successor predicate in the following way:

42

(0,0)
(1,1)
(#,#)

(#,#)
(1,0)

(0,0)
(0,1)
(1,1)

(#,#)

(0,1)
(0,0)
(1,0)
(1,1)

(#,#)

Figure 11: Automata for eq(left) and leq(right)

succ(a, n, m) := leq(n,m) ∧U(a, n) ∧U(a,m) ∧ ¬eq(n,m)

∧ (∀p.(U(a, p)→ (leq(p, n) ∨ leq(m, p))

For the induction step, let (6.1) be true for a fixed d ∈ D and y ∈ Ud (and all x, z ∈ Ud).
We want to show the equivalence for d′ = d, y′ = h−1d

(
hd(y) + 1

)
and arbitrary x′, z′ ∈

Ud. Let’s assume, that hd(z′) > 0. Set x = x′ and z = h−1d (hd(z
′) − 1). Then by the

induction hypothesis, we have

K d, x′, y′, z′

v1, v2, v3, v4
|= +(v1, v2, v3, v4)⇐⇒ hd(x) + hd(y) = hd(z)

This can be reformulated to the following

K |=∀a is R.∀x, y, z, y′, z′ are U(a).

(succ(a, y, y′) ∧ succ(a, z, z′))→ (+(a, x, y, z)←→ +(a, x, y′, z′))

In case hd(z′) = 0, clearly K d,x′,y′,z′

v1,v2,v3,v4
6|= +(v1, v2, v3, v4). We can also reformulate this

as follows11:

K |= ∀a is R.∀x′, y, y′, z′ are U(a).succ(a, y, y’) ∧ zzero(z′)→ ¬+ (a, x′, y′, z′)

We can check these 3 sentences in Pecan. This checks that the adder automaton is defined
correctly under the assumption that the automata R, U, leq, eq and zero are correct. We
execute the following Pecan code:

succ(a, x, y) := leq(x, y) & _U(a, x) & _U(a, y) & !eq(x, y)
& forall z. if _U(a, z) then (leq(z, x) | leq(y, z))

11This last case is missing in [5, Section 4] as well as [8, Remark 2.1], but it is necessary. I double-checked
and found a variant of +, call it fakeadd, that adheres to the first two conditions, but not this third
one. It can be defined as follows: fakeadd(a, x, y, z) = succ(a, z, y) ∨+(a, x, y, z). I verified this with
Pecan, the script can be found in script 4 in appendix E.

43

Theorem ("Addition base case (0 + y = y)", {
forall a. forall x,y,z are _U(a).

if zzero(y) then (add(a,x,y,z) iff eq(x,z))
}).

Theorem ("Addition inductive case (x + s(y) = s(x + y))", {
forall a is _D. forall x,y,z,u,v are _U(a).

if (_U(a, x) & succ(a,u,y) & succ(a,v,z)) then
(add(a,x,y,z) iff add(a,x,u,v))

}).

Theorem("Addition inductive case (x + s(y) != 0)", {
forall a is _D. forall x,y,z,u are _U(a).

if (succ(a, y, u) & zzero(z)) then !add(a, x, u, z)
}).

To be able to execute this code, we need to supply the automata to Pecan. This can be
done using #load statements for the relations _D(a), _U(a, x), leq(x, y), eq(x, y),
zzero(z), add(a, x, y, z) and sturmian(n). They look like this:

#load("automata/U.txt", "pecan", _U(a, x))

I have written files for the automata for D, U, leq, eq, zzero and sturmian manually, they
can be found in appendix D. The adder automaton is much more complicated. Instead
of writing it manually, I have written a small NodeJS program that generates the adder
automaton. The source code for that file can also be found in appendix C. Additionally,
the code can also be found at https://gitlab.com/fkz/ostrowski.
Executing Pecan leads to the following result:

Addition base case (0 + y = y) is true.
Addition inductive case (x + s(y) = s(x + y)) is true.
Addition inductive case (x + s(y) != 0) is true.

Thus, we can now have more confidence that the adder automaton is indeed correct.

6.3. Analyzing the runtime of Pecan programs

Let’s dive a bit deeper into the things that happen under the hood of the execu-
tion of the above program. I have gathered the results for this section by executing
Pecan with the -ddd option. This option tells Pecan to output more information about
what’s going on under the hood. Let’s check what happens when Pecan encounters the
Addition base case (0 + y = y) theorem. After parsing the formula, it transforms it
into a formula that only contains the primitives ∃, ¬, ∧ and ∨. This step transforms
∀a. ∀x,y,z are _U(a). if zzero(y) then (add(a,x,y,z) iff eq(x,z)) to the fol-
lowing formula

44

https://gitlab.com/fkz/ostrowski

eq(x,x)

1

add(a,x,y,z)

24

¬
2

¬
351→333

∧
42

∧
155

∨
656→655

zzero(y)

1

_U(a, y)

7

_U(a, x)

7

∧
49→25

_U(a, z)

