Theorem 5.1. Let $G \subset Gal(L/K)$ be a finite subgroup, $L^G := \{\alpha \in L | g(l) = l, \forall g \in G\}$. Then $[L : L^G] = |G|$ where |G| is the order of the group G.

Proof. Let $n = |G|, G = (g_1, g_2, ..., g_n), m = [L : L^G]$ and $(\alpha_1, ..., \alpha_m)$ be a basis of L as an L^G -vector space. We have to show that m = n.

We first show that $m \geq n$. Suppose m < n. We denote by

$$A:L^n\to L^m$$

an L-linear map given by

$$(x_1, ..., x_n) \to (\gamma_1, ..., \gamma_m), \gamma_j := \sum_{i=1}^n x_i g_i(\alpha_j)$$

Since m < n we know that $Ker(A) \neq \{0\}$. So there exist $\{x_1, ..., x_n\} \subset L$ such that $(x_1, ..., x_n) \neq (0, ..., 0)$ and for all $j, 1 \leq j \leq m$ we have

$$\sum_{i=1}^{n} x_i g_i(\alpha_j) = 0$$

Since $(\alpha_1, ..., \alpha_m)$ an L^G -basis of L we see that for any $\alpha \in L$ we have $\sum_{i=1}^n x_i g_i(\alpha) = 0$. In other words field homomorphisms $g_1, ..., g_n : L \to L$ are linearly dependent. But this is not possible [see the Dedekinds's lemma]. So $m \geq n$.

Now we show that $m \leq n$. Suppose that m > n. Then we can find n+1 elements $(\beta_1, ..., \beta_{n+1}) \in L$ which are linearly independent over L^G . Consider an L-linear map $B: L^{n+1} \to L^n$, $B(\delta_1, ..., \delta_{n+1}) = (\gamma_1, ..., \gamma_n)$ where

$$\gamma_i := \sum_{j=1}^{n+1} \delta_j g_i(\beta_j), 1 \le i \le n$$

Since m > n we see that $Ker(B) \neq \{0\}$. Therefore there exist $\delta_1, ..., \delta_{n+1} \in L$ such that $(\delta_1, ..., \delta_{n+1}) \neq (0, ..., 0)$ and

$$\sum_{j=1}^{n+1} \delta_j g_i(\beta_j) = 0 \forall i, 1 \le i \le n$$

Now we will argue as in the process of the proof of the Dedekinds's lemma. So we choose $\delta_1, ..., \delta_{n+1} \in L$ such that $(\delta_1, ..., \delta_{n+1}) \neq (0, ..., 0)$ and

$$(\star) \sum_{j=1}^{n+1} \delta_j g_i(\beta_j) = 0, 1 \le i \le n$$

in such a way that the minimal number of δ_i are different from 0. After renumbering we can assume that $(\delta_1, ..., \delta_r) \neq (0, ..., 0)$

$$(\star) \sum_{j=1}^{r} \delta_j g_i(\beta_j) = 0, 1 \le i \le n$$

and that for any sequence $\delta'_j, 1 \leq j \leq r-1$ such that $(\delta'_1, ..., \delta'_{r-1}) \neq (0, ..., 0)$ there exists $i, 1 \leq i \leq n$ such that

$$\sum_{j=1}^{r-1} \delta_j' g_i(\beta_j) \neq 0$$

Let us apply $g \in G$ to (\star) . We will get a system of equalities

$$(\star_g) \sum_{j=1}^r g(\delta_j) g g_i(\beta_j) = 0, 1 \le i \le n$$

As follows from Lemma 4.2c) the set $\{gg_i\}$, $1 \leq i \leq n$ coincides with the set $\{g_i\}$, $1 \leq i \leq n$. Therefore the system $(\star)_g$ of equalities is equivalent to the system

$$(\star\star)_g \sum_{i=1}^r g(\delta_j)g_i(\beta_j) = 0, 1 \le i \le n$$

If we multiply (\star) by $g(\delta_r)$, multiply $(\star\star)$ by δ_r and subtract we obtain the system

$$(\star \star \star)_g \sum_{j=1}^{r-1} (g(\delta_r)\delta_j - \delta_r g(\delta_j))g_i(\beta_j) = 0, 1 \le i \le n$$

