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1 Differential Equations Driven by Rough Paths:

An Approach via Discrete Approximation

after A.M. Davie [1]
A summary written by Yujia Zhai

Abstract

We use Euler approximations to study systems of differential equa-
tions of the form dyi =

∑
j f

i
j(y)dxi, where x(t) is assumed to have

finite p-variation for some positive p. We will apply this approach to
study the stochastic differential equations driven by Brownian motion.

1.1 Introduction to method of Euler approximations

One way to study the classical ordinary differential equations is to use Euler
approximations associated with some partitions and show that these approx-
imations converge to a limit which satisfies the equation as the partition gets
finer. We will use this approach to study systems of differential equations of
the form

dyi =
d∑
j

f ij(y)dxi, yi(0) = yi0, i = 1, 2, . . . , n (1)

where x(t) is a continuous vector-valued function of t which is only assumed
to have finite p-variation, as opposed to be differentiable.

1.1.1 Notations

We say a continuous function x(t) = (x1(t), . . . , xd(t)) defined on [0, T ] has
finite p-variation if there is a continuous increasing function ω on [0, T ] such
that |x(t)− x(s)|p . ω(t)− ω(s) for any 0 ≤ s ≤ t ≤ T .

1.1.2 Discussion for 1 ≤ p < 2

We will first clarify how to interpret (1) in the case when 1 ≤ p < 2:
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Definition 1. We say y(t) is a solution of (1) on [0, T ] if y(0) = y0 and
there exists a continuous increasing function ω̃ on [0, T ] and a non-negative
function θ on [0,∞) such that θ(δ) = o(δ) as δ → 0 and such that∣∣∣∣∣yi(t)− yi(s)−

d∑
j=1

f ij(y(s))(xj(t)− xj(s))

∣∣∣∣∣ ≤ θ(ω̃(t)− ω̃(s)) (2)

The following theorem asserts the existence and uniqueness of the solution
to (1):

Theorem 2. Suppose 1 ≤ p < γ ≤ 2.
(i) Let f ∈ Cγ−1 and y0 ∈ Rn. Then there exists τ with 0 < τ ≤ T , and a
solution y(t) of (1) for 0 ≤ t < τ such that if τ < T then |y(t)| → ∞ as
t→ τ .
(ii) Let f ∈ Cγ and y0 ∈ Rn. Then the solution of (1) given by (i) is unique
in the sense that if t < τ in and ỹ is another solution of (1) on [0, t], then
y = ỹ on [0, t].

We consider discrete approximations to a solution as follows: for 0 = t0 <
t1 < . . . < tK = T , let xk = x(tk) and, given y0, define yk by the recurrence
relation:

yik+1 = yik +
d∑
j=1

f ij(yk)(x
j
k+1 − x

j
k), i = 1, . . . , n (3)

We shall need the following lemma about the approximations defined by (3):

Lemma 3. (i) Suppose f ∈ Cγ−1
0 . There exist positive constants C and M

which depend only on n, d, γ, p, ω(tK) − ω(0) and ‖f‖γ−1, such that for any
0 ≤ k ≤ l ≤ K,∣∣∣∣∣yil − yik −

d∑
j=1

f ij(yk)(x
j
l − x

j
k)

∣∣∣∣∣ ≤ C(ω(tl)− ω(tk))
γ/p

and
|yl − yk| ≤M(ω(tl)− ω(tk))

1/p.

(ii) Suppose f ∈ Cγ
0 . Let ỹk be the solution of (3) corresponding to the

initial condition ỹ0 ∈ R. There is a constant M > 0 depending only on
n, d, γ, p, ω(tK)− ω(0) and ‖f‖γ such that for any 0 ≤ k ≤ K,

|ỹki − yik| ≤M ′maxi|ỹ0
i − yi0|.
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We are now ready to construct the solution and prove Theorem 2.

Proof of Theorem. Consider f(r) ∈ Cγ−1
0 such that f(r)(y) = f(y) for |y| ≤ r.

We take a sequence of partitions (Pm)m of [0, T ] with mesh approaching 0,
and let {y(m)(s) : s ∈ Pm} be the solution of (3) using partition Pm (f is now
replaced by f(r)) . We then define y(s) to be the limit(could be ±∞) of some
subsequence of (y(m)(s))m for s ∈ ∪mPm. We shall note that approximations
using (3) with f(r) and with f may be very different for yl (l > k) given
|yk| > r, for some fixed partition. This indicates that the approximation
defined by (3) with f(r) might not be efficient globally. To avoid this problem,
we restrict our focus to [0, t], where t < τr and τr := sup{0 ≤ t < T :
there exists m0 such that |y(m)(s)| < r for all m ≥ m0 and s ∈ Pm with 0 ≤
s ≤ t}. τr is well-defined and positive for r > |y0| by Lemma 3 (ii). Also
Lemma 3 (i) and passing to limits give |y(s)−y(s′)| ≤ C(r, t)(ω(s)−ω(s′))1/p

for any s, s′ ∈ Pm with 0 ≤ s, s′ ≤ t < τr and m large enough. Then by
continuity, y can be extended to [0, t]. It follows from this construction that
y satisfies (2) on [0, t], for every t < τr, and every r. Let τ = limr→∞τr. Then
y is a solution to (1) on [0, τ)

It is noteworthy that while y(t) is uniformly continuous on each [0, τr],
it could blow up as t → τ . Indeed, it can be shown by contradiction that if
τ < T , this is exactly what happens, which we will not discuss here.

It is not hard to see that the following claim implies the uniqueness of
the solution:
Claim: If t < τ , then for any ε > 0, there exists δ > 0 such that if 0 = t0 <
. . . < tK with tk − tk−1 < δ for each k, then

|yk − y(tk)| < ε

for each k, where yk is given by (3).

Proof of Claim. There exists an r such that |f | < r on [0, t]. Consider a

partition 0 = t0 < . . . < tK = T . For l ≥ k, let z
(k)
l be the solution of (3)

with f(r) and initial value y(tk). Then for any 0 ≤ l ≤ K

|z(0)
l −y(tl)| ≤

l∑
k=1

|z(k−1)
l −z(k)

l | .
l∑

k=1

|z(k−1)
k −y(tk)| .

l∑
k=1

θ(ω̃(tk)−ω̃(tk−1))

which tends to 0 as the partition gets finer. The second and third inequalities
follow from Lemma 3 and (2).
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This completes the proof of Theorem 2.

1.1.3 Discussion for 2 < p ≤ 3

In this case, the approximation by (3) is not good enough, and we need a
modified version:

yik+1 = yik +
d∑
j=1

f ij(yk)(x
j
k+1 − x

j
k) +

d∑
j=1

n∑
h=1

∂hf
i
j(yk)

d∑
r=1

fhr (yk)A
rj(tk, tk+1),

(4)
whereArj(s, t) is some quantity attempting to describe ”

´ t
s
xr(u)−xj(s)dxj(u)”.

We require Arj(s, t) for 1 ≤ r, j ≤ d and 0 ≤ s ≤ t ≤ T to satisfy:

(i) Arj(s, u) = Arj(s, t) + Arj(t, u) + (xr(t)− xr(s))(xj(u)− xj(t));

(ii) |Arj(s, t)|p/2 ≤ ω(t)− ω(s).

