Lineare Algebra II

Nachklausur

Aufgabe 1

Bestimme die Jordansche Normalform und eine Jordan-Basis der Matrix

$$A = \begin{pmatrix} 0 & -1 & -1 & 2 \\ 3 & 2 & -4 & -1 \\ 1 & 0 & -2 & 1 \\ 2 & 1 & -3 & 0 \end{pmatrix} \in M_4(\mathbb{C}).$$

Hinweis: Das charakteristische Polynom von A ist X^4 .

(14 Punkte)

Aufgabe 2

Sei V ein endlich-dimensionaler \mathbb{C} -Vektorraum, sei f ein Endomorphismus von V, und sei $p(X) = (X-1)^2(X-2)(X-7)^2 \in \mathbb{C}[X]$. Es gelte:

- i) p(f) = 0,
- ii) Spur f = 6, det f = 4,
- iii) $\operatorname{rg}(f \operatorname{id}_V) = 3$.

Bestimme die Jordansche Normalform von f.

(14 Punkte)

Aufgabe 3

Sei $n \geq 1$ eine natürliche Zahl und sei V der \mathbb{R} -Vektorraum der Polynome mit reellen Koeffizienten vom Grad $\leq n$. Seien $x_0, \ldots, x_n \in \mathbb{R}$ paarweise verschieden. Wir definieren eine Bilinearform $\langle \cdot, \cdot \rangle$ auf V durch

$$\langle f, g \rangle = \sum_{i=0}^{n} f(x_i)g(x_i).$$

- a) Zeige, dass $\langle \cdot, \cdot \rangle$ ein Skalarprodukt ist (die Bilinearität braucht nicht nachgerechnet zu werden).
- b) Bestimme für $n=2, x_0=0, x_1=1, x_2=2$ eine Orthonormalbasis von V bezüglich $\langle \cdot, \cdot \rangle$.

(7+9 Punkte)

Aufgabe 4

Sei V ein euklidischer Vektorraum, und seien f und g selbstadjungierte Endomorphismen von V, so dass f-g nilpotent ist. Zeige, dass f=g.

(13 Punkte)

Aufgabe 5

Sei V ein unitärer Vektorraum, $\varphi \in \operatorname{End}(V)$, so dass $\varphi^* = -\varphi$. Zeige:

- a) Der Endomorphismus φ ist normal, und für alle Eigenwerte λ von φ gilt Re $\lambda=0$.
- b) Es ist $\varphi \mathrm{id}_V$ ein Isomorphismus, und $(\varphi \mathrm{id}_V)^{-1} \circ (\varphi + \mathrm{id}_V)$ ist eine Isometrie.

(5+10 Punkte)

Aufgabe 6

- a) Sei $(V, (\cdot, \cdot))$ ein unitärer Vektorraum, und sei $f: V \longrightarrow V$ ein normaler Endomorphismus mit (v, f(v)) = 0 für alle $v \in V$. Zeige, dass dann f = 0 ist.
- b) Zeige, dass die zu a) analoge Aussage für euklidische Vektorräume falsch ist.

(9+4 Punkte)

Aufgabe 7

Bestimme den Signaturtyp der Bilinearform auf \mathbb{R}^n , die durch die Matrix $B = (b_{ij})_{ij} \in M_n(\mathbb{R})$ gegeben wird, wobei $b_{ij} = -\delta_{i,n-j+1}$. (Auf der Nebendiagonalen von B stehen also -1, und ansonsten überall 0.)

(15 Punkte)