7

∧
175→167

∧
175→91

∧
4,170→1

∃[x, y, z]
1

∃[a]

1

¬
1

Figure 12: Number of states of automata calculated for subformula of the addition base
case

(¬(∃[a]. (¬(¬(∃[x, y, z]. (
((_U(a, y) ∧ _U(a, x)) ∧ _U(a, z)) ∧
(¬((¬zzero(y)) ∨

(((¬add(a, x, y, z)) ∨ eq(x, z)) ∧ ((¬eq(x, z)) ∨ add(a, x, y, z)))
))))))))

Then it optimizes this formula. Here, double negations are removed and De Morgan’s
laws are applied. After this step, the formula is simplified to the following:

(¬(∃[a]. (∃[x, y, z]. (
((_U(a, y) ∧ _U(a, x)) ∧ _U(a, z)) ∧
(zzero(y) ∧

((add(a, x, y, z) ∧ (¬eq(x, z))) ∨ (eq(x, z) ∧ (¬add(a, x, y, z))))
)))))

Afterwards, it recursively computes automata for all the subformulas. Automata are
simplified at each step. We show the number of states of the different automata in
figure 12. When the number of states changed after simplification, both numbers are

45

shown. We can see there, that the negation of the adder automaton already has more
than 300 states. The largest involved automaton has 4170 states, that occurred directly
before the ∃ operations. But it got simplified to just one state, probably because Pecan
does an emptiness check on the automaton as one of the simplification attempts. If that
succeeds, the automaton can be simplified to an automaton with just 1 state.
We can do the same analysis for Addition inductive case (x + s(y) = s(x + y)).
After simplification, Pecan generates the following formula for it.

(¬(∃[a]. (_D(a) ∧ (∃[x, y, z, u, v]. (
((((_U(a, y) ∧ _U(a, u)) ∧ _U(a, v)) ∧ _U(a, z))
∧ _U(a, x)

) ∧
((_U(a, x) ∧ (succ(a, u, y) ∧ succ(a, v, z))) ∧
((add(a, x, y, z) ∧ (¬add(a, x, u, v))) ∨
(add(a, x, u, v) ∧ (¬add(a, x, y, z)))

)))))))

And the succ operation is defined as follows

succ(a,x,y)=
(leq(x, y) ∧
(_U(a, x) ∧
(_U(a, y) ∧
((¬eq(x, y)) ∧
(¬(∃[z]. (_U(a, z) ∧ ((¬leq(z, x)) ∧ (¬leq(y, z))))))

))))

We can analyze the size of the involved automata with the same approach. We don’t show
the number of states of the automata of all the involved subformulas here as that would
take a lot of space. But it’s interesting to show how the succ function is translated. Doing
so also shows why we defined the function the way we did define it. When looking at
the definition of Addition inductive case one might ask why we used the U relations
inside the formula. As we already use them at the beginning of the formula in the
quantifier, we could have also used the following way to formulate it:

succ2(a, x, y) := leq(x, y) & !eq(x, y)
& forall z. if _U(a, z) then (leq(z, x) | leq(y, z))

Theorem ("Addition inductive case’ (x + s(y) = s(x + y))", {
forall a is _D. forall x,y,z,u,v are _U(a).

if (succ2(a,u,y) & succ2(a,v,z)) then
(add(a,x,y,z) iff add(a,x,u,v))

}).

46

leq(z,x)

3

leq(y, z)

3

¬
4

¬
4∧

10
_U(a,z)

7∧
64

∃[z]
64→45

¬
196→195

eq(x, y)

1

¬
2

∧
258→257

_U(a, y)

7

∧
867→525

_U(a, x)

7

∧
2470→1358

leq(x, y)

3

∧
1425→93→14
succ(a, x, y)

leq(x,y)

3

∧
232→333

succ2(a, x, y)

Figure 13: Automata involved in calculating succ(a,x,y)(left) and succ2(a,x,y)(right)

I have tried executing Pecan on this version of the theorem unsuccessfully. I even tried
running it on a machine with more than 128GB of RAM memory. But after running for
more than one hour, it had consumed 128GB of memory and then died with a memory-
related error. We can compare this to the original program. The original program
only differs from this one by having 3 more occurrences of U relations, two in the succ
function and one in the theorem. That original execution finished in only a few seconds
and consumed only a few megabytes of memory.

Why is there such a big difference? We show in figure 13 how many states the automaton
for the succ and succ2 functions have. The succ function has just 14 states, but the
succ2 function has 333 states. Interestingly, the number of states increased from an
earlier 232 states. This is probably the case, because Pecan attempted to convert the au-
tomaton to a Buchi automaton. This can increase the number of states of an automaton

47

with a different acceptance condition.
It is notable that the automaton for the succ2 function has much more states than the
automaton for the succ function. One thing that appears important to note is that all
the subformulas have to be fully expressed by the automata in Pecan. So even if they’re
later simplified, for example if some formula ϕ is only used in the expression ϕ ∧ ⊥,
Pecan can’t skip the calculation of the automaton for ϕ. So it sometimes appears to be
useful to combine some restrictions to some subformula already deeper in a big formula.
Instead of doing that only at the end. Even doing so in the end and inside the formula
– and thus producing a more complicated formula on first sight – can help to make the
structure of some subformula easier and thus help in producing smaller automata for
them. It is especially useful when some subformula becomes non-satisfiable. Then the
corresponding automaton can be simplified to an automaton with just one state.