Remark 4. Intuitively (4) is a more accurate approximation because instead
of approximating f(y) by f(yk) for y ∈ [tk, tk+1] as in (3),

f ij(y) ≈ f ij

(
yk +

d∑
r=1

fr(yk)(x
r − xrk)

)
≈ f ij(yk)+

n∑
h=1

∂hf
i
j(yk)

d∑
r=1

fhr (yk)(x
r−xrk)

It is therefore natural to re-interpret solution of (1) in the following way:

Definition 5. We say y(t) is a solution of (1) on [0, T ] if y(0) = y0 and
there exists a continuous increasing function ω̃ on [0, T ] and a non-negative
function θ on [0,∞) such that θ(δ) = o(δ) as δ → 0 and such that∣∣∣∣∣yi(t)− yi(s)−

d∑
j=1

f ij(y(s))(xj(t)− xj(s))

−
d∑
j=1

n∑
h=1

∂hf
i
j(y(s))

d∑
r=1

fhr (y(s))Arj(s, t)

∣∣∣∣∣ ≤ θ(ω̃(t)− ω̃(s))

(5)

The following estimates verify the above intuition in the discrete case.
Suppose 2 < p < γ ≤ 3. For any partition 0 = t0 < . . . < tK = T and

solution of (4) corresponding to this partition, we have:
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Lemma 6. (i) Suppose f ∈ Cγ−1
0 . There are positive constants C,M,L

which depend only on n, d, γ, p, ω(tK) − ω(0) and ‖f‖γ−1, such that for any
0 ≤ k ≤ l ≤ K,∣∣∣∣∣yl − yk −

d∑
j=1

f ij(yk)(x
j
l − x

j
k)

−
d∑
j=1

n∑
h=1

∂hf
i
j(yk)

d∑
r=1

fhr (yk)A
rj(tk, tl)

∣∣∣∣∣ ≤M(ω(tl)− ω(tk))
γ/p

while ∣∣∣∣∣yl − yk −
d∑
j=1

f ij(yk)(x
j
l − x

j
k)

∣∣∣∣∣ ≤ L(ω(tk)− ω(tl))
2/p

and
|yl − yk| ≤ C(ω(tl)− ω(tk))

1/p.

(ii) Suppose f ∈ Cγ
0 . Let ỹk be the solution of (3) corresponding to the

initial condition ỹ0 ∈ R. There is a constant M > 0 depending only on
n, d, γ, p, ω(tK)− ω(0) and ‖f‖γ such that for any 0 ≤ k ≤ K,

|ỹki − yik| ≤M ′maxi|ỹ0
i − yi0|.

It is not hard to inspect that we have a similar result in the case 2 < p ≤ 3
as in the case 1 < p ≤ 2, which follows from Lemma 6 with the similar
reasoning.

1.2 Application to SDE driven by Brownian motion

We can apply our method of Euler approximation to SDEs of the form:
dyi =

∑d
j=1 f

i
j(y)dW j with initial condition yi(0) = yi0, for i = 1, . . . , n,

where (W j) is a d-dimensional Brownian motion. Recall that with probability
1, W satisfies Hölder condition of exponent α for any α < 1

2
, i.e. W has finite

p-variation for p > 2 with ω(t) = t. We will focus on the following theorem,
which indicates how to use Euler approximation (discussed in section (1.1.3))
in SDE theory. We first clarify that from now on, Arj(s, t) :=

´ t
s
W r(u) −

W r(s)dW j(u), where in the integral is a standard Itô integral.

Theorem 7. Suppose f ∈ Cγ where γ > 1. Then, with probability 1, for
any choice of y0 the Itô equation dyi =

∑d
j=1 f

i
j(y)dW j with y(0) = y0 either

10



has a solution in the sense of Definition 5 for all t ≥ 0 or, for some T > 0,
a solution on 0 ≤ t < T with |y(t)| → ∞ as t → T . Moreover the solution
is unique in the sense that if ỹ is another solution on [0, τ) in the sense of
Definition 5, then y = ỹ on [0, τ).

Proof. We take for granted the fact that with probability 1, the Itô equation
assuming f ∈ Cγ

0 has a continuous solution flow (s, t, x) → F (s, t, x) ∈ Rd,
defined for s < t and x ∈ Rd such that for any choice of s, t, x the solution
of the equation with y(s) = x satisfies y(t) = F (s, t, x) with probability 1.
Here y(t) represents for the standard solution of the Itô SDE. One important
property for F is that it is a locally Lipschitz function of x, with uniform
Lipschitz bounds on compact sets. The following lemma gives some estimates
about F , and will be used to prove the theorem:

Lemma 8. Fix T > 0 and 1 < q < α = (1 + γ)/2. Let

Zi(s, t, y) := F i(s, t, y)− yi −
d∑
j=1

f ij(y)(W j(t)−W j(s))

−
d∑
j=1

n∑
h=1

∂hf
i
j(y)

d∑
r=1

fhr (y)Arj(s, t).

Then for any 0 ≤ s < t ≤ T ,

(i) E |Zi(s, t, y)|k ≤ C(T, f)(t− s)kα for any k ≥ 2;

(ii) If we further assume |y| < L, for some L, then with probability 1, there
is a constant C ′ depending on T, L, f,w ∈ Ω such that |Zi(s, t, y)| ≤
C ′(t− s)q.

Remark 9. We will omit the proof of the lemma, but it is notable that good
estimate on average for |Z(s, t, y)| in (i) foreshadows some good result for
|Z(s, t, y)| on a large portion of the probability space, which is stated in (ii).
Here, ”good” refers to the exponent q being greater than 1, which will play
an important role in the proof.

Since the existence of the solution flow and the estimates in the lemma
require f to be compactly supported, we thus consider f (m) ∈ Cγ

0 such that
f (m)(y) = f(y) for |y| ≤ m, and its associated flow F (m)(s, t, y) for m =
1, 2, . . .. Then with probability 1, there is a sequence (Cm) such that∣∣Z(m)(s, t, y)

∣∣ ≤ Cm(t− s)q and (6)
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∣∣F (m)(s, t, x)− F (m)(s, t, y)
∣∣ ≤ Cm|x− y| (7)

for m ∈ N, 0 ≤ s < t < m and |x|, |y| < m, where (6) and (7) follow from
Lemma 8 and Lipschitz property of F (m), respectively.

We can now fix a Brownian path such that the above conditions hold.
The existence of the solution corresponding to this particular path is a con-
sequence of the discussion in section (1.1.3). To prove the uniqueness of the
solution with respect to this path, we assume that ỹ is another solution on
[0, τ) which is not identical to y on [0, τ) (either τ ≤ ∞ or τ ≤ T ). Let
τ1 := sup{t ≥ 0 : y(s) = ỹ(s) for 0 ≤ s < t}, and y0 := y(τ1) = ỹ(τ1). Now
we fix any τ ′ with τ1 < τ ′ < τ and choose m such that |y| < m and |ỹ| < m
on [τ1, τ

′].

Claim : y(t) = F (m)(τ1, t, y1) for τ1 ≤ t ≤ τ ′.

