HOMEWORK #1 IN ALGEBRAIC STRUCTURES 2

Problem 1. Show that

- a) if $p(t), q(t) \in K[t]$ are two polynomials such that the corresponding principal ideals (p(t)) and (q(t)) coincide then there exists $c \in K \{0\}$ such that p(t) = cq(t),
 - b) for any two non-zero polynomials $p(t), q(t) \in K[t]$ we have deg (p(t)q(t))=deg p(t)+deg q(t),
- c) if p(t) is a non-zero polynomial of degree n then it has no more then n distinct roots,
- d) Show that given $p(t), q(t) \in K[t]$ such that $p(t) \neq 0$ there exists unique pair $a(t), r(t) \in K[t]$ such that
 - q(t) = a(t)p(t) + r(t) and deg r(t) < deg p(t).

Remark The polynomial r(t) is called the *remainder* of q(t) after the division by p(t).

Problem 2. a) Find $[\mathbb{C} : \mathbb{R}]$,

- b) show that the extension $\mathbb{Q} \subset \mathbb{R}$ is not elementary,
- c) Let L be a field and $K \subset L$ a subfield of L. Show that for any $\alpha \in L$ the set $K(\alpha) \subset L$ is a subfield of L,
- d) Let L be a field and $K \subset L$ a subfield of L. Show that for any subset $A \subset L$ the set $K(A) \subset L$ is a subfield of L,
- e) if $p(t) \in \mathbb{R}[t]$ is irreducible then either deg p(t) = 1 or deg p(t) = 2. **Remark**. I assume that you know that any polynomial $p(t) \in \mathbb{C}[t]$ of positive degree has a root $a \in \mathbb{C}$.

Problem 3. Prove the part b) of the Theorem 1.1: Let L be a finite extension of F, F be a finite extension of K. Let $\alpha_i \in L$, $1 \le i \le [L:F]$ be a basis of L as an F-vector space and let $\beta_j \in F$, $1 \le j \le [F:K]$ be a basis of F as a K-vector space.

Prove that the elements $l_{ij} = \alpha_i \beta_j \in L$ for $1 \le i \le [L:F], 1 \le j \le [F:K]$ in the K-vector space L are linearly independent (over K).

Problem 4. Let $u \in \mathbb{C}$ be a solution of the equation

$$(\star)u^3 - u^2 + u + 2 = 0$$

and $E = \mathbb{Q}(u)$

a) show that $[E:\mathbb{Q}]$ does not depend on a choice u of a solution of (\star) ,

b) express
$$(u^2 + u + 1)(u^2 - u)$$
 and $(u - 1)^{-1}$ in the form $au^2 + bu + c$

where $a, b, c \in \mathbb{Q}$

Let $\xi_n \in \mathbb{C}$ be a primitive *n*-th root of 1. [That is $\xi_n^n = 1$ but $\xi_n^m \neq 1$ for all $1 \leq m < n$].

- c) show that the subfield $L_n := \mathbb{Q}(\xi_n) \subset \mathbb{C}$ does not depend on a choice of a primitive root $\xi_n \in \mathbb{C}$,
 - d) find $[L_n:\mathbb{Q}]$ for $2 \leq n \leq 4$

Problem 5. Let L be an extension of $K, \alpha \in L$ an element algebraic over K. show that $[K(\alpha) : K]$ is the minimal degree of a non-zero polynomial $p(t) \in K[t]$ such that $p(\alpha) = 0$ and that the polynomial is irreducible.