Lemma 11.1. [Kummer’s theory]. Let K be a field of characteristic
zero, n. > 1 a number such that K contains all the roots of order n of
1 and L D K be a Galois extension with the Galois group Gal(L/K)
equal to Z,,. Then there exists o € L such that L = K(«) and o™ € K.

Proof. Fix ( € K such that (" = 1,{™ # 1 for 1 < m < n and
choose a generator o of the group Gal(L/K). By Dedekind’s lemma
the K-linear maps o' : L — L,0 < i < n are linearly independent.
Therefore there exists € L such that a := Y7 (7io?(x) # 0. Then

n—1 n—1
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i=0 1=0

Therefore o(a”) = a™. So o™ € K.

I claim that K(a) = L. Since K(«) C L it is sufficient to show that
dimg (K (a)) > n. But is is clear that the elements o' € L,0 < i <n
are eigenvectors of o with distinct eigenvalues ¢?. Therefore elements
o' € L,0 <i < n are linearly independent over K. So dimg (K (a)) >
n.

Definition 11.1. Let K be a field and p(t) € K[t] an irreducible
polynomial of positive degree and L D K the splitting field of of p(¢).
We say that the group Gal(L/K) is the Galois group of p(t).

b) If L C K is a finite extension of K we say that L is obtainable
from K by adding radicals if there exists a finite extension F,, D L and
an increasing sequence of fields K = Fy C F... C F, such that for any
i,0 <1 < n we have F;;1 = F;(«;) where o.* € F; for some r; > 0,

c) if p(t) € KJt] is an irreducible polynomial of positive degree we
say that an equation p(t) = 0 is solvable in radicals if the extension
L := K][t]/(p(t)) of K is obtainable from K by adding radicals.

Theorem 11.1. Let K be a field of characteristic 0 and L D K a
normal extension. Then L is obtainable from K by adding radicals iff
the Galois group Gal(L/K) is solvable.

Proof. a) Assume that the Galois group Gal(L/K) is solvable. Then
there exists a sequence of subgroups (e) = Hy C H;... C H,, = G such
that H; A H;; and the quotient group H;y1/H;,0 <1i < m are cyclic.

Define F; := L»~i. Then we have a sequence of subfields K = F C
Fy C ... C F, = L such that extensions Fj;/F; are normal and the
Galois groups Gal(F;y1/F;) are cyclic. It is sufficient to show that for
any 7,0 < ¢ < m one can obtain the field F;,; from F; by adding

radicals.
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Assume that Gal(F;y1/F;) = Z,. Let M; be the splitting field of
t" — 1 over F;. It is clear that we can obtain the field M; from F; by
adding radicals. Let N;.1 = F; 1 M.

Nij1 = M;Fiy

/ Z/r'Z
Fip M; = Fi(u,)
Z]rZ /
F;

Then it is easy to see (7) that N;11/M; is a Galois extension and
Gal(N;y1/M;) is a subgroup of Gal(F;,1/F;) = Z,.

So Gal(Njy1/M;) = Z, where r'|r. Since M; contains all all the
roots of order r’ of 1 and L D K is a Galois extension with the Galois
group Gal(L/K) equal to Z, it follows from Lemma 11.1 that one can
obtain the field F;y; from M; by adding radicals. [

b) Assume that L is obtainable from K by adding radicals. We
want to show that the Galois group Gal(L/K) is solvable. Using the
induction it is sufficient to prove the following result which I'll leave
for you to prove.

Claim. Let K be a field, L is a splitting field of a polynomial ¢" — a.
Then the Galois group Gal(L/K) is solvable.

Definition 11.2. a) The symmetric groups S, is the group of per-
mutations of the set (1,...,n).

b) For any sequence i = (i1, 79, ..., i,) of distinct elements of (1,...,n)
we denote by [i1, s, ..., 7] € S, the permutation such that

[il,ig, ,ZT](Zk) — ’ik+1,1 S k < T, [il,ig, ,ZT](ZT) - le, [il,ig, ,ZT](Z) — Z,Z ¢;

The element i1,12, ...,3,] € S, is called the cycle corresponding to the
sequence i = (i1, 92, ..., ),

c¢) we call the cycle s; :=[i,i + 1],1 < i < n an elementary permuta-
tion.