This is system of equations like (\star) but with fewer terms. So our choice of r implies that for any $g \in G$ all the coefficients

$$g(\delta_r)\delta_j - \delta_r g(\delta_j), 1 \le j \le r - 1$$

are equal to zero. But this implies that for all $g \in G$ we have

 $c_j = g(c_j), 1 \leq j < r$ were $c_j := \delta_j \delta_r^{-1}$. By the definition of the field L^G we know that $c_j \in L^G, 1 \leq j < r$. Therefore the first of the equalities (\star) implies the equality $\sum_{j=1}^r \delta_r c_j \beta_j = 0$. Since $\delta_r \neq 0$ we have $\sum_{j=1}^r c_j \beta_j = 0$.

But such an equality would imply that the elements $(\beta_1, ..., \beta_r) \in L$ are linearly dependent over L^G . But this is not possible since the

elements $(\beta_1, ..., \beta_{n+1}) \in L$ are linearly independent over L^G . So you see that the assumption m > n also leads to a contradiction and we have $m = n.\square$

Definition 5.1. Let $L \supset K$ be a finite field extension. A normal closure of L: K is an extension N of L such that

- a) N: K is normal and
- b) if F is a field such that $L \subset F \subset N$ and F : K is normal then F = N.

Definition 5.2. If M, N be two extensions of K and $f: M \to N$ a field homomorphism we say that f is a K-homomorphism if $f(c) = c, \forall c \in K$.

Lemma 5.1. a) for any finite field extension $L \supset K$ there exists normal closure N of L: K such that $[N:K] < \infty$,

b) if $N \supset L$ is another normal closure of L:K then the extensions M:K and N:K are isomorphic.

Proof of a). Let $\alpha_i, 1 \leq i \leq n$ be a basis of L over K. For any $i, 1 \leq i \leq n$ we define $p_i(t) := Irr(\alpha_i, K, t) \in K[t]$ and then define $q(t) := \prod_{i=1}^n p_i(t)$. Let N be a splitting field for q(t) over L. Since $L = K(\alpha_1, ..., \alpha_n)$ we see that N is a splitting field for q(t) over K. It follows now from Theorem 4.2 that N: K is normal.

To prove that N is a normal closure of L:K we have to show that for any $F, L \subset F \subset N$ such that F:K is normal we have F=N. Since $F \supset L$ we know that for any $i, 1 \le i \le n$ the irreducible polynomial $p_i(t), 1 \le i \le n$ has a root α_i in F. Since F:K is normal all the roots of $p_i(t)$ are in F. Therefore all the roots of q(t) are in F. Since N is a splitting field for q(t) over K we see that F=N. \square

- **Proof of b).** Suppose that N, M are two normal closures of L: K. Then as follows from the proof of a) both N and M are splitting fields of q(t). It follows now from Theorem 3.1 that there exists a K-isomorphism $f: M \to N$. \square
- **Lemma 5.2.** a) Let $K \subset L \subset M \subset N$ be finite field extensions such that M is a normal closure of L: K and $f: L \to N$ be a K-homomorphism. Then $Im(f) \subset M$,
- b) Suppose $L \supset K$ is a finite field extension, and $M \supset L$ a normal extension containing L. Then for any K-homomorphism $g: L \to M$ there exists an isomorphism $\tilde{g}: M \to M$ such that $\tilde{g}(\alpha) = g(\alpha) \forall \alpha \in L$,

- c) Suppose $L \supset K$ is a finite field extension, and $M \supset L$ a normal extension containing L such that for any K-homomorphism $f: L \to M$ we have $Im(f) \subset L$. Then the extension $L \supset K$ is normal,
- d) If $K \subset L \subset M$ are finite field extensions such that M:K is normal then M:L is also normal.

The proof of Lemma 5.2 assigned as a homework problem.

Definition 5.3. Let $L \supset K$ be a finite extension, $M \supset L$ a normal extension containing L.