6.4. Sturmian words are not eventually periodic

As a last application, we want to check now if any Sturmian words are eventually periodic.
We do this by using the following statement:

forall a is _D.
forall n, p are _U(a).
if !zzero(p) then
exists m, u are _U(a).
add(a, m, p, u) & leq(n, m) & sturmian(m) & !sturmian(u)

Pecan transforms this formula into its low-level form and then does its simplification.
The result is the following formula:

(¬(∃[a]. (_D(a) ∧ (∃[n, p]. ((_U(a, p) ∧ _U(a, n)) ∧
((¬zzero(p)) ∧
(¬(∃[m, u]. ((_U(a, m) ∧ _U(a, u)) ∧

(add(a, m, p, u) ∧ (leq(n, m) ∧ (sturmian(m) ∧ (¬sturmian(u)))))
)))))))))

It is notable, that there are a limited number of negation operations there. We only have 3
negations. This was intentional, we have written the formula in such a way, that it would
translate into a low number of negation operations, as negation is a computationally very
expensive operation. The first negation is not particularly problematic, as the negation
is done on a pretty small automaton. The last negation is also happening after the
formula has already been simplified. The most challenging is then the negation in the
middle. Indeed, we can see this in figure 14. We have shown the number of states of all
the involved automata there. The automaton, that is negated in the middle consists of
483 states (once simplified) and after negation this number explodes to 597,468. This
automaton then grows to some extent when another small automaton with 25 states
is added with a ∧ operation to 2,307,195 states. Fortunately, there are no words that
this automaton accepts at all. This can be checked at a low computational cost by

48

sturmian(u)

4

¬
5

sturmian(m)

4

∧
13

leq(n, m)

3

∧
25

add(a, m, p, u)

24

∧
394→248

_U(a, u)

7

_U(a, m)

7

∧
49→25

∧
4,884→943

∃[m,u]

943→483

¬
597,468

zzero(p)

1

¬
2

∧
597,469

_U(a, n)

7

_U(a, p)

7

∧
49→25 ∧

2,307,195→1

∃[n, p]
1

_D(a)

2

∧
1

∃[a]

1

¬
1

Figure 14: Number of states of automata showing Sturmian words non-periodic

an emptiness check, which Pecan does here before attempting any more complicated
simplifications, that may take a long time on such a big automaton. Then Pecan replaces
the automaton with an empty automaton consisting of just 1 state. Assigning automata
to the rest of the formula is straightforward from there.

An interesting discovery for me was the fact that not all involved automata are Buchi
automata. For example, the big automaton with 2,307,195 states has the following
acceptance condition: Inf(0) & (Inf(1) | Fin(2)). It appears that Pecan did an
emptiness check directly on that automaton. Luckily, it didn’t try to convert it to a
Buchi automaton, as that would have probably taken a very long time.

49

6.5. Outlook

In the previous section, we have seen that the runtime and complexity of the automata
used in Pecan and Spot depend on the exact formulation of the formulas and base au-
tomata used. It can change a lot when subtle details are changed and also depends on
implementation details of Pecan and Spot. While this problem of exploding runtime can-
not be solved in general (negation of automata is expensive generally, see remark 2.9),
there may be some improvements that can be made for practically relevant problems.
Some improvement ideas:

• Is there a heuristic that tells us how confident we can be of obtaining a response
within a reasonable amount of time when formulating a formula in a certain way?

• Which heuristics in automata transformations should be applied in Pecan, and at
which points?

• Which simplification attempts should be avoided, as they take a lot of time without
achieving their goal of automata simplification?

• Should automata with other acceptance conditions be used? When should they be
transformed to Buchi automata again and should that happen at all?

• Another interesting approach might be to introduce new operations on automata,
that produce automata that are only in the equivalence class of automata that
are M -compatible for some set M . This might allow to produce smaller automata
without having to attach further predicates inside formula, as the implementation
of such an operation has more space for optimization.

Besides the fact that no Sturmian words are never eventually periodic [5, Automati-
cally Proving Theorems about Sturmian Words] contains some more statements about
Sturmian words, that have been checked with Pecan. I have not checked these further
statements, but I have tried to check yet another theorem with Pecan:

For all α ∈ (0, 1) \ Q there exist integers 0 < i < j such that for all n, we
have either cα(n) = cα(n+ i) or cα(n) = cα(n+ j).

