Lineare Algebra II Präsenzaufgaben, Teil 8

Aufgabe 5

Sei f ein Endomorphismus des endlich-dimensionalen \mathbb{C} -Vektorraums V. Es gelte

$$\sum_{i=0}^{k-1} f^i = 0.$$

Ist f diagonalisierbar?

Aufgabe 6

Sei K ein Körper, V ein K-Vektorraum, $f: V \longrightarrow V$ eine lineare Abbildung mit charakteristischem Polynom $\chi_f(X) = X(X-1)^4$ und $\operatorname{rg}(f-\operatorname{id}_V) = 2$. Bestimme die Jordansche Normalform von f.

Aufgabe 7

Sei K ein Körper, und seien $A, B \in M_3(K) - \{0\}$ nilpotent und nicht ähnlich zueinander. Zeige, dass eine dieser beiden Matrizen ähnlich ist zum Quadrat der anderen.

Aufgabe 8

- a) Für $A \in GL_5(\mathbb{R})$ gelte: $\chi_A(X) = (X-2)^3(X+4)^2$ und $\mu_A(X) = (X-2)^2(X+4)$. Was ist die Jordansche Normalform von A?
- b) Kann man allgemein aus der Kenntnis von charakteristischem Polynom und Minimalpolynom einer Matrix auf deren Jordansche Normalform schliessen?