Proof of Claim. Fix t ∈ [τ1, τ
′], and pick N ∈ N. Consider τ1 = t0 < t1 <

. . . < tN = t such that tk − tk−1 < N−1. Now by (5)∣∣∣∣∣yi(tk+1)− yi(tk)−
d∑
j=1

f
(m)i
j (y(tk))(W

j(tk+1)−W j(tk))

−
d∑
j=1

n∑
h=1

∂hf
(m)i
j (y(tk))

d∑
r=1

f (m)h
r (y(tk))A

rj(tk, tk+1)

∣∣∣∣∣ ≤ θ(ω̃(tk+1)− ω̃(tk))

This, along with (6), gives∣∣y(tk+1)− F (m)(tk, t, y(tk))
∣∣ ≤ θ(ω̃(tk+1)− ω̃(tk)) + CmN

−q

Then

|y(t)− F (m)(τ1, t, y0)| ≤
N−1∑
k=0

∣∣F (m) (tk+1, t, y(tk+1))− F (m)
(
tk+1, t, F

(m)(tk, tk+1, y(tk)
)∣∣

≤ Cm

(
N−1∑
k=0

θ(ω̃(tk+1)− ω̃(tk)) + CmN
1−q

)
,

which goes to 0 as N →∞ (which shows the importance of q > 1). The last
inequality follows from (7).

We can apply the same reasoning for ỹ. The the deterministic property
of the solution flow with a fixed path gives a contradiction to the definition
of τ1.

12
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2 Controlling Rough Paths. Part I

after M. Gubinelli [1]
A summary written by Cristina Benea

Abstract

By using algebraic tools, M. Gubinelli [1] gives meaning to indef-
inite integration with respect to an irregular function, under certain
analytic constraints. We sketch the main ideas behind this novel ap-
proach, that allows to recover Young’s theory of integration, as well as
the main results of Lyons’ theory of rough paths in Hölder topology.

2.1 Introduction

The theory of rough paths was initiated by the study of differential equations
“driven by rough signals” (see [2]), such asdY

µ
t =

∑
µ

ϕ(Yt)
µ
νdX

ν
t

Yt0 = y,
(1)

where X : J → V is γ-Hölder continuous, and ϕ ∈ C(V, V ⊗ V ∗). Here
J ⊆ R is a fixed interval, and V a vector space. By definition, a solution Y
is a γ-Hölder continuous map Y ∈ C γ(J, V ) such that

Y µ
t = y +

ˆ t

t0

ϕ(Yu)
µ
νdX

µ
u , ∀t ∈ J. (2)

Before applying any standard differential equations techniques for proving
existence or uniqueness (this will be explained in Part II), we will need to
make sense of the integral

tˆ

s

FudXu, (3)

with minimal assumptions on X.
In [2], Lyons develops a way of understanding such expressions for paths

X of finite p-variation, for some p <∞. The iterated integrals of X play an
important role in this theory, and in some sense they help characterize the
rough path X. The take is that, in order to define the integral above for a
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non-smooth path X, other quantities related to X should be involved. In [1],
Gubinelli uses a “tensor process” X2 : J×J → V ⊗V for defining the integral´ t
s
ZudWu for paths Z and W weakly controlled by X (that is, for paths whose

increments are controlled by X). Here the roughness is measured by Hölder-
like (semi)norms. The techniques used for defining integration over rough
paths seem to originate from homological algebra.

Before presenting the main results and the means to obtain them, we
recall a few particular situations in which the integral

´ t
s
FudXu from (3) is

long understood. If F is continuous and X has bounded variation, it repre-
sents the classical Riemann-Stieltjes integral. If F is γ1-Hölder continuous
and X is γ2-Hölder continuous, with γ1 +γ2 > 1, the integral (3) was defined
in [3] by Young. The interest for paths that are less regular is motivated
by stochastic differential equations, where often the “driving signal” X is a
Brownian rough path or a similar process.

2.2 Algebraic Prelude

The idea is to represent the integral
´ t
t0
FudXu as a (possibly unique) solution

of a certain algebraic equation. The algebraic spaces will play an important
role and they will contain certain analytic information.

The most basic example is that of the integral
´ t
t0
f(u)dx(u), when f is

a bounded continuous function on R and x is a function on R with contin-
uous first derivative. Then A(t) =

´ t
t0
f(u)dx(u), together with R(s, t) =´ t

s
(f(u)− f(s)) dx(u) represent the unique solution (A,R) ∈ C1(R)×C(R2)

such that
f(s) (x(t)− x(s)) = A(t)− A(s)−R(s, t), (4)

with A(t0) = 0 and lim
t→s

R(s,t)
|t−s| = 0.

Now we describe the abstract setting from [1]: C denotes the algebra of
bounded continuous functions from R to R (later on, C (J, V ) will denote
the algebra of bounded continuous functions from the interval J ⊆ R to the
Banach space V ) and

ΩCn := {R : Rn+1 → R bounded continuous functions , Rt,...,t = 0}.

Elements of ΩCn are called processes, and are to be distinguished from paths,
which are the elements of C . The subspace of γ-Hölder continuous paths is

15



denoted C γ, and ΩC γ is the subspace of processes X ∈ ΩC so that

‖X‖γ := sup
s,t∈R

|Xst|
|t− s|γ

<∞.

Finally, ΩC γ
2 denotes the subspace of processes in ΩC2 which are finite linear

combinations of elements X ∈ ΩC2 with the property that

‖X‖γ1,γ2 = sup
s,u,t∈R

|Xsut|
|u− s|γ1|t− u|γ2

<∞,

for some 0 < γ1, γ2 < γ with γ1 + γ2 = γ.
With the definitions above, we are ready to bring forward the algebraic

machinery. We introduce two linear maps, δ : C → ΩC and N : ΩC → ΩC2,
which are defined by

(δA)st := At − As, (NR)sut := Rst −Rut −Rsu.

These are just the first two of the so-called “coboundary” operators ∂∗ :
ΩCn → ΩCn+1 associated to a cochain complex

(∂∗A)t1...tn+1
:=

n+1∑
i=1

(−1)iAt1...t̂i...tn+1
,

and which have the property that ∂∗∂∗ = 0 (or equivalently, Im ∂∗|ΩCn ⊆
Ker ∂∗|ΩCn+1). In fact, it turns out that Im ∂∗|ΩCn = Ker ∂∗|ΩCn+1 , or in other
words, the cochain complex

0→ R ∂∗−→ ΩC
∂∗−→ ΩC2

∂∗−→ . . .

is exact at every ΩCn. The advantage is that deciding ifX ∈ Im ∂∗|ΩCn (which
is an existence result) becomes equivalent to checking whether ∂∗|ΩCn+1(X) =
0, and the first is more difficult than the latter.

Equation (4) can be reinterpreted as fs(δx)st = (δA)st − Rst, and the
problem of defining the integral can be reformulated in the following way:

Question 1. Given two paths F,X ∈ C , can one find a (possibly) unique
decomposition FδX = δA−R, with A ∈ C and R ∈ ΩC ?
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Even though this is not achievable without imposing supplementary con-
ditions on F and X, we note that, once we have R as above, the existence of
A is equivalent to FδX +R belonging to Im δ = Ker N . So in fact we have
to check that

N (FδX +R) = 0.

