Lineare Algebra II

6. Übungsblatt

Abgabe: Dienstag, 08.06.04 in der Vorlesung

Aufgabe 1 (Spiegelungen)

Sei V ein euklidischer Vektorraum, $v \in V \setminus \{0\}$.

a) Zeige:

$$\sigma_v \colon V \longrightarrow V, \quad x \mapsto x - 2\frac{(x,v)}{(v,v)}v$$

ist eine orthogonale Abbildung. (Ist sie auch selbstadjungiert?) Berechne die Eigenwerte und Eigenräume.

- b) Zeige: Jedes $\varphi \in O(V)$ mit dim $V(1,\varphi) = \dim V 1$ ist von der Form σ_v .
- c) Wie sieht die Normalform der Matrizendarstellung von $\sigma_v \circ \sigma_w$ aus?

Aufgabe 2

Sei $(V, (\cdot, \cdot))$ ein euklidischer Vektorraum, und sei $\beta \colon V \times V \longrightarrow \mathbb{R}$ eine alternierende Bilinearform. Zeige, dass eine Orthonormalbasis von V bezüglich (\cdot, \cdot) existiert, so dass die Strukturmatrix von β bezüglich dieser Basis gegeben ist durch eine Block-Diagonalmatrix der Form

wobei die $T_i \in M_2(\mathbb{R})$ von der Form $T_i = \begin{pmatrix} 0 & a_i \\ -a_i & 0 \end{pmatrix}$ für reelle Zahlen $a_i > 0$ sind $(i = 1, \dots, r)$.

Aufgabe 3

Die Permutation $\sigma \in S_8$ sei definiert durch $\sigma(i) = i + 1$ für $1 \le i \le 7$ und $\sigma(8) = 1$. Bekanntlich ist die Permutationsmatrix P_{σ} orthogonal. Bestimme eine Matrix $A \in O(8,\mathbb{R})$ so dass $A^{-1}P_{\sigma}A$ die in der Vorlesung angegebene Normalform für orthogonale Matrizen hat. Wie sieht diese Normalform aus?

Aufgabe 4

Sei $(V, (\cdot, \cdot))$ ein euklidischer Vektorraum, $d \in \mathbb{R}$, $a, b \in V$.

a) Zeige, dass die folgenden Mengen Nullstellenmengen von Quadriken sind:

$$\begin{array}{lcl} E(a,b,d) & = & \{v \in V; \ ||a-v|| + ||b-v|| = d\} & \quad \text{falls } ||a-b|| < d, \\ H(a,b,d) & = & F(a,b,d) \cup F(a,b,-d) & \quad \text{falls } ||a-b|| > d > 0. \end{array}$$

wobei

$$F(a,b,d) = \{v \in V; \ ||a-v|| - ||b-v|| = d\}.$$

Die Punkte a und b heißen Brennpunkte der Quadriken.

- b) Sei dim V=2. Zeige, dass jede Ellipse von der Form E(a,b,d) und jede Hyperbel von der Form H(a,b,d) ist. Die Mengen F(a,b,d) heißen dann Zweige der Hyperbel H(a,b,d).
- c) Sei $V=\mathbb{R}^2$, versehen mit dem Standardskalarprodukt. Bestimme die Gleichung einer Quadrik, so dass (0,0) ein Brennpunkt ist und die Punkte (4,3),(3,0),(-12,-5) in der Lösungsmenge der Quadrik liegen, und zwar alle auf demselben Zweig, sofern es sich um eine Hyperbel handelt. Wo liegt der andere Brennpunkt, wo liegen die Hauptachsen? Skizziere die Quadrik.