Lemma 6.1. Let L D K be a normal extension and F' an interme-
diate field K C F' C L.

a) Let p(t) € K[t] be an irreducible polynomial, o, &’ € L such that
p(a) = p(a’) = 0. Then there exists an automorphism 1 € Gal(L/K)
such that n(a) = o/,

b) Let L D K be a normal extension,and np : F — L a K-
homomorphism. Then there exists an automorphism n € Gal(L/K)

such that n(3) = nr(3),V6 € F,
c¢) the extension L : F' is normal.

Remark. a) is a special case of b). Really we can take F' = K(«)
and define np : F' — L by nr(a) = .

I'll prove only the part a) and leave parts b) and c) as a homework.

Proof of a). We can find aw, ..., o, € Lsuch that L = K(ag, as, ..., o)
where a7 := a. By Lemma 3.3 there exists a K-homomorphism 7, :
K(ay) — L such that n (o) = .

Claim. There exists a K-homomorphisms n; : K(aq,ag, ..., ;) —
L,1 <4 < n such that 7; is an extension of 7;_1,2 < i < n.

Proof of the Claim. We will prove the existence of a K-homomorphism
ne : K(aq,as) — L which extends 7;. The general case is easily done
by induction.

Let p(t) := Irr(ag, K,t) € K[t] and

q(t) :== Irr(ag, K(a1),t) € K(aq)[t]. By the definition p(as) = 0
and ¢(t) is irreducible in K (ay)[t]. Therefore q(t)|p(t). Since p(t) has
a root in L and the field L is normal we see that p(t) decomposes in
L[t] in a product of linear factors. Since ¢(t)|p(t) we see that ¢(t) also
decomposes in L[t] in a product of linear factors. So we can find a
oy € L such that ¢(af) = 0. It follows now from Lemma 3.3 that there
exists an extension 7y : K(ag,a) — L of 1 : K(ay) — L such that
ne(ag) = a0

To finish the proof of Lemma 6.1 we have to show that 7, : L — L
is an automorphism. But we know that 7, : L — L is a K-linear
map such that Ker(n,) = {0}. Since [L : K] < oo this implies that
Nn : L — L is an automorphism. [

Lemma 6.2. Let L D K be a finite normal extension, p= ch (K),
a € L an element such that for any K-homomorphism f : K(a) — L
we have f(a) = a. Then either a € K or p > 0 and there exists n > 0
such that o?” € K.



Proof. As we know form Lemma 3.3 the set of K-homomorphism
f: K(a) — L can be identified with the set of roots of the polynomial
p(t) :== Irr(a, K,t) in L. So we see that all the roots of p(t) in L are
equal to a. Since the field L is normal we know that p(t) decomposes
in a product of linear factors in L[t]. So p(t) = (t—a)™ where m =deg(
p(t)).

Consider first the case when ch (K)=0. Then

p(t) =t —a)™ =t"™ —mat™ " + ...

where we omit the lower terms. Since p(t) € K[t] we have ma € K.
By the assumption ch (K)=0 and we can divide by m. So o € K.

Assume now that ch (K)=p> 0. I claim that there exists n > 0 such
that m = p™. Really write m = p"r where r is prime to p. Then we
have

p(t) = ((t _ a)p")r — (tp" _ ap")r _ tpnr . rapntpn(r_l)r 4

where we omit the lower terms.
Since p(t) € K[t] we see that ra?” € K. Since r is prime to the
characteristic p of K we can divide by r. Therefore o" € K. [J

Lemma 6.3. Let F' D K be a extension such that any element
a € F is algebraic over K and every monic polynomial p(t) € K]Jt]
splits in F[t] into a product of linear factors. Then the field F is
algebraicly closed.

Proof. We want to show that any monic polynomial r(¢t) = """, ¢;it" €
F[t],n > 0 has a root in F. Let L = K(cg,...,cp—1). Since every ele-
ment in F is algebraic over K we see that [L : K| < oo.

Let a;,1 < i < n be a basis of L over K. For any i,1 < i < n we
define p;(t) := Irr(a;, K,t) € K[t] and then define ¢(t) := [, pi(¢).
Let 5; € F,1 < j < a be the set of roots of ¢(t) in F' and N =
K(B1,...,0.) C F. Since ¢(t) splits in F[t] into a product of factors of
the type t — [3; we see that N is a splitting field of ¢(t) over K. So |
by Theorem 4.2] N : K is normal.

Let X be the set of all K-homomorphisms f : L — N. The group
Gal(N/K) of the automorphisms of N over K acts on the set X by

f—9(f),g9 € Gal(N/K) where g(f)(l) := g(f(1)),! € L.
For any f € X we define ps(t) := > ", f(c;)t" € NJt] and define

R(t):= [ ps(®) € N[1]

fex



3

Let us write R(t) = Z?:o rit',7; € N. I claim that for any g(r;) = r; for
any g € Gal(L : K),1 <1 < d. Really when we act by g on R(t) we only
interchange the order of the factors in the product R(t) := [[;cx ps(?).
As follows from Lemma 6.2 either R(t) € K|t] or ch (K) :=p > 0 and
there exists n > 0 such that cfn € K,Vi,1 < i < d. But in this case

R =30 7"t e KTt].