This is a consequence of the fact that

0→ C /R δ−→ ΩC
N−→ N (ΩC )→ 0

is a short exact sequence. A decomposition as in Question 1 is equivalent
to an isomorphism ΩC ' δC ⊕ R. For an exact sequence as above, this
corresponds to a right split, i.e. the existence of a map Λ : N (ΩC ) → ΩC
so that NΛ = idN(ΩC ).

As mentioned before, this is not possible without additional assumptions
on F andX; instead, we will be looking for a suitable linear subspace E ⊆ ΩC
containing δC , so that the short exact sequence

0→ C /R δ−→ E
N−→ NE → 0

splits to the right (i.e. there exists a linear map ΛE : NE → E so that
NΛE = idNE ), and as a consequence, E ' δC ⊕NE . Then we can represent
δA as

δA = FδX − ΛEN(FδX), (5)

provided FδX ∈ E . A good premise is that NE should be of the form ΩC z,
for some z > 1, since then Im δ ∩ ΩC z = {0}.

Proposition 1. If z > 1, then there exists a unique linear map Λ : N(ΩC )∩
ΩC z

2 → ΩC z such that NΛ = idN(ΩC )∩ΩC z2
and, for all W ∈ N(ΩC ) ∩ ΩC z

2

we have

‖ΛW‖z ≤
1

2z − 2

n∑
i=1

‖Wi‖ρi,z−ρi ,

if W =
∑n

i=1Wi, with ‖Wi‖ρi,z−ρi <∞.

2.3 Young’s Theory of Integration

The above machinery, and especially Proposition 1 now allow to give a
straightforward proof of the existence of the Young integral from [3]:
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Proposition 2. Fix an interval I ⊆ R. If F ∈ C γ1(I) and X ∈ C γ2(I) with
γ = γ1 + γ2 > 1, define

ˆ t

s

FudXu := [FδX − ΛN(FδX)]st , s, t ∈ I,

where Λ : N(ΩC ) ∩ ΩC γ
2 → ΩC γ is given by Proposition 1. Moreover, we

have ∣∣∣∣ˆ t

s

(Fu − Fs)dXu

∣∣∣∣ ≤ 1

2γ − 2
|t− s|γ‖F‖γ1,I‖G‖γ2,I , ∀s, t ∈ I.

The equivalence of the above definition with Young’s theory of integration
is established by the following

Corollary 3.
ˆ t

s

FudXu = lim
|Π|→0

∑
{ti}∈Π

Fti(Xti+1
−Xti), s, t ∈ I,

where the limit is taken over partitions Π = {t0, . . . , tn} of the interval [s, t] ⊆
I such that t0 = s, tn = t, ti+1 > ti, |Π| = supi |ti+1 − ti|.

2.4 More irregular paths

This is the most technical section of the first part, in which the integral´ t
s
ZudWu is defined for rough paths Z andW whose increments are controlled

by a specific rough pathX. It is not clear how to generalize the theory beyond
this point.

The framework is also more general; X ∈ C γ(V ) is a γ-Hölder continuous
path in a Banach space V (considered to be finite dimensional so that alge-
braic and analytical objects are both well defined), and X2 ∈ ΩC 2γ(V ⊗ V )
is a tensor process so that

N(X2,µν)sut = (δXµ)su(δX
ν)ut. (6)

First, the integral
´
XdX is defined (uniquely, only if γ > 1

2
). This

extends easily to
´
Y dX when Y µ

t = AµνX
ν
t , where A is a linear application

from V to V . Eventually,
´
Y dX is defined for paths Y which are only locally

linear functions of X, i.e.

δY µ = Gµ
νδX

ν +Qµ,
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where Q is a remainder in ΩC (V ) and G is a path in C (V ⊗V ∗). Here we use
the Einstein summation convention. All of the above direct to the definition

Definition 4. Let I ⊆ R and X ∈ C γ(I, V ). A path Z ∈ C γ(I, V ) is said
to be weakly controlled by X in I with remainder of order η if there exists a
path Z ′ ∈ C η−γ(I, V ⊗ V ∗) and a process RZ ∈ ΩC η(I, V ) with η > γ such
that δZµ = Z ′µνδXν +Rµ

Z. In this case, we write (Z,Z ′) ∈ Dγ,η
X (I, V ).

Theorem 5. For every (Z,Z ′) ∈ Dγ,η
X (I, V ) and (W,W ′) ∈ Dγ,η

X (I, V ) with
η + γ = σ > 1, define for all s, t ∈ I
ˆ t

s

Zµ
udW

ν
u := Zµ

s δW
ν
st+Z

′µ
µ′,sW

′ν
ν′,sX

2,µ′ν′

st −
[
ΛN

(
ZµδW ν + Z ′µµ′W

′ν
ν′X

2,µ′ν′

ν′

)]
st
.

Moreover, the bilinear application from Dγ,η
X (I, V )×Dγ,η

X (I, V ) to D
γ,min(2γ,η)
X (I, V⊗

V ) given by

((Z,Z ′), (W,W ′)) 7→
(ˆ ·

0

ZdW,Z ′W ′
)

is continuous. This definition coincides with the classical integral of Young
if Z and W are regular enough.

Application to differential equations driven by rough paths are discussed
in the following section, which is contained in Part II of [1]. Connections to
Terry Lyons’ theory of rough paths from [2] are discussed in the last section
of Part II.
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3 Controlling rough paths (part II)

after M. Gubinelli [1]
A summary written by Gianmarco Brocchi

Abstract

We study the problem of existence, uniqueness and continuity of
solution of differential equations driven by irregular paths with Hölder
exponent greater than 1

3 (e.g. samples of Brownian motion). We will
also show connection with known stochastic integrals.

3.1 Introduction

Consider an interval J ⊆ R and a γ-Hölder path X in Cγ(J, V ) taking values
in a finite dimensional vector space V . Let ϕ be a function in C(V, V ⊗ V ?).
We are interested in studying the controlled differential equation

dY µ
t = ϕ(Yt)

µ
ν dX

ν
t Yt0 = y, t0 ∈ J (1)

where µ, ν are vector indices1. A solution to (1) will be a continuous path
Y ∈ Cγ(J, V ) such that

Y µ
t = y +

ˆ t

t0

ϕ(Yu)
µ
ν dX

ν
u (2)

for every t ∈ J . When γ > 1
2

sufficient conditions on ϕ allow to consider
integral in (2) as a Young integral. When 1

2
≥ γ > 1

3
the integral must be

understood as integral of a weakly-controlled path, as in part I of [1].
In this last case, given a rough path (X,X2), the solution of the differential
equation (1) driven by X is a weakly-controlled path in Dγ,2γX (J, V ).

To prove these results we will show that the solution map

Y 7→ G(Y )t = Yt0 +

ˆ t

t0

ϕ(Yu)
µ
ν dX

ν
u (3)

is locally a strict contraction on a subset of the Banach space Cγ(J, V ) of
Hölder continuous functions on J to a finite vector space V . Therefore it has
an unique fixed-point. Moreover, the Itô map Y = F (y, ϕ,X) which sends

1We will use Einstein notation omitting summation over repeated indices.
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the data of the differential equation to the solution is Lipschitz continuous
(on compact intervals J) in each argument.