- a) We denote by H(L/K) the set of K-homomorphisms of L to M. **Remark**. It follows from Lemma 5.2 this set does not depend on a choice of a normal extension M.
- b) we denote by $[L:K]_s$ the number of elements in the set H(L/K) and say that $[L:K]_s$ is the *separable degree* of L over K.

Lemma 5.3. Let $K \subset F \subset L$ be finite field extensions. Then $[L:K]_s = [L:F]_s[F:K]_s$

Proof. For any field homomorphism $g \in H(F/K)$ we denote by $H(L/K)_g \subset H(L/K)$ the subset of field homomorphism $f \in H(L/K)$ such that $f(\alpha) = g(\alpha)$ for all $\alpha \in F$. It is clear that $H(L/K)_{Id} = H(L/F)$ and that

$$H(L/K) = \cup_{g \in H(F/K)} H(L/K)_g$$

Therefore

$$[L:K]_s = \sum_{g \in H(F/K)} |(H(L/K)_g)|$$

Claim. For any $g \in H(F/K)$ we have $|(H(L/K)_g)| = |H(L/K)_{Id}|$.

Proof of the Claim. Choose $g \in H(F/K)$. As follows from Lemma 5.2 there exists an isomorphism $\tilde{g}: M \to M$ such that $\tilde{g}(\alpha) = g(\alpha) \forall \alpha \in L$. It is clear that

$$\tilde{g}(H(L/K)_{Id}) = (H(L/K)_g \square$$

Now we can finish the proof of Lemma 5.3. Since $H(L/K)_{Id} = H(L/F)$ we have $|(H(L/K)_{Id})| = [L:F]_s$ and it follows from the Claim that $|(H(L/K)_g)| = [L:F]_s \forall g \in H(F/K)$. So $[L:K]_s = [L:F]_s [F:K]_s$.

Theorem 5.2. Let $L \supset K$ be a finite extension. Then

- a) $[L:K] \ge [L:K]_s$
- b) the extension $L \supset K$ is separable iff $[L:K] = [L:K]_s$.

Proof. Consider first the case when $L \supset K$ is an elementary extension. That is there exists $\alpha \in L$ such that $L = K(\alpha)$. As follows from Lemma 3.3 the separable degree $[L:K]_s$ is equal to the number

of roots of the polynomial $p(t) := Irr(\alpha, K, t)$ in M. We know that $\deg(p(t)) = [L:K]$, that $[L:K]_s \leq \deg(p(t)) = [L:K]$ and that $[L:K] = [L:K]_s$ iff the polynomial p(t) is separable. So the Theorem 5.2 is true for elementary extensions.

Now we prove the Theorem 5.2 by induction in [L:K]. If [L:K]=1 then L=K and there is nothing to prove. So assume [L:K]>1, choose $\alpha \in L-K$ and write $p(t):=Irr(\alpha,K,t)$.

Since $[L:K(\alpha)] < [L:K]$ we know from the inductive assumption that $[L:K(\alpha)]_s < [L:K(\alpha)]$. It follows now from Lemma 5.4 that

$$[L:K]_s = [L:K(\alpha)]_s[K(\alpha):K]_s \le [L:K(\alpha)][K(\alpha):K]$$

This prove the part a).

Assume now that $[L:K] = [L:K]_s$. We want to show that the extension $L \supset K$ is separable. Since we now that

 $[L:K(\alpha)] \leq [L:K(\alpha)]_s$ and $[K(\alpha):K]_s \leq [K(\alpha):K]$ the equality $[L:K] = [L:K]_s$ implies the equality $[K(\alpha):K] = [K(\alpha):K]_s$. So it follows from the beginning of the proof of Theorem 5.2 that the polynomial $p(t) := Irr(\alpha, K, t)$ is is separable. We see that for any $\alpha \in L$ the polynomial $p(t) := Irr(\alpha, K, t)$ is is separable. Therefore the extension $L \supset K$ is separable.

Assume now that the extension $L \supset K$ is separable. We want to show that $[L:K] = [L:K]_s$. We start with the following result.