We see that there exists m > 0 such that R(t)™ € K[t]. Therefore
the polynomial R(t)™ € Kt] splits in F'[t] into a product of factors. So
any divisor of the polynomial R(t) also splits in F'[t] into a product of
linear factors. Since p(t) = p(t)rq is a divisor of R(t) we see that p(t)
has a root in F.[J

Definition 6.1. Let K be a field. An algebraic closure of K is an
extension K D K which is algebraicly closed and such that any element
a € K is algebraic over K.

~ Remark. If L D K is a finite extension that any algebraic closure
L of L is also an algebraic closure K.

Theorem 6.1. Let K be a field. Then

a) there exists an algebraic closure K of K,

b) if K’ D K is another algebraic closure of K then there exists a
K-isomorphism n : K — K'.

Proof. T'll consider only the case when the field K is countable. In
this case the set of polynomials ¢(t) € K|[t] is also countable. So we can
write a sequence ¢, (t) € K[t],n > 0 of monic polynomials such that
any monic polynomial appears in this sequence. Now we construct an
sequence of fields L,,n > 0 and imbeddings L, — L, as follows.
Let Ly = K and L, be a splitting field of the polynomial ¢, (t) over
L,_1. We define K := U,_oL,. It is clear that the field K satisfies the
conditions of Lemma 6.3. So K algebraicly closed. Since all the fields
L, are finite over K any element of K is algebraic over K. So K is an
algebraic closure of K.

Before discussing the uniqueness of an algebraic closure we consider
the following useful result.

Lemma 6.4. Let p(t) € K[t] be an irreducible polynomial, o,/ €
K be roots of p(t). Then there exists an automorphism 1 € Gal(K /K)
such that n(a) = o'

Proof of Lemma 6.4. Let n > 0 be an index such that a, o’ € L,.
Since the field L,, is normal over K it follows from Lemma 6.1 a) that
there exists an automorphism 7, : L, — L, such that n,(a) = o
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It follows now from Lemma 6.1 b) that there exists an automorphism
N1 Lpy1 — L,y whose restriction on L, is equal to n,. Putting
together all the automorphisms n,, : L,, — L,,,m > n we obtain an
automorphism 7 € Gal(K /K) such that n(a) = o/.0

Now we can prove the second part of the Theorem 6.1. Let K’ D K
be another algebraic closure of K. Since the field K’ is an algebraic
closure of K, it follows from Lemma 3.3 that any K-homomorphism
v; + L — K’ can be extended to a homomorphism v; 1 : Liy1 — K.
Putting the homomorphism v; : L; — K’ together we obtain a K-
homomorphism v : K — K.

To show that the K-homomorphism v : K — K’ is an isomorphism
it is sufficient to prove that for any o/ € K’ there exists a € K such
that v(a) = o'

By the definition of an algebraic closure any o € K’ is algebraic over
K and we can consider an irreducible polynomial p(t) := Irr(o/, K,t) €
K[t]. Since the field K is algebraicly closed there exists a € K such that
p(a) = 0. Choose n > 0 such that o € L,, and define L/ := v(L,) C
K'. Since the field L, is normal over K the irreducible polynomial p(t)
can be written as a product

p(t) = H(t — o))", ; € Ly, =«
i=0
Therefore

i=0
Since o is a root of p(t) in L/, we see that o = v(q;) for some i,1 <
1 <r[]

Definition 6.2. Let L D K be a finite extension and K an algebraic

closure of K [which is also an algebraic closure of L, see the Remark
after the definition 6.1].

a) We denote by H(L/K) the set of K-homomorphisms of L to K.
b) we denote by [L : K] the number of elements in the set H(L/K)
and say that [L : K| is the separable degree of L over K.

Remark. It follows from Theorem 6.1 this set does not depend on
a choice of an algebraic closure K of K.
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Lemma 6.5. Let K C F C L be finite field extensions. Then
[L:Kls=[L:F)s[F:K]s

Proof . For any K-homomorphism g € H(F/K) we denote by
H(L/K), C H(L/K) the subset of K- homomorphism f € H(L/K)
such that f(a) = g(a) for all a € F. It is clear that H(L/K)y =
H(L/F) and that

H(L/K) = UgenrxyH(L/K),

Therefore
[L:K],= ) |(H(L/K)
geH (F/K)
Claim. For any g € H(F/K) we have |(H(L/K),| = |H(L/K) 4.
Proof of the Claim. Choose g € H(F/K). As follows from
Lemma 6.4 there exists an isomorphism ¢ : M — M such that g(a) =
g(a),VYa € L. 1t is clear that

9(H(L/K)1a) = (H(L/K)40

Now we can finish the proof of Lemma 6.5. Since H(L/K)q = H(L/F)
we have |(H(L/K)| = [L : F]s and it follows from the Claim that
|(1]LI(L/K)9\ =|[L: Fls,Vg € H(F/K). So [L : K], = [L : F)s[F :
K|,.J



