Theorem 5.1. Let G C Gal(L/K) be a finite subgroup,

LS .= {a € Llg(l) = 1,Yg € G}. Then [L : LY = |G| where |G| is
the order of the group G.

Proof. Letn =|G|,G = (91,92, .., gn), m = [L : L¢] and (v, ..., i)
be a basis of L as an L%vector space. We have to show that m = n.

We first show that m > n. Suppose m < n. We denote by
A:L"— L™

an L-linear map given by
(@1, 0y Tn) = (V1520 Ym), V5 = ing,-(aj)
i=1

Since m < n we know that Ker(A) # {0}. So there exist {z1,...,z,} C
L such that (z1,...,z,) # (0,...,0) and for all j,1 < j < m we have

Z ngz(a]) =0
=1

Since (av, ..., ) an L% basis of L we see that for any o € L we have
r xigi(a) = 0. In other words field homomorphisms g1, ..., g, : L —
L are linearly dependent. But this is not possible [ see the Dedekinds’s
lemmal. So m > n.

Now we show that m < n. Suppose that m > n. Then we can find
n+1 elements (8, ..., Bpy1) € L which are linearly independent over L.
Consider an L-linear map B : L""! — L™ B(61, ..., 0ns1) = (Y1, ey Yn)
where

n+1
Y=Y 8;g:(8)), 1 <i<n

i=1

Since m > n we see that Ker(B) # {0}. Therefore there exist
01, ---;6n+1 € L such that (51, ---;5n+1) ?é (0, ,0) and

n+1

j=1
Now we will argue as in the process of the proof of the Dedekinds’s
lemma. So we choose 61, ..., 0,11 € L such that (d1, ..., d,41) # (0, ..., 0)

and
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n+1

)Y 8g:(8)) =0,1<i<n

in such a way that the minimal number of §; are different from 0. After
renumbering we can assume that (41, ...,d,) # (0,...,0)

,
x> 6;gi(8) =0,1<i<n
j=1
and that for any sequence d7,1 < j < r — 1 such that (6},...,0;_,) #
(0,...,0) there exists 7,1 < i < n such that

r—1
Z 379:(B;) # 0
j=1
Let us apply g € G to (x). We will get a system of equalities

T

(ke) > 9(6;)99:(B8) =0,1<i<n

j=1
As follows from Lemma 4.2¢) the set {gg;},1 < i < n coincides with

the set {g;},1 < i < n. Therefore the system (x), of equalities is
equivalent to the system

Zg 0i(3) =0,1<i<n

If we multiply (x) by g(ér), multiply (xx) by §, and subtract we obtain
the system

—

r—

(xx%)g ) _(9(0:)0; = 6:9(05))9:(B;) = 0,1 <i<m

j=1

This is system of equations like (x) but with fewer terms. So our
choice of r implies that for any g € G all the coefficients

9(6,)0; — 8,9(0;),1<j<r—1

are equal to zero. But this implies that for all ¢ € G we have

¢; = g(cj),1 < j < r were ¢; := §;6,". By the definition of the
field LY we know that ¢; € L% 1 < j < r. Therefore the first of the
equalities (x) implies the equality » %, d,¢;8; = 0. Since 4, # 0 we
have 3%, ¢;8; =0

But such an equality would imply that the elements (31, ..., 5.) € L
are linearly dependent over LY. But this is not possible since the
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elements (1, ..., Bns1) € L are linearly independent over L¢. So you
see that the assumption m > n also leads to a contradiction and we
have m = n.J

Definition 5.1. Let L O K be a finite field extension. A normal
closure of L : K is an extension N of L such that

a) N : K is normal

and

b) if F is a field such that L C F C N and F : K is normal then
F=N.

Definition 5.2. If M, N be two extensions of K and f: M — N
a field homomorphism we say that f is a K-homomorphism if f(c) =
c,Ve € K.

Lemma 5.1. a) for any finite field extension L D K there exists
normal closure N of L : K such that [N : K| < oo,

b) if N D L is another normal closure of L : K then the extensions
M : K and N : K are isomorphic.