I tried to formulate this theorem in a few different ways as first-order formulas, but
Pecan never finished successfully (except when I made some errors in the formulation
of the first-order formula). I wonder if some of the ideas mentioned above might help
to improve computational and memory needs for such Pecan programs and might help
making more statements feasible. It might also help Pecan to succeed in more variations
of formulations of statements. After all, the goal is to have an automatic theorem prover.
When we have to know a lot of details about the inner workings of Pecan to be able to
formulate statements in specific ways, one could arguably say that such a prove is not
automatic.

50

A. Deutsche Zusammenfassung / German summary

In dieser Arbeit wird die Entscheidbarkeit von bestimmten Theorien gezeigt. Bekannter-
maßen ist die Theorie von Presburger Arithmetik entscheidbar:

Theorem A.1. Sei L = {+} die Signatur von Presburger Arithemtik und sei M =
(N, (x, y) 7→ x+ y) die Standardstruktur. Dann ist die Theorie vonM entscheidbar.

Das heißt, dass es einen Algorithmus gibt, der für jede L-Formel ϕ entscheidet, obM |=
ϕ. Das Hinzufügen von Folgen kann dazu führen, dass die Theorie nicht mehr entscheidbar
ist, oder aber sie kann entscheidbar bleiben.

Definition A.2. Sei s : N → {0, 1} eine Folge und sei L′ = (+, S). Definiere die L′-
StrukturMs folgendermaßen:

Ms = (N, (x, y) 7→ x+ y, {n ∈ N | s(n) = 1})

Viele Eigenschaften von s lassen sich als L′-Formel ϕ formulieren, sodassMs |= ϕ genau
dann gilt, wenn s die entsprechende Eigenschaft besitzt. Zum Beispiel lässt sich die
Eigenschaft “s wird irgendwann periodisch” durch eine solche Formel formulieren. Falls
die Theorie von Ms nun entscheidbar ist, gibt es einen Entscheidungsalgorithmus für
solcherlei Fragestellungen.
Für eine bestimmte Art von Folgen s, die durch einen endlichen Automaton darstell-
bar sind, ist die Theorie tatsächlich entscheidbar. In dieser Arbeit schauen wir uns den
Spezialfall der Folgen der stürmscher Wörter an. Stürmsche Wörter sind folgendermaßen
definiert:

Definition A.3. Für α ∈ (0, 1) \ Q ist das charakteristische stürmsche Wort cα : N →
{0, 1} definiert durch

cα(n) = bα(n+ 1)c − bαnc.

Ms ist für bestimmte stürmsche Wörter entscheidbar. Um das zu sehen, kann man das
Ostrowski Numerationssystem benutzen. In diesem sind stürmsche Wörter leicht durch
endliche Automaten charakterisierbar.
Unser Ziel ist aber auch, zu zeigen, dass die gemeinsame Theorie von Sätzen, die für alle
stürmschen Wörter gelten, entscheidbar ist:

Theorem A.4. Die Theorie

T = {ϕ | Mcα |= ϕ für alle α ∈ (0, 1) \Q}

ist entscheidbar.

Um dies zu sehen müssen unendliche Wörter statt nur endlicher Wörter benutzt werden.
In dieser Arbeit werden in Kapitel 2 nötige Grundlagen dazu eingeführt. Es geht zunächst
um unendliche Wörter und Sprachen und dann um Büchi-Automaten. Büchi-Automaten
sind eine Verallgemeinerung des endlichen Automaten auf unendliche Wörter. Im darauf-
folgenden Kapitel wird eine Methode erläutert, die benutzt werden kann, um zu zeigen,

51

dass Theorien von Strukturen entscheidbar sind. Dieses wird beispielhaft angewandt,
um zu zeigen, dass Pressburger Arithmetik entscheidbar ist. In Kapitel 4 werden dann
Ostrowski-Numerationssysteme und deren Verbindung zu stürmschen Wörtern vorge-
stellt. Darauf schließt das Kapitel mit dem Hauptresultat an. Dort wird zunächst eine
Variante vorgestellt, Ostrowski-Zahlen mit einem endlichen Alphabet zu repräsentieren.
Dazu werden die einzelnen Ziffern der Ostrowski-Representation wiederum mittels Binär-
darstellung dargestellt. Dies ist notwendig, da ansonsten unendlich viele Ziffern notwen-
dig wären; Büchi-Automaten aber nur mit einem endlichen Alphabet arbeiten können.
Schließlich widmet sich dieses Kapitel der Konstruktion eines Automaten zur Addierung
von Zahlen in Ostrwoski-Numerations-Systemen. Dieser Automat wird explizit hergelei-
tet, in Form von Graphen dargestellt sowie seine Richtigkeit bewiesen. Der Automat hat
nur 24 Zustände und ist damit vergleichsweise klein.
Im letzten Kapitel wird dann noch auf die praktische Umsetzung des maschinengestütz-
ten Beweisens von Eigenschaften über T eingegangen. Zunächst wird die Software Pecan
eingeführt, die benutzt werden kann, um Sätze in ω-regulären Strukturen auf ihre Rich-
tigkeit zu überprüfen. Pecan benutzt die Softwarebibliothek Spot, um Automaten auf
unendlich langen Wörtern darzustellen und zu verwenden. Spot unterstützt nicht nur
Büchi-Automaten, sondern auch noch allgemeinere Akzeptanzbedingungen. Dies wird
etwas erläutert. Dann wird gezeigt, wie Pecan benutzt werden kann, um das Vertrau-
en zu vergrößern, dass der in Kapitel 4 konstruierte Addierer-Automat für Ostrowski-
Numerationssysteme tatsächlich korrekt ist. Abschließend wird mit dieser Methode ge-
zeigt, dass Stürmische Wörter nie periodisch werden. Anhand dieser Beispiele wird au-
ßerdem erläutert, wie sehr die benötigte Zeit zur Berechnung des Wahrheitsgehalts einer
Aussage und die Komplexität der enthaltenen Automaten von Details der Formulierung
abhängen und es werden Verbesserungsideen vorgeschlagen.