Lemma 5.4. Let $K \subset F \subset L$ be finite extensions. If the extension L:K is separable then the extensions L:F and F:K are also separable.

Proof . Suppose the extension L:K is separable. It follows from the definition that the extension F:K is also separable.

So we have. Let M be a normal closure of L:K. To show that the extension L:F is separable we have to show that for any $\alpha \in L$ the polynomial

 $r(t) := Irr(\alpha, F, t) \in F[t]$ has simple roots in M. Let

 $R(t) := Irr(\alpha, K, t) \in K[t]$. Since L : K is separable we know that the polynomial R(t) has simple roots in M. On the other hand r(t)|R(t), because R is a polynomial in $K[t] \subset F[t]$ with $R(\alpha) = 0$ but r is the minimal polynomial of α over F so it generates the ideal of polynomials in F[t] vanishing at α . So all the roots of r(t) are simple. \square

Now we can finish the proof of Theorem 5.2. Let $L \supset K$ be a separable extension. We want to show that $[L:K] = [L:K]_s$. Since $[L:K]_s = [L:K(\alpha)]_s[K(\alpha):K]_s$ and filed extensions $L:K(\alpha)$

and $[K(\alpha):K]$ are separable the equality follows from the inductive assumption. \square

Lemma 5.5. a). Let $K \subset F \subset L$ be finite extensions. If the extensions L: F and F: K are separable then the extension L: K is also separable.

b) If $K \subset L$ is a finite separable extension then the normal closure M of L:K is separable over K.

The proof of Lemma 5.5.is assigned as a homework problem.

Definition 5.4. Let $L \supset K$ be a finite normal field extension, G := Gal(L/K) be the Galois group of L : K. To any intermediate field extension $F, K \subset F \subset L$ we can assign a subgroup $H(F) \subset Gal(L/K)$ define by

$$H(F) := \{ h \in Gal(L/K) | h(f) = f \forall f \in F \}$$

By the definition H(F) = Gal(L:F).

Conversely to any subgroup $H \subset Gal(L/K)$ we can assign an intermediate field extension L^H , $K \subset L^H \subset L$ where

$$L^{H} := \{l \in L | h(l) = l \forall h \in H\}$$

In other words if A(L, K) is the set of fields F in between K and L and B(L, K) is the set of subgroups of G we constructed maps

$$\tau: A(L,K) \to B(L,K), F \to H(F)$$
 and $\eta: B(L,K) \to A(L,K), \tau: H \to L^H$.

The Main theorem of the Galois theory.

Let $L \supset K$ a finite normal separable field extension. Then

- a) |Gal(L/K)| = [L : K],
- b) $L^G = K$
- c) the maps $\tau:A(L,K)\to B(L,K), F\to H(F)$ and
- $\eta: B(L,K) \to A(L,K), H \to L^H$ are one-to-one and onto.

Proof. The part a) follows from Theorem 5.2.

Proof of b). Let $F := L^H$. As follows from a), the product formula and Theorem 5.1 we have [F : K] = [L : K]/[L : F] = 1. So F = K.

Proof of c). We have to show that

- i) $\tau \circ \eta = Id_{A(L,K)}$ and
- ii) $\eta \circ \tau = Id_{B(L,K)}$.

Proof of i). Let $F \in A(L, K)$ be subfield of L containing $K, H(F) := \eta(F) \subset G$. Since the extension $L \supset K$ is normal it follows from Lemma 5.2 that the extension $L \supset F$ is also normal. So it follows from a) that

|H(F)|=[L:F]. Since H(F)=Gal(L:F) it follows from b) that $L^H=F.$ So $\tau\circ\eta(F)=F.$

ii) Let $U \subset B(L,K)$ be a subgroup of G and $F:=L^U$. Define H:=H(F). We want to show that U=H. By the definition, for any $u\in U, \alpha\in F$ we have $u(\alpha)=\alpha$. In other words $U\subset H$. As follows from Theorem 5.1 we have [L:F]=|U|. On the other hand, it follows from i) that [L:F]=|H|. So |U|=|H| and the inclusion $U\subset H$ implies that $U=H.\square$