Proof of a). Let o;,1 < i < n be a basis of L over K. For any
i,1 < i < n we define p;(t) := Irr(o;, K,t) € K[t] and then define
q(t) == [I=, pi(t). Let N be a splitting field for ¢(¢) over L. Since
L = K(aq, ..., ) we see that N is a splitting field for ¢(t) over K. It
follows now from Theorem 4.2 that N : K is normal.

To prove that N is a normal closure of L : K we have to show that
forany F, L C F C N such that F': K is normal we have F' = N. Since
F D L we know that for any 7,1 < ¢ < n the irreducible polynomial
pi(t),1 < i <n hasaroot ; in F. Since F : K is normal all the roots
of p;(t) are in F. Therefore all the roots of ¢(¢) are in F. Since N is a
splitting field for ¢(t) over K we see that F' = N.O

Proof of b). Suppose that N, M are two normal closures of L :
K. Then as follows from the proof of a) both N and M are splitting
fields of ¢(t). It follows now from Theorem 3.1 that there exists a
K-isomorphism f: M — N.OJ

Lemma 5.2. a) Let K C L C M C N be finite field extensions
such that M is a normal closure of L : K and f : L — N be a K-
homomorphism. Then I'm(f) C M,

b) Suppose L D K is a finite field extension, and M O L a normal
extension containing L. Then for any K-homomorphism g : L — M
there exists an isomorphism g : M — M such that §(a) = g(a)Va € L,



¢) Suppose L D K is a finite field extension, and M D L a normal
extension containing L such that for any K-homomorphism f : L — M
we have Im(f) C L. Then the extension L D K is normal,

d) If K C L C M are finite field extensions such that M : K is
normal then M : L is also normal.

The proof of Lemma 5.2 assigned as a homework problem.

Definition 5.3. Let L D K be a finite extension, M D L a normal
extension containing L.

a) We denote by H(L/K) the set of K-homomorphisms of L to M.

Remark. It follows from Lemma 5.2 this set does not depend on a
choice of a normal extension M.

b) we denote by [L : K|, the number of elements in the set H(L/K)
and say that [L : K|, is the separable degree of L over K.

Lemma 5.3. Let K C F C L be finite field extensions. Then
[L:K]s=[L: F|s[F: K|

Proof . For any field homomorphism g € H(F/K) we denote by
H(L/K), C H(L/K) the subset of field homomorphism f € H(L/K)

such that f(a) = g(a) for all & € F. It is clear that H(L/K)y =
H(L/F) and that

H(L/K) = Ugenr/myH(L/K),
Therefore

[L:Kl,= ) [(H(L/K),

geH(F/K)
Claim. For any g € H(F/K) we have |(H(L/K),| = |H(L/K)a|-
Proof of the Claim. Choose g € H(F/K). As follows from Lemma
5.2 there exists an isomorphism § : M — M such that §(a) = g(a)Va €
L. 1t is clear that
9(H(L/K)ra) = (H(L/K),O0

Now we can finish the proof of Lemma 5.3. Since H(L/K);q = H(L/F)
we have |(H(L/K)r| = [L : F]s and it follows from the Claim that
(H(L/K)y| =[L:F)\Vg e HF/K). So [L: K|;=[L:F|,[F: K|,.d

Theorem 5.2. Let L D K be a finite extension. Then

a)[L: K|>[L: K|,

b) the extension L D K is separable iff [L : K] = [L : K],.

Proof . Consider first the case when L D K is an elementary

extension. That is there exists o € L such that L = K(«). As follows
from Lemma 3.3 the separable degree [L : K], is equal to the number



5

of roots of the polynomial p(t) := Irr(«, K,t) in M. We know that
deg(p(t)) = [L : K],that [L : K], <deg(p(t)) = [L : K] and that
[L: K| =L : K], iff the polynomial p(t) is separable. So the Theorem
5.2 is true for elementary extensions.

Now we prove the Theorem 5.2 by induction in [L : K]. If [L: K] =1
then L = K and there is nothing to prove. So assume [L : K| > 1,
choose € L — K and write p(t) := Irr(o, K, t).

Since [L : K(a)] < [L : K] we know from the inductive assumption
that [L: K(o)]s < [L: K(«)]. It follows now from Lemma 5.4 that

[L:K],=[L: K(&)],|K(a): K], < [L: K(a)][K(a): K]

This prove the part a).