52

B. Supplementary digital materials

This section provides an overview of the different folders that accompany this thesis as
supplementary digital materials. The content was originally included on a USB flash
drive and is now available at https://gitlab.com/fkz/ostrowski.

Folder pecan-docker This folder contains files that can be used to create a Docker image
that can be used to execute Pecan. Using a Docker image is a good way to use
Pecan, as all needed software is encapsulated. On the host operating system only
Docker needs to be installed. The following command can be used to build the
Docker image: docker build --pull -t pecan pecan-docker

Folder pecan-scripts This folder contains the scripts, that are referenced in the Bachelor
thesis. These scripts were executed and some of the results are part of the Bachelor
thesis. They depend on the automata in the automata subfolder and consists of
the following 4 Pecan files:

• script-1-improving-confidence-in-the-adder-automaton.pn

• script-2-improving-confidence-in-the-adder-automaton-
alternative-succ-function.pn

• script-3-sturmain-words-are-not-eventually-periodic.pn

• script-4-fake-improving-confidence-in-the-adder-automaton.pn

These scripts can also be found in appendix E.

Folder pecan-scripts/automata Here are the automata, that are needed by the scripts.
They are also contained in appendix D and appendix C. All automata are hand-
written, except for the adder automaton. The adder automaton add.txt has been
generated by executing gen-adder.js. This script is also contained in this folder.

Folder pecan-script-results The results of executing the 4 scripts in the pecan-scripts
folder are stored here. These scripts were executed with the -ddd option to output
detailed information about the involved subautomata. This information has been
used in the thesis in figures 12-14.

Folder pecan-script-runner This folder contains some scripts, that I used to execute
the Pecan scripts. They download all the necessary files to a remote machine and
also download the Docker image there. The results of the execution of the Pecan
program are then uplaoded to a Git repository. I used these scripts to execute long
running Pecan scripts on Hetzner cloud machines, but it should also be possible
to execute them on any Linux machines. They just need Docker and Systemd
preinstalled, all other software is automatically installed, if not already installed.
The script has hardcoded locations and access tokens for the git repository, where
the results should be pushed, as well as the docker registry where the pecan docker
image can be downloaded (that can be created with the pecan-docker folder). To
reproduce execution of these scripts, these locations and credentials need to be
changed.

53

https://gitlab.com/fkz/ostrowski

C. Source code to produce the adder automaton

To be able to use the adder automaton in Pecan, it needs to be supplied to it. As the
automaton is already pretty big, I created a small program that generates the automaton
in the pecan syntax. It is written in Javascript and can be executed with node. It will
generate a file add.txt in the current directory when called. Instead of # we use 2 for the
seperator symbol here, so our alphabet is {0, 1, 2} instead of {0, 1,#}. This is expected
for the Pecan format. In the Spot representation, it will then be represented using 2
atomic propositions.

Listing 1: gen-adder.js

const fs = require("fs"). promises;

const stateCount = 7;

const rIndex = [
0, 0, 0,
-1, -1, -1,
1

];

const sIndex = [
1, 0, -1,
1, 0, -1,
-1

];

function getState(r, s) {
for (let i = 0; i < stateCount; ++i) {

if (rIndex[i] == r && sIndex[i] == s) {
return i;

}
}
return undefined;

}

let binaryEdges = [];
for (let i = 0; i < 16; ++i) {

binaryEdges.push([
i % 2,
Math.floor(i / 2) % 2,
Math.floor(i / 4) % 2,
Math.floor(i / 8) % 2

]);

54

}

function binarySum(binaryEdge , r) {
return r*binaryEdge [0] + binaryEdge [1] + binaryEdge [2] -

binaryEdge [3];
}

let visitedPositions = Array.from(
{length: stateCount},
() => { return {}; }

);
let toVisit = [];

function nextVisit(state , carry) {
toVisit.push([state , carry]);

}

function addVisited(state , carry) {
visitedPositions[state][carry] = true;

}

function visit() {
let next;
while (next = toVisit.pop()) {

if (! visitedPositions[next [0]][next [1]]) {
return next;