Givenany o € S, andi € (1,...,n) we may form an orbit i C (1,...,n)
of i under the action of the cyclic group generated by . Then (1, ...,n)
may be decomposed in a disjoint union of orbits of the cyclic group
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generated by o. Then o is equal to the product of commuting cycles
corresponding to this decomposition.

Lemma 11.3. a) The elementary permutations s;, 1 < i < n gener-
ate Sy,

b) if n is a prime number, ¢ € S, is an n-cycle and 7 € S, an
elementary permutation then (o, 7) generate S,

¢) two elements of S, are conjugate iff they are products of cycles of
the same length,

d) if n is prime and o € S, is an element of order n then o is an
n-cycle.

Proof. a),c) and d) are easy and I'll only outline the proof of b).

By renumbering the elements we can assume that 7 = (1,2). We

can find 7,0 < r < n such that ¢"(1) = 2. Since n is prime we
see that ¢" is also an n-cycle. Therefore by another renumbering the
elements we can assume that " = (1,2,...,n). But then we have

o "oTo0™ =s;,1 < i< n. So the subgroup of S,, generated by (a, T)
contains s;,1 <1 < n.[l

Theorem 11.2. The groups S,, are not solvable if n > 4.

Proof. Theorem 11.2 is an immediate corollary of the following
result.

Theorem 11.2°. Let H C S,,,n > 4 be a subgroup containing all
3-cycles and H' < H be a normal subgroup such that the quotient
group H/H' is abelian. Then H’ also contains all 3-cycles.

Proof of Theorem 11.2°. Let [rki] € S,, be a 3-cycle. We want
to show that [rki] € H'. Choose numbers j,s € (1,...,n) distinct from
r,k,i and consider o := [ijk|, T := [krs]. By the condition on H we
have 0,7 € H. I claim that o7o~ 77! € H’. Really since the group
H/H' is abelian we have q(oro™'771) = q(o)q(t)q(o) 1q(r)™) =
e/ whre ¢ : H — H/H' is the natural projection and eq/m is the
unit in H/H'.

On the other hand oro~'771 = [rki]. So [rki] € H'.O

Let s(t) € K|[t] be an irreducible polynomial of degree n. Then the
Galois group G of s(t) acts on the set R C Q of roots of s(t) in Q. In
other words we have an imbedding of the group G into the symmetric
group S,. In particular we can talk about the decomposition of o € G
in the product of cycles.

Theorem 11.3. Let s(t) € K[t] be an irreducible polynomial of a
prime degree p. Suppose that there exists ¢ € G which acts on R as
an elementary transposition. Then G' = 5,,.



Proof. Let F := K[t|/(s(t)), L be the normal closure of F' over K
and G = Gal(L/K). We want to show that G = S,,.

Since |G| = [L : K] = [L : F|[F : K| we see that p divides |G|.
Therefore it follows from the Cauchy’s theorem that there exists 7 € GG
of order p. Consider the imbedding of the group G into the symmetric
group S, coming from the action on roots of s(t)). Since p is a prime
number it follows from Lemma 11.2 d) that 7 € S, is an n-cycle.
Theorem 11.3 follows now from Lemma 11.2 b).0J

Corollary 1. Let s(t) € Q[t] be a polynomial of a prime degree p
which have exactly two non-real roots in C. Then the Galois group of
s(t) is equal to S,.

Proof. We have to show that the image of the Galois group Gal(L/K)
in S, contains an elementary transposition. By the complex conjuga-
tion acts on the set of roots of s(¢) as an elementary transposition.

Corollary 2. The Galois group of s(t) = t> — 6t + 3 is equal to Ss.

Proof. The Eisenstein’s criterion shows the irreducibility of s(t).

Since

p(—3) < 0,p(—1) > 0,p(—1) < 0,p(2) > 0 we see that s(t) has at
least 3 real roots. On the other hand p/(t) has only 2 zeros. So it
follows from the Rolle’s theorem that s(¢) has at most 3 real roots. We
see that s(t) has exactly three real roots. Therefore s(t) has exactly
two complex roots and the result follows from Corollary 1.