The following table, where δ ∈ (0, 1), sums up sufficient hypothesis and
our main results in the two cases:

γ > 1/2 1/2 ≥ γ > 1/3

Integral in (2) Young integral Integral based on (X,X2)

Solution Y ∈ Cγ Y ∈ Dγ,2γX

Conditions for

Existence

ϕ ∈ Cδ(V, V ⊗ V ?),

(1 + δ)γ > 1

ϕ ∈ Cδ(V, V ),

(2 + δ)γ > 1

Stronger condition for

Uniqueness
ϕ ∈ C1,δ(V, V ⊗ V ?) ϕ ∈ C2,δ(V, V )

3.2 Preliminaries

We indicate a bounded function on R2 as element in ΩC. For a such function
we can consider the norm:

‖A‖γ := sup
s,t∈R2

|Ast|
|t− s|γ

.

The space ΩCγ is the subspace of ΩC such that ‖A‖γ <∞.
For a path X on I ⊂ R, the map (δX)st := Xt −Xs maps Cγ to ΩCγ.

Lemma 1. Let I = [a, b] and γ, η ∈ R. If γ < η then

‖ · ‖γ,I ≤ |b− a|η−γ‖ · ‖η,I

i.e. the inclusion ΩCη(I) ↪→ ΩCγ(I) is continuous.

Lemma 2. Let I, J two adjacent intervals on R and let X be a path in
Cγ(I, V ) and in Cγ(J, V ). If NX ∈ Cγ1,γ2(I ∪ J, V ), with γ1 + γ2 = γ, then

‖X‖γ,I∪J ≤ 2(‖X‖γ,I + ‖X‖γ,J) + ‖NX‖γ1,γ2,I∪J

and X ∈ Cγ(I ∪ J, V ).
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3.3 Existence and uniqueness when γ > 1
2

Proposition 3 (Existence). If γ > 1/2 and ϕ ∈ Cδ(V, V ⊗ V ?), δ ∈ (0, 1)
with (1+δ)γ > 1, there exists a path Y ∈ Cγ(J, V ) solution of the differential
equation (1). (The integral in (2) must be understood as Young integral.)

Sketch of the proof. Start with an interval I = [t0, t0 + T ] ⊆ J for T > 0. Under
the condition (1 + δ)γ > 1, G maps Cγ(I, V ) to itself. Using decomposition of
path in Cγ we can fix a compact, convex subset QI which is invariant under G.
The map G is proved to be continuous on QI so, by Leray-Schauder-Tychnoff
theorem, exists a fixed-point for G in QI . We conclude covering J with interval I
and patching together local solutions using Lemma 2.

Proposition 4 (Uniqueness). If γ > 1/2, ϕ ∈ C1,δ(V, V⊗V ?), δ ∈ (0, 1) with
(1 + δ)γ > 1, there exists a unique solution Y in Cγ(J, V ) of the differential
equation (1). The Itô map F (y, ϕ,X) is Lipschitz continuous in the following
sense:

‖F (y, ϕ,X)− F (ỹ, ϕ̃, X̃)‖γ,J ≤M(‖X − X̃‖γ,J + ‖ϕ− ϕ̃‖1,δ + |y − ỹ|)

with a constant M depending only on ‖X‖γ,J , ‖X̃‖γ,J , ‖ϕ‖1,δ, ‖ϕ̃‖1,δ and J .

Idea of the proof. For T < 1 we can fix an invariant compact set QI as in the pre-
vious Proposition. For T small enough G is proved to be a locally strict contraction
on QI , this means we can take α = α(T ) < 1 such that

‖G(Y )−G(Ỹ )‖γ,I ≤ α‖Y − Ỹ ‖γ,I

when Y, Ỹ ∈ QI and X = X̃ . Then G is a strict contraction on QI and it has a
unique fixed-point. Again, we extend the unique solution to J ⊃ I.

3.4 Existence and uniqueness when 1
2 ≥ γ > 1

3

Proposition 5 (Existence). If γ > 1/3, ϕ ∈ C1,δ(V, V ), δ ∈ (0, 1) with
(2 + δ)γ > 1, there exists a weakly-controlled path Y in Dγ,2γX (J, V ) solution
of the differential equation (1). (The integral in (2) must be understood as
based on the couple (X,X2).)

Sketch of the proof. The path ϕ(Y ) lives in Dγ,(1+δ)γ
X (J, V ),. Integration against

X makes sense for (2 + δ)γ > 1. We claim, similarly to Prop 3, that G maps
Dγ,2γX (I, V ) to itself. Using decomposition for Z = G(Y ):

δZµ = Z ′νδX
ν +RµZ = ϕ(Y )µνδX

ν + ∂κϕ(Y )µνY
′κ
ρ X2,νρ +QµZ
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we bound the norm ‖Z‖∗,I = ‖Z‖DX(γ,2γ,I). In the bound we get we can choose a
time T∗ < 1 such that for all T < T∗ we have a set Q′I invariant under G.

Then exists a solution in Dγ,2γX (I, V ) for any I ⊆ J small enough. Consider a
covering of J with I1, . . . , In suitable intervals. Patching together local solutions
we get a global one Y defined on ∪iIi = J . Again, use Lemma 2 iteratively to
prove that Y belongs to Dγ,2γX (J, V ).

Proposition 6 (Uniqueness). If γ > 1/3, ϕ ∈ C2,δ(V, V ), δ ∈ (0, 1) with
(2 + δ)γ > 1, there exists a unique solution Y ∈ Dγ,2γX (J, V ) of the differ-
ential equation (1), where the integral in (2) is based on the couple (X,X2).
Moreover, the Itô map F (y, ϕ,X,X2) is Lipschitz continuous.

Idea of the proof. As in Proposition 4 we use decompositions in order to bound

εZ,I = ‖ϕ(Y )− ϕ̃(Ỹ )‖∞,I + ‖ϕ(Y )− ϕ̃(Ỹ )‖γ,I + ‖RZ −RZ̃‖2γ,I .

We get an invariant set under G. Choosing T < 1 small enough we obtain a α < 1
such that

‖G(Y )−G(Ỹ )‖∗,I ≤ α ‖Y − Ỹ ‖∗,I .

ThenG is a strict contraction inDγ,2γX (I, V ) and has a unique fixed-point. Patching

together local solutions we get a global one defined on J in Dγ,2γX (J, V ).

3.5 Some probability

Let (Ω,F ,P) a probability space and let X be a standard Brownian motion
defined on it taking values in V = Rn. For a fixed γ < 1

2
and a bounded

interval I, the process X is almost surely locally γ-Hölder continuous, then
we can choose a version of X in Cγ(I, V ), .

Via stochastic integration we can define

W µν
Itô,st :=

ˆ t

s

(Xµ
u −Xµ

s ) d̂Xν
u

in the sense of the Itô integral (indicated by the hat in d̂Xν
u) with respect to

the filtration Ft = σ(Xs ; s ≤ t). For any s, u, t ∈ R we have:

W µν
Itô,st −W

µν
Itô,su −W

µν
Itô,ut = (Xµ

u −Xµ
s )(Xν

t −Xν
u) (4)

then we can consider a continuous version X2
Itô of the process (s, t) 7→ WItô,st

such that (4) holds almost surely for all s, u, t ∈ R.
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Using a variation of an argument introduced in [2],[3] to control Hölder-like
seminorms of continuous stochastic processes with a corresponding integral
norm, it is possible to show that X2

Itô belongs to ΩC2γ(I, V ⊗ V ).
We introduce also the Stratonovich integral:

X2,µν
Strat.,st :=

ˆ t

s

(Xµ
u −Xµ

s ) ◦ d̂Xν
u .