}
}
return undefined;

}

async function visitPosition(file , state , carry) {
addVisited(state , carry);
const r = rIndex[state];
const s = sIndex[state];

const isFinalBool = r == 0 && s == 0 && carry == 0;
const isFinal = isFinalBool ? "1" : "0";

await file.write(‘\n${state}${carry}: ${isFinal }\n‘);

for (const e of binaryEdges) {
const sum = binarySum(e, r) + carry;
if (sum % 2 == 0) {

55

const newCarry = sum / 2;
const line = ‘${e[0]} ${e[1]} ${e[2]} ${e[3]}‘ +

‘ -> ${state}${newCarry }\n‘
await file.write(line);
nextVisit(state , newCarry);

}
}

if (carry === 0) {
for (let t = -1; t <= 1; ++t) {

const newState = getState(s, t);
const newCarry = t - r;
if (newState !== undefined) {

await file.write(
‘2 2 2 2 -> ${newState}${newCarry }\n‘

);
nextVisit(newState , newCarry);

}
}

}
}

async function visitStart(file) {
await file.write("start:␣0\n");
for (let i = 0; i < stateCount; ++i) {

const s = sIndex[i];
nextVisit(i, s);
await file.write(‘2 2 2 2 -> ${i}${s}\n‘)

}
}

async function main() {
const file = await fs.open("add.txt", "w");
await file.write("{0,1,2}␣{0,1,2}␣{0,1,2}␣{0,1,2}\n");
await visitStart(file);
let next;
while (next = visit ()) {

await visitPosition(file , next[0], next [1]);
}
await file.close;

}

main ();

56

D. Source code of other needed automata

We give the definition of the other needed automata here. They are a textual represen-
tation of the automata given in figure 4, figure 11, figure 5 and figure 9.

Listing 2: D.txt
{0 ,1 ,2}

s t a r t : 1
2 −> other

other : 0
0 −> other
1 −> other
1 −> s t a r t

Listing 3: eq.txt
{0 ,1 ,2} {0 ,1 ,2}

s t a r t : 1
0 0 −> s t a r t
1 1 −> s t a r t
2 2 −> s t a r t

Listing 4: leq.txt
{0 ,1 ,2} {0 ,1 ,2}
s t a r t : 0
2 2 −> leq

l eq : 1
0 0 −> leq
0 1 −> leq
1 0 −> gt
1 1 −> leq
2 2 −> leq

gt : 0
0 0 −> gt
0 1 −> leq
1 0 −> gt
1 1 −> gt
2 2 −> gt

Listing 5: U.txt
{0 ,1 ,2} {0 ,1 ,2}

s t a r t : 0
2 2 −> sma l l e r
2 2 −> zero
2 2 −> f i n a l

sma l l e r : 0
0 0 −> sma l l e r
0 1 −> sma l l e r
1 0 −> sma l l e r
1 1 −> sma l l e r
1 0 −> equal
1 0 −> s t a r t

zero : 0
0 0 −> zero
1 0 −> zero
1 0 −> zero_f

zero_f : 0
2 2 −> equal

equal : 0
0 0 −> equal
1 1 −> equal
1 1 −> s t a r t

f i n a l : 0
0 0 −> f i n a l
1 0 −> f i n a l
1 0 −> f i n a l_ f

f i n a l_ f : 1
2 2 −> f i n a l

Listing 6: zero.txt
{0 ,1 ,2}

s t a r t : 1
0 −> s t a r t
2 −> s t a r t

Listing 7: sturmian.txt
{0 ,1 ,2}

s t a r t : 0
2 −> odd

odd : 0
0 −> odd
2 −> even

even : 0
0 −> even
1 −> f i n a l
2 −> odd

f i n a l : 1
0 −> f i n a l
1 −> f i n a l
2 −> f i n a l

57

E. Pecan scripts

These Pecan scripts can also be found on the flash drive in the folder pecan-scripts.
All files start with the following lines to load the needed automata:

#load (" automata/D. txt " , "pecan " , _D(a))
#load (" automata/U. txt " , "pecan " , _U(a , x))
#load (" automata/ l eq . txt " , "pecan " , l e q (x , y))
#load (" automata/eq . txt " , "pecan " , eq (x , y))
#load (" automata/ zero . txt " , "pecan " , z ze ro (z))
#load (" automata/add . txt " , "pecan " , add (a , x , y , z))
#load (" automata/ sturmian . txt " , "pecan " , sturmian (n))

We only show the remaining lines for the 4 scripts, that are used in this thesis.

Listing 8: script-1-improving-confidence-in-the-adder-automaton.pn
succ (a , x , y) := l eq (x , y) & _U(a , x) & _U(a , y) & ! eq (x , y)

& f o r a l l z . i f _U(a , z) then (l eq (z , x) | l e q (y , z))

Theorem (" Addit ion base case (0 + y = y)" , {
f o r a l l a . f o r a l l x , y , z are _U(a) .

i f z z e ro (y) then (add (a , x , y , z) i f f eq (x , z))
}) .