Assume now that [L : K| = [L : K|;. We want to show that the
extension L D K is separable. Since we now that

[L:K(o)] <[L:K(o)]s and [K() : K]; < [K(«) : K] the equality
[L : K| = [L : K], implies the equality [K(a) : K] = [K(a) : K]s.
So it follows from the beginning of the proof of Theorem 5.2 that the
polynomial p(t) := Irr(a, K,t) is is separable. We see that for any
« € L the polynomial p(t) := Irr(a, K,t) is is separable. Therefore
the extension L D K is separable.

Assume now that the extension L O K is separable. We want to
show that [L : K| = [L : K]s;. We start with the following result.

Lemma 5.4. Let K C F C L be finite extensions. If the extension
L : K is separable then the extensions L : F' and F' : K are also
separable.

Proof . Suppose the extension L : K is separable. It follows from
the definition that the extension F': K is also separable.

So we have. Let M be a normal closure of L : K. To show that the
extension L : F' is separable we have to show that for any o € L the
polynomial

r(t) :== Irr(a, F,t) € F[t] has simple roots in M. Let

R(t) = Irr(a,K,t) € K[t]. Since L : K is separable we know
that the polynomial R(¢) has simple roots in M. On the other hand
r(t)|R(t), because R is a polynomial in K[t] C F[t] with R(a) = 0 but
r is the minimal polynomial of o over F' so it generates the ideal of
polynomials in F'[t] vanishing at . So all the roots of r(t) are simple.[]

Now we can finish the proof of Theorem 5.2. Let L D K be a
separable extension. We want to show that [L : K] = [L : K],. Since
[L : K|s = [L : K(o)]s]K () : K]s and filed extensions L : K(«)
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and [K(«) : K are separable the equality follows from the inductive
assumption.[]

Lemma 5.5. a). Let K C F C L be finite extensions. If the
extensions L : F' and F': K are separable then the extension L : K is
also separable.

b) If K C L is a finite separable extension then the normal closure
M of L : K is separable over K.

The proof of Lemma 5.5.is assigned as a homework problem.

Definition 5.4. Let L D K be a finite normal field extension,
G := Gal(L/K) be the Galois group of L : K. To any intermediate field
extension F, K C F' C L we can assign a subgroup H(F') C Gal(L/K)
define by

H(F) = {h € Gal(L/K)|h(f) = f¥Vf € F}

By the definition H(F') = Gal(L : F).
Conversely to any subgroup H C Gal(L/K) we can assign an inter-
mediate field extension L¥, K ¢ L¥ C L where

L7 .= {l € L|h(l) = IVh € H}

In other words if A(L, K) is the set of fields F' in between K and L
and B(L, K) is the set of subgroups of G we constructed maps

7:A(L,K)— B(L,K),F — H(F) and

n:B(L,K)— A(L,K),7: H— L".

The Main theorem of the Galois theory.

Let L D K a finite normal separable field extension . Then

a) |Gal(L/K)| =L : K|,

b) LG = K

¢) the maps 7: A(L,K) — B(L,K),F — H(F) and

n:B(L,K)— A(L,K),H — L* are one-to-one and onto.

Proof. The part a) follows from Theorem 5.2.

Proof of b). Let F := L. As follows from a), the product formula
and Theorem 5.1 we have [FF: K| =[L: K|/[L: F]=1. So F = K.

Proof of ¢). We have to show that

1) TOoMm= IdA(L,K) and

ll) norT = IdB(L,K)-

Proof of i). Let F' € A(L, K) be subfield of L containing K, H(F') :=
n(F) C G. Since the extension L D K is normal it follows from Lemma
5.2 that the extension L D F is also normal. So it follows from a) that
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|H(F)| = [L : F|. Since H(F) = Gal(L : F) it follows from b) that
L = F. Soron(F)=F.

ii) Let U C B(L,K) be a subgroup of G and F := LY. Define
H := H(F). We want to show that U = H. By the definition, for any
u € U,a € F we have u(a) = . In other words U C H. As follows
from Theorem 5.1 we have [L : F] = |U|. On the other hand, it follows
from i) that [L : F| = |H|. So |U| = |H| and the inclusion U C H
implies that U = H.[J