From stochastic integration we know that

X2,µν
Strat.,st = X2,µν

Itô,st +
gµν

2
(t− s) , where gµν =

{
1 if µ = ν

0 otherwise.

Also in this case we can select a continuous version of X2
Strat.,st in ΩC2γ such

that (4) holds for it.
We have introduced the following integrals so far:

Itô integral Integral based on (X,X2
Itô)

δIµItô,st =

ˆ t

s

ϕ(Xu)
µ
ν d̂X

ν
u δIµrough,st =

ˆ t

s

ϕ(Xu)
µ
ν dX

ν
u

Stratonovich integral Integral based on (X,X2
Strat.)

δIµStrat.,st =

ˆ t

s

ϕ(Xu)
µ
ν ◦ d̂Xν

u δJµst =

ˆ t

s

ϕ(Xu)
µ
ν dX

ν
u

The connection between them is pointed out by following theorem :

Theorem 7. Let ϕ ∈ C1,δ(V, V ⊗ V ?) with (1 + δ)γ > 1 and γ < 1
2
. Then

each stochastic integral in the left column of the table has a continuous version
which equals almost surely the corresponding integral on the right. Moreover,
by the relationship between Itô and Stratonovich integration:

δIµItô +
gκν

2

ˆ t

s

∂κϕ(Xu)
µ
ν du = δIµStrat. ,

we have:

δIµrough,st +
gκν

2

ˆ t

s

∂κϕ(Xu)
µ
ν du = δJµst.
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[2] S. Kwapień Rosiński, Sample Hölder continuity of stochastic processes
and majorizing measures. Seminar on Stochastic Analysis, Random
Fields and Applications IV, (2004), pp. 155-163;

[3] D.W. Stroock Probability Theory (3rd Edition), Cambridge University
Press, Cambridge (1993).

Gianmarco Brocchi, University of Bonn
email: gianmarcobrocchi@gmail.com

25



4 Ramifications of Rough Paths

after Massimiliano Gubinelli [4]
A summary written by Robert A. Crowell

Abstract

The work of [4] is surveyed. It extends Chen’s multiplicative prop-
erty by indexing iterated integrals with labeled trees. These trees
are enriched with algebraic structure which involves the Dürr-Connes-
Kreimer co-product encoding the combinatorics of trees. The theory
is a natural setting for a non-geometric theory of rough paths.
All errors are mine. No claim on originality is made.

4.1 Introduction

We shall discuss some parts of the work in [4]. The theory of abstract inte-
gration against irregular paths of [3] is further algebraicized. Iterated inte-
grals are indexed by decorated trees on which a rich algebraic structure can
be introduced. This structure involves the Dürr-Connes-Kreimer co-product
which encodes the combinatorics of labeled trees. In this way an algebraically
powerful and notationally convenient apparatus can be obtained providing a
solid basis for a non-geometric theory of rough paths. In particular Chen’s
multiplicative property [1], a basis of Lynons’ [5] theory, naturally extends
within this structure. This will lead to the concept of branched rough paths,
and extends the theory of integration against irregular paths of [3] to Hölder-
exponents γ > 0.

4.2 Rooted trees and iterated Integrals

We build a bridge between iterated integrals and rooted decorated trees. In
the following we outline how to enrich the sets of rooted trees and increment-
functions with algebraic structure and how to construct our homomorphism.

Trees A rooted tree is a finite, cycle-free graph with a distinguished vertex.
Given a finite set L = {a1, . . . , ak}, a L-labeling (or a decoration) is an
association of a label in L to every vertex of the rooted tree.
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It is useful to observe the following iterative procedure of recursively
growing trees. Given τ1, . . . , τk labeled rooted trees and a label a ∈ L, define

[τ1, . . . , τk]a

as the tree obtained by attaching to a vertex labeled a and declared as the
new root the trees τ1, . . . , τk. Any tree can be recursively grown using only
the set of labeled vertices and successively applying [−]−.

Denoting by TL the set of all L-decorated trees and by 1 be the empty
tree, we obtain the R-Algebra of polynomials on decorated trees,

ATL = 〈{1} ∪ TL〉R−Alg

Its elements are finite formal sums of formal monomials weighted by coeffi-
cients in R. A monomial of decorated trees τ1 · · · τk is called a forest. We
shall denote the set of forests by FL.

The algebra structure can be dualized to obtain a co-algebra, its co-
product ∇ : ATL → ATL ⊗ ATL will play a key role in the constructions
below. It acts on forests as ∆(τ1 · · · τk) = ∆(τ1) · · ·∆(τk) and is defined on
generators by ∆(1) = 1⊗ 1 and recursively on trees τ ∈ TL via

∆(τ) := 1⊗ τ +
∑
a∈L

(Ba
+ ⊗ id)[∆(Ba

−(τ))].

For a ∈ L we define the map Ba
+(1) = •a and Ba

+(τ1 · · · τk) = [τ1, . . . , τk]a.
We shall also need its inverse Ba

−, which removes the root if it is labeled by
a and erases the entire tree otherwise, i.e.

Ba
−(Bb

+(τ1 · · · τk)) =

{
τ1 · · · τk if a = b,

1 if a 6= b.

These dual structures satisfy the compatibility conditions of a bi-algebra, [2].
The co-product encodes the combinatorics of the tree, viz. By an admis-

sible cut c of a tree τ we mean detaching a set of branches from the tree.
Let C(τ) be the set of admissible cuts for τ . Given such a cut c, denote by
Rc(τ) ∈ TL the remaining subtree and by Pc(τ) ∈ FL the forest of detached
and newly planted branches. In [2] it is shown that we have the explicit
description of the co-product in terms of cuts

∆(τ) = 1⊗ τ + τ??⊗ 1 +
∑
c∈C(τ)

Rc(τ)??⊗ Pc(τ)

27



Thus the co-product consists of the collection of all subtrees and forests
stemming form systematically decomposing the tree using cuts (even the
two trivial ones). Below we shall only be using the reduced co-product

∆′(τ) = ∆(τ)− 1⊗ τ − τ ⊗ 1

It is straight forward using the definitions to verify that

∆′(τ) =
∑
a∈L

•a ⊗Ba
−(τ) +

∑
a∈L

(Ba
+ ⊗ id)

[
∆′
(
Ba
−(τ)

)]
(1)

The reduced co-product will be used to break up tree-polynomials into small
pieces for which we are given certain data.

Increments Given T > 0 and k ∈ N, denote by Ck the set of continuous
functions g : [0, T ]k → R, such that g(t1, . . . , tk) = gt1,...tk = 0 whenever
ti = ti+1 for 0 ≤ i ≤ k − 1. We call such a function a k-increment and
define C∗ =

⊕
k≥0 Ck. The vector-space of k-increments can be turned into

an algebra by declaring (f ◦ g)t1···tk = ft1···tkgt1···tk as inner product.
By a chain-complex constructions as in [3] we obtain the co-boundary

δ : Ck → Ck+1 g 7→ (δg)t1···tk+1
=

k+1∑
i=1

(−1)igt1···t̂i···tk+1

and the associated long exact sequence (C∗, δ). Let us agree to denote by
ZCk = Ck ∩ Ker(δ) the space of co-cycles.