Theorem (" Addit ion induc t i v e case (x + s (y) = s (x + y)) " , {
f o r a l l a i s _D. f o r a l l x , y , z , u , v are _U(a) .

i f (_U(a , x) & succ (a , u , y) & succ (a , v , z)) then
(add (a , x , y , z) i f f add (a , x , u , v))

}) .

Theorem(" Addit ion induc t i v e case (x + s (y) != 0)" , {
f o r a l l a i s _D. f o r a l l x , y , z , u are _U(a) .

i f (succ (a , y , u) & zze ro (z)) then ! add (a , x , u , z)
}) .

Execution of this program returns the following

Addition base case (0 + y = y) is true.
Addition inductive case (x + s(y) = s(x + y)) is true.
Addition inductive case (x + s(y) != 0) is true.

58

Listing 9: script-2-improving-confidence-in-the-adder-automaton-alternative-succ-
function.pn

succ2 (a , x , y) := l eq (x , y) & ! eq (x , y)
& f o r a l l z . i f _U(a , z) then (l eq (z , x) | l e q (y , z))

Theorem (" Addit ion base case (0 + y = y)" , {
f o r a l l a . f o r a l l x , y , z are _U(a) .

i f z z e ro (y) then (add (a , x , y , z) i f f eq (x , z))
}) .

Theorem (" Addit ion induc t i v e case (x + s (y) = s (x + y)) " , {
f o r a l l a i s _D. f o r a l l x , y , z , u , v are _U(a) .

i f (succ2 (a , u , y) & succ2 (a , v , z)) then
(add (a , x , y , z) i f f add (a , x , u , v))

}) .

Theorem(" Addit ion induc t i v e case (x + s (y) != 0)" , {
f o r a l l a i s _D. f o r a l l x , y , z , u are _U(a) .

i f (succ2 (a , y , u) & zze ro (z)) then ! add (a , x , u , z)
}) .

This program doesn’t finish succesfully. Instead, after running for about 90 minutes and
using more than 130GB of RAM, it fails with the following error:

terminate called after throwing an instance of ’std::bad_alloc’

Listing 10: script-3-sturmain-words-are-not-eventually-periodic.pn
Theorem (" Sturmian words are not even tua l l y p e r i o d i c " , {

f o r a l l a i s _D.
f o r a l l n , p are _U(a) .
i f ! z z e ro (p) then
e x i s t s m, u are _U(a) .
add (a , m, p , u) & l eq (n , m) & sturmian (m) & ! sturmian (u)

}) .

Execution of this program returns the following

Sturmian words are not eventually periodic is true.

59

Here we also show the last two of the common #load statements, as the add relation is
loaded under a different name.

Listing 11: script-4-fake-improving-confidence-in-the-adder-automaton.pn
#load (" automata/add . txt " , "pecan " , addn (a , x , y , z))
#load (" automata/ sturmian . txt " , "pecan " , sturmian (n))

#import (" base3formats . pn")

succ (a , x , y) := l eq (x , y) & _U(a , x) & _U(a , y) & ! eq (x , y)
& f o r a l l z . i f _U(a , z) then (l eq (z , x) | l e q (y , z))

fake_add (a , x , y , z) := succ (a , z , y) | addn (a , x , y , z)
add (a , x , y , z) := fake_add (a , x , y , z)

Theorem (" Addit ion base case (0 + y = y)" , {
f o r a l l a . f o r a l l x , y , z are _U(a) .

i f z z e ro (y) then (add (a , x , y , z) i f f eq (x , z))
}) .

Theorem (" Addit ion induc t i v e case (x + s (y) = s (x + y)) " , {
f o r a l l a i s _D. f o r a l l x , y , z , u , v are _U(a) .

i f (_U(a , x) & succ (a , u , y) & succ (a , v , z)) then
(add (a , x , y , z) i f f add (a , x , u , v))

}) .

Display example base3FormatI {
_U(a , x) & _U(a , y) & _U(a , z) &
add (a , x , y , z) & ! addn (a , x , y , z)

} .

Theorem(" Addit ion induc t i v e case (x + s (y) != 0) not t rue " , {
! (f o r a l l a i s _D. f o r a l l x , y , z , u are _U(a) .

i f (succ (a , y , u) & zze ro (z)) then ! add (a , x , u , z))
}) .

Execution of this program returns the following

Addition base case (0 + y = y) is true.
Addition inductive case (x + s(y) = s(x + y)) is true.
[(z,2100(20)^ω),(y,2010(20)^ω),(x,2010(20)^ω),(a,2011(21)^ω)]
Addition inductive case (x + s(y) != 0) not true is true.

The third line of the output is an example of values for x, y, z, d such that fake_add(d, x, y, z)
holds, but +(d, x, y, z) does not hold. We have d = #011(#1)ω, x = h−1d (2), y = h−1d (2)
and z = h−1d (1). Clearly 2 + 2 6= 1.

