
HOMEWORK #8
SOLUTIONS TO SELECTED PROBLEMS

Problem 8.4 – Normality of the composite. Let K ⊂ L1, L2 ⊂ K̄ be
two finite extensions.

Lemma 1. If L1/K and L2/K are normal, then so is their composite
L1L2/K.

First proof. We know that a finite extension L/K is normal if and only if it is
a splitting field (over K) of a polynomial f ∈ K[t]. So, by our assumptions,
there exist polynomials f1, f2 ∈ K[t] such that Li/K is a splitting field for
fi (i = 1, 2). Now, the composite L1L2 is a splitting field of the product
f1f2, hence L1L2/K is normal. ¤
Lemma 2. Gal(K̄/L1L2) = Gal(K̄/L1) ∩Gal(K̄/L2).

Proof. If σ ∈ Gal(K̄/L1L2) then it is the identity on L1L2 hence on the
subfields L1 and L2. This shows the inclusion ⊆. In the other direction,
if σ is an automorphism of K̄ and it is the identity on both L1, L2 then
it is the identity on L1L2 (to see this, write L1 = K(α1, . . . , αn) and L2 =
K(β1, . . . , βm). Then L1L2 = K(α1, . . . , αn, β1, . . . , βm) and σ(αi) = αi,
σ(βj) = βj for all i, j). ¤
Lemma 3. A finite extension L/K is normal if and only if Gal(K̄/L) is
normal in Gal(K̄/K).

Proof. Let σ ∈ Gal(K̄/K). Then σ(L) is a subfield of K̄, and Gal(K̄/σ(L)) =
σ Gal(K̄/L)σ−1 (just check on elements, for example if x ∈ σ(L) then
σ−1(x) ∈ L hence for every τ ∈ Gal(K̄/L), τ(σ−1(x)) = σ−1(x) so that
στσ−1(x) = σσ−1(x) = x thus στσ−1 ∈ Gal(K̄/σ(L))).

By Galois theorem we see that all the subfields σ(L) are equal to L if and
only if all the subgroups σ Gal(K̄/L)σ−1 are equal to Gal(K̄/L). The latter
condition is the definition of the normality of Gal(K̄/L) in Gal(K̄/K), while
the former condition on L is equivalent to the normality of L/K. ¤
Second proof of Lemma 1. Let Ni = Gal(K̄/Li). By lemma 3, N1, N2 are
normal in G = Gal(K̄/K), hence N = Gal(K̄/L1L2) = N1 ∩ N2 (by
lemma 2) is normal in G, so by lemma 3 again, L1L2/K is normal. ¤
Corollary. If L1/K, L2/K are Galois, then L1L2/K is Galois.

What can be said about the Galois group of the composite?

Lemma 4. If L1/K, L2/K are Galois, then there is an embedding

Gal(L1L2/K) ↪→ Gal(L1/K)×Gal(L2/K)

Proof. One can either construct the embedding directly by σ 7→ (σ|L1
, σ|L2

),
or use the second proof of Lemma 1 and note the following two facts; first,
if N1, N2 C G then G/(N1 ∩ N2) ↪→ G/N1 × G/N2. Second, for a Galois
extension L/K, Gal(L/K) = Gal(K̄/K)/Gal(K̄/L). ¤
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Problem 8.5. Let K be a field with charK 6= 2. Let a ∈ K. Then the
extension K(

√
a)/K obtained by adjoining a square root of a is either of

degree 1 (if a = b2 for some b ∈ K) or of degree 2. Since the polynomial
t2 − a has derivative 2t and charK 6= 2, the extension is separable. It is
also normal (any extension of degree ≤ 2 is normal), hence Galois, and the
Galois group is either trivial or Z/2Z.

Now let a1, . . . , an ∈ K and consider the extension K(
√

a1, . . . ,
√

an)/K.
Since it is the composite of the extensions K(

√
ai)/K which are Galois, by

the corollary before lemma 4, it is Galois. By lemma 4 we also have

G := Gal(K(
√

a1, . . . ,
√

an)/K) ↪→
n∏

i=1

Gal(K(
√

ai)/K)

Since each of the factors is either 1 or Z/2Z, we see that G is embedded in
(Z/2Z)m for some m ≤ n. But (Z/2Z)m can be viewed as an m-dimensional
vector space over the field with 2 elements F2, and any subgroup is easily
seen to be a vector subspace (hence as a vector space of lower dimension).
Thus G is isomorphic to a vector space of dimension r ≤ m ≤ n over F2,
that is, G ' (Z/2Z)r.

Lemma. [K(
√

a1, . . . ,
√

an) : K] = 2n if and only if none of the 2n − 1
products

∏
i∈I ai (where I runs over all subsets φ 6= I ⊆ {1, 2, . . . , n}) is a

square of an element in K.

Proof. Let L0 = K and Li = K(
√

a1, . . . ,
√

ai) for 1 ≤ i ≤ n. Then Li =
Li−1(

√
ai) so that [Li : Li−1] ≤ 2 and [Ln : K] = 2n if and only if [Li :

Li−1] = 2 for all 1 ≤ i ≤ n.
Suppose that [Ln : K] = 2n. Then [Li : Li−1] = 2 for all 1 ≤ i ≤ n and

1,
√

ai is a basis of Li over Li−1. It follows (Theorem 1.1, Product formula)
that

{∏
i∈I

√
ai

}
I⊆{1,...,n} is a basis of Ln over K. Taking I = φ we see

that 1 ∈ K is an element of the basis. Since the elements of the basis are
independent over K, we see that

∏
i∈I

√
ai 6∈ K for all φ 6= I ⊆ {1, . . . , n}.

We prove the opposite direction by induction on n, the case n = 1 being
trivial. Since the condition on subsets is obviously satisfied for {1, . . . , n−1},
by induction hypothesis we have [Ln−1 : K] = 2n−1. We assume [Ln :
Ln−1] < 2 and arrive at a contradiction. Indeed, we have Ln = Ln−1 so that√

an ∈ Ln−1. Now {1,
√

an−1} is a basis of Ln−1/Ln−2, so we can write
√

an = A + B
√

an−1

for unique A, B ∈ Ln−2. Squaring this, we see that

an = (A2 + B2an−1) + 2AB
√

an−1

But an ∈ K ⊆ Ln−2, and since {1,
√

an−1} is a basis of Ln−1/Ln−2, we must
have that 2AB = 0, so that A = 0 or B = 0.

If B = 0, then
√

an = A ∈ Ln−2, but this is impossible as [Ln−2(
√

an) :
Ln−2] = 2 by the induction hypothesis on the set a1, . . . , an−2, an (with n−1
elements).

If A = 0, then
√

an = B
√

an−1 so that √an−1an ∈ Ln−2. But again this
is impossible since [Ln−2(

√
an−1an) : Ln−2] = 2 by the induction hypothesis

on the n − 1 element set a1, . . . , an−1, an−1an (all products are products of
some ai-s). ¤