Of particular interest is C2. Its elements include iterated integrals of
smooth functions on [0, T ]. Evidently for f ∈ C∞1 and h ∈ C2, we have

(s, t) 7→ I(df h)st :=

ˆ t

s

husdfu ∈ C2.

The following action of δ on the integral will be used throughout. Equation
(2) will be used to give an axiomatic definition of integrals.

Lemma 1. Let h ∈ C2 such that δhtus =
∑N

i=1 h
1,i
tuh

2,i
us for some N ∈ N,

h1,i, h2,i ∈ C2 and let x ∈ C∞1 ([0, T ],R). Then

δI(dx h)tus = I(dx)tuhus +
N∑
i=1

I(dh h1,i)tuh
2,i
us (2)
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Mapping trees to integrals As we have the structure of an R-Algebra
on trees and 2-increments, we can extend maps prescribed on generators.

Let L = {1, . . . , d} and suppose we are given a vector {xi}i∈L of elements
in C∞1 . Recall that any tree can be grown using only labeled nodes and [−]−.
Define the map X : TL → C([0, T ]2,R) by

X•ast =

ˆ t

s

dxau = δxast X
[τ1···τk]a
st =

ˆ t

s

(
k∏
i=1

Xτi
us

)
dxau (3)

and extend it to a morphism of algebras ATL → C+
2 (here C+

2 is the previously
defined algebra freely adjoined unit).

4.3 The multiplicative property

With the structure outlined above we have a powerful algebraic toolbox and
a notationally convenient apparatus to systematically generalize Chen’s mul-
tiplicative property of iterated integrals.

Integration on a sub-algebra Induced by the family {xa}a∈L are the
integration maps {Ia : C2 → C2}a∈L defined via Ia(h) = I(dxa h). The
following fundamental commutativity relation is a direct consequence of the
definitions,

IaXσ = XBa+(σ)?? for all σ ∈ ATL. (4)

Hence X maps the family {Ia}a onto {Ba
+}a. and thus we can represent

integration on the sub-algebra AX ⊂ C+
2 generated by {Xτ}τ∈TL via Ba

+. We
also note that the functions {Ba

+}a enter the definition of the co-product.

Chen’s multiplicative property As a first step towards understanding
the interplay of the algebraic structure with the co-boundary and the co-
product it is helpful to examine a simple case explicitly.

From the family {xa}a∈L define iterated integrals recursively as follows.

I(dxa1 dxa2 · · · dxan) = I(dxa1 I(dxa2 dxa3 · · · dxan))

Via Lemma 1 we recover Chen’s multiplicative property

δI(dxa1 · · · dxan)stu =
n−1∑
k=1

I(dxa1 · · · dxak)stI(dxak+1 · · · dxan)tu
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The sub-algebra AX contains the usual iterated integrals, which correspond
to trees of the form [· · · [•an ]an−1 · · · ]a1 .

I(dxa1 · · · dxan) = Ia1 · · · Ian−1(δxan) = XB
a1
+ ···B

an−1
+ •an = X [···[•an ]an−1 ··· ]a1

We shall call such non-branching trees sticks. Their combinatorics are par-
ticularly simple; Any non-trivial cut of a stick σ = [· · · [•an ]an−1 · · · ]a1 breaks
it into two pieces, so that

∆′(σ) =
n−1∑
k=1

[· · · [•ak ]ak−1
· · · ]a1 ⊗ [· · · [•an ]an−1 · · · ]ak+1

Hence using the extension of X to the tensor product via the exterior product
C2 ⊗ C2 → C3, fst ⊗ guv 7→ fstgtu, we get

X∆′(σ) =
n−1∑
k=1

X [···[•ak ]ak−1
··· ]a1X [···[•an ]an−1 ··· ]ak+1

and thus δXσ = X∆′(σ) via Chen’s property.

Generalization of Chen’s multiplicative property The above illus-
trates a more general principle: the relation between the co-algebra structure
on trees and its interplay with the co-boundary operator acting on integrals.
The following extension to arbitrary tree polynomials of the relation derived
above is a fundamental.

Theorem 2. The map X : ATL → C2 satisfies the following algebraic relation

δXσ = X∆′(σ) for all σ ∈ ATL (5)

where ∆′ is the reduced co-product.

4.4 Branched rough paths

It is evident from the proofs in [4], that relation (4) and the tree multiplica-
tive property of Theorem 2 hold more generally for any family {Xτ}τ∈TL
stemming from linear maps {Ia : C2 → C2}a∈L satisfying certain properties.
This can be used to give an axiomatic definition of integrals.
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An axiomatic definition of integrals We take linearity of classical in-
tegrals and the properties of Lemma 1 as a starting point.

Definition 3. Call a linear map I : DI → DI on a sub-algebra DI ⊂ C+
2

containing the unit e ∈ C2 an integral if is satisfies the following properties.

1. I(hf)ts = I(h)tsfs, for all h ∈ DI , f ∈ C1 where (hf)ts = htsfs,

2. δI(h)tus = I(e)tuhus +
∑N

i=1 I(h1,i)tuh
2,i
us

whenever h ∈ DI and δhtus =??
∑N

i=1 h
1,i
tuh

2,i
us for some n ∈ N, h1,i ∈

DI .

As in (3) one can associate to a given family of integrals {Ia}a∈L in
the sense of Definition 3, a family of functions {Xτ}τ∈FL . The extension
ATL → 〈{Xτ}τ∈FL〉 satisfies (4) and the multiplicative property, Theorem 2.

Regularity conditions and extension We can now introduce regularity
conditions on the map X. Once imposed, they will allow us to extend a finite
family {Xτ} uniquely to the whole algebra of tree-polynomials satisfying
certain bounds. This will lead us to the concept of branded rough paths.

For µ > 0 we introduce the Hölder-like norms on subspaces of C2 and C3

respectively. For f ∈ C2 and h ∈ C3 we let

‖f‖µ := sup
s6=t,s,t∈[0,T ]

{
fst
|s− t|µ

}
and ‖h‖γ,ρ := sup

s,u,t∈[0,T ]

{
|htus|

|u− s|γ|t− u|ρ

}
and define

‖h‖µ := inf
0<ρi<µ

{
N∑
i=1

‖hi‖ρi,µ−ρi : h =
N∑
i=1

hi, hi ∈ C3, N ∈ N

}
.

We then obtain the Banach-space Cµ2 := {f ∈ C2 : ‖f‖µ <∞} and similarly
Cµ3 := {f ∈ C3 : ‖f‖µ <∞}. Finally we define C1+

k = ∪µ>1Cµk .
The regularity of functions is related to the size of trees as follows. Given

γ ∈ (0, 1] define the function qγ on trees as qγ(τ) = 1 whenever |τ | ≤ 1/γ
and for |τ | > 1/γ set

qγ(τ) =
1

2γ|τ | − 2

∑
qγ(τ

(1))qγ(τ
(2))

The sum and the splitting of trees arise from the reduced co-product (1). On
a forest τ = τ1 · · · τk, we set qγ(τ) = qγ(τ1) · · · qγ(τk).
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Definition 4. Let γ > 0. We call a morphism of algebras X : ATL → C2 a
γ-branched rough path (γ-BRP) if it satisfies (5) and

‖Xτ‖γ|τ | ≤ BA|τ |qγ(τ), for all τ ∈ FL

and constants B ∈ [0, 1] and A?? ≥ 0.