60

References

[1] Alexandre Duret-Lutz et al. “From Spot 2.0 to Spot 2.10: What’s New?” In:
Proceedings of the 34th International Conference on Computer Aided Verification
(CAV’22). Vol. 13372. Lecture Notes in Computer Science. Springer, Aug. 2022,
pp. 174–187. doi: 10.1007/978-3-031-13188-2_9.

[2] Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences. Theory, applications,
generalizations. English. Cambridge: Cambridge University Press, 2003. isbn: 0-
521-82332-3. doi: 10.1017/CBO9780511546563.

[3] Aseem Baranwal, Luke Schaeffer, and Jeffrey Shallit. “Ostrowski-automatic se-
quences: theory and applications”. English. In: Theor. Comput. Sci. 858 (2021),
pp. 122–142. issn: 0304-3975. doi: 10.1016/j.tcs.2021.01.018.

[4] J. R. Büchi. “Weak second-order arithmetic and finite automata”. English. In: Z.
Math. Logik Grundlagen Math. 6 (1960), pp. 66–92. issn: 0044-3050. doi: 10.1002/
malq.19600060105.

[5] Philipp Hieronymi et al. “Decidability for Sturmian words”. In: CoRR abs/2102.
08207 (2021). arXiv: 2102.08207. url: https://arxiv.org/abs/2102.08207.

[6] Christof Löding. “Methods for the transformation of ω-automata: Complexity and
connection to second order logic”. In: Diplomata thesis, Christian-Albrechts-Univer-
sity of Kiel (1998). url: https://old.automata.rwth- aachen.de/users/
loeding/diploma_loeding.pdf (visited on 02/02/2023).

[7] Hamoon Mousavi. “Automatic Theorem Proving in Walnut”. In: CoRR abs/1603.
06017 (2016). arXiv: 1603.06017. url: http://arxiv.org/abs/1603.06017.

[8] Hamoon Mousavi, Luke Schaeffer, and Jeffrey Shallit. “Decision algorithms for
Fibonacci-automatic Words, I: Basic results”. en. In: RAIRO - Theoretical Infor-
matics and Applications - Informatique Théorique et Applications 50.1 (2016). doi:
10.1051/ita/2016010. url: http://www.numdam.org/articles/10.1051/ita/
2016010/.

[9] Reed Oei et al. “Pecan: An Automated Theorem Prover for Automatic Sequences
using Büchi Automata”. In: CoRR abs/2102.01727 (2021). arXiv: 2102.01727.
url: https://arxiv.org/abs/2102.01727.

[10] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. German.
C. R. Congrès Math. Pays slaves 92-101, Zusatz ebenda, 395 (1930). 1930.

[11] Noah Schweber. Are function symbols unnecessary in first-order logic? Mathematics
Stack Exchange. url: https://math.stackexchange.com/q/3353180.

[12] Jeffrey Shallit. The logical approach to automatic sequences. Exploring combina-
torics on words with Walnut. English. Vol. 482. Lond. Math. Soc. Lect. Note Ser.
Cambridge: Cambridge University Press, 2023. isbn: 978-1-108-74524-6; 978-1-108-
77526-7. doi: 10.1017/9781108775267.

61

https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1016/j.tcs.2021.01.018
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1002/malq.19600060105
https://arxiv.org/abs/2102.08207
https://arxiv.org/abs/2102.08207
https://old.automata.rwth-aachen.de/users/loeding/diploma_loeding.pdf
https://old.automata.rwth-aachen.de/users/loeding/diploma_loeding.pdf
https://arxiv.org/abs/1603.06017
http://arxiv.org/abs/1603.06017
https://doi.org/10.1051/ita/2016010
http://www.numdam.org/articles/10.1051/ita/2016010/
http://www.numdam.org/articles/10.1051/ita/2016010/
https://arxiv.org/abs/2102.01727
https://arxiv.org/abs/2102.01727
https://math.stackexchange.com/q/3353180
https://doi.org/10.1017/9781108775267

[13] Ryan Stansifer. Presburger’s Article on Integer Airthmetic: Remarks and Trans-
lation. Tech. rep. TR84-639. Cornell University, Computer Science Department,
Sept. 1984.

62

	Introduction
	Notation and basic concepts
	Words and languages
	Finite state automata
	First-order formulas and structures

	Decidability questions
	Decidability of Presburger arithmetic
	Decidability of -regular structures

	Ostrowski numeration systems
	Definition of Ostrowski representations
	Sturmian words

	Addition of numbers in Ostrowski representations
	Representation with a finite alphabet
	Addition on Lb
	Addition on Ud
	A Buchi automaton recognizing addition on U
	Application to Sturmian words

	Proving theorems in practice
	Introduction to Pecan
	Improving confidence in the adder automaton
	Analyzing the runtime of Pecan programs
	Sturmian words are not eventually periodic
	Outlook

	Deutsche Zusammenfassung / German summary
	Supplementary digital materials
	Source code to produce the adder automaton
	Source code of other needed automata
	Pecan scripts
	References