Recall from [3] the sewing-map Λ : ZC1+
3 → C1+

2 , where it was used in
the splitting of a short exact sequence. In particular the co-boundary δ is its
inverse. With its help, we can define γ−BRP from a finite set of data.

Let n ∈ N and γ ∈ (0, 1) be such that γ(n+1) > 1. Suppose we are given
a morphism X : AnTL → C2 on the sub-vectorspace of tree-polynomials with
degree at most n that satisfies (5) and such that

‖Xτ‖γ|τ | ≤ BA|τ |qγ(τ)

for all τ ∈ TLn and constants γ > 0, A ≥ 0, B ∈ [0, 1]. Then this map can
be extended uniquely to a γ-BRP with the same bounds. The key in the
construction is that Xτ will be in the domain of Λ for large enough trees.
This construction allows us to go below γ < 1/3, cf. [3], [4].

Rough paths can be used to define controlled paths. These are paths that
constitute a natural space to solve rough differential equations, i.e. equations
of the form

δy =
∑
a∈L

Ia(fa(y)), y0 =??η ∈ Rk

Where {fa ∈ C(Rk,Rk), a ∈ L} is a family of sufficiently regular vector-fields
and {Ia} a family of integral maps that define a γ−BRP.

In particular controlled paths constitute an algebra that is closed under
integration against rough paths and the application of sufficiently regular
functions.
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5 Integrability and tail estimates for Gaus-

sian rough differential equations

after T. Cass, C. Litterer, and T. Lyons [1]
A summary written by Luigi Borasi

Abstract

We discuss the results presented in [1] where the authors proved
that the Jacobian of the solution flow for stochastic differential equa-
tions driven by a wide class of Gaussian processes (including fractional
Brownian motion with Hurst parameter H > 1/4) has finite moments.
Explicit bounds are given.

5.1 Introduction

The article is motivated by the study of SDEs of the form

dYt = V (Yt)dXt, Y0 = y0 (1)

which is driven by a Gaussian process X which is not necessarily a semi-
martingale. In particular the case of a fractional Brownian motion (fBm)
with Hurst parameter H > 1/4 is given special attention.

A natural question in connection to equation (1) regards the existence
and smoothness of the density of the solution. Existence of the density was
established by [3]. While [8, 2] smoothness of the density was established in
the regime H > 1/2 (therefore whithin the realm of classical Young integra-
tion).

The main problem in extending the result in [8, 2] to the case of more
general Gaussian processes is the need for sharp estimates on the integrability
of the Jacobian

JX
t←0(·) ≡ DUX

t←0(·)
where UX

t←0(y0) is the flow associated with the solution of (1).
The main result in the summarized article2 is that the logarithm of the

Jacobian has a tail that decays faster than expenentially, more precisely it is
shown that for any r < r0 ∈ (1, 2]

P(log[|JX
·←0(y0)|p-var;[0,T ]] > 0) . exp(−xr). (2)

2It is worth mentioning that this result also appears now with a slightly altered, some-
what shorter proof in [4].
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The constant r0 is described in terms of the regularity properties of the
Gaussian path. From (2) the existence of moments of all orders for JX

t←0(y0)
follows easily.

It is worth mentioning two of the main applications. First, these results
are needed for extending the work of [6] and [8] on the ergodicity of non-
Markovian systems Second, they are important in the Malliavin calculus
proof of Hörmander-type theorems. In this context we recall the recent work
of Hu and Tindel [9] (extending Norris’ lemma for fBm with H > 1/3) , and
of Hairer and Pillai [7] (proving Hörmander-type theorems for a general class
of RDEs under the assumption that the Jacobian has finite moments of all
orders).

5.2 Notation

We shall employ the following notation. Let C(I,Rd) denote the space con-
tinuous Rd-valued paths x parametrixed by time on a compact interval I.
We use the shorthand xs,t := x(s) − x(t) when x ∈ C(I,Rd). For p ≥ 1 we
will use the p-variation semi-norm

|x|p−var;I :=

(
sup

D[I]=(tj)

∑
j:tj∈D[I]

|xtj ,tj+1
|p
)1/p

The space of weakly geometric p-rough pats will be denoted byWGΩp(Rd).
For x ∈ WGΩp(Rd) we let

‖x‖p-var;[0,T ] :=

( bpc∑
i=1

sup
D=(tj)

∑
j:tj∈D

|xitj ,tj+1
|p/i
(Rd)⊗i

)1/p

.

5.3 Translated rough paths

The next important lemma shows how to control the p-variation of the trans-
lated rough path by the sum of the p-variation of the rough path itself and
the q-variation of the path by which we translate.

Lemma 1 (Lemma 3.1). Let 1 ≤ p < 4. Suppose that x is a weakly geometric
p-rough path parametrised over a compact interval I. Let h be a path in
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Cq-var(I,Rd) where 1/q + 1/p > 1. If Thx denotes the translated rough path,
then for any [s, t] ⊂ I we have the estimate

‖Thx‖pp-var;[s,t] ≤ Cp,q[‖x‖pp-var;[s,t] + |h|qq-var;[s,t]].

The constant Cp,q can be given explicitly.

5.4 Deterministic estimates for solutions to RDEs

A novel contribution of this article is the definition of the following object
which proves useful in a variety of problems.

Definition 2 (The greedy sequence). Let x ∈ WGΩp(Rd) be parametrized
over a compact I. For α > 0 we define a nondecreasing sequence (τi(α, p,x))∞i=0 =
(τi(α))∞i=0 ⊂ I by

τ0(α) = inf I,

τi+1(α) = sup I ∧ inf{t : ‖x‖pp-var;[τi,t]
≥ α, τi(α) < t ≤ sup I}. (3)

Moreover we introduce the function Nα,I,p : WGΩp(Rd)→ R+ given by

Nα,I,p(x) := sup{n ∈ N ∪ {0} : τn(α) < sup I}.

Comments. 1. Intuitively, for τi(α) < sup I and ‖x‖p-var;[τi,t] ≥ α, τi+1(α)
is the first time ‖x‖p-var;[τi,t] reaches α.

2. The number of distinct terms in the sequence (τi(α))∞i=0 is given by
Nα,I,p(x) + 1.

3. It can be shown that the function Nα,I,p is well defined [Lemma 4.9 in [1]]

and the sequence (τi(α))
Nα,I,p(x)+1
i=0 is a partition of I (for x ∈ WGΩp(RRd))

[Corollary 4.10 in [1]].

Proposition 3 (Corollary 4.6 + Proposition 4.11). Let p ≥ 1 and suppose x
is a path in WGΩp(Rd) parametrized over the compact interval I. Then for
every α > 0 we have the estimate

|Jx
·←0(y0)|p-var;[0,T ]

≤ C|V |Lip-γ‖x‖p-var;[0,T ] exp[C max(1, α|V |pLip-γ)(2Nα,[0,T ],p(x) + 1)]. (4)

In the following we will take x = X to be a Gaussian rough path. Then
the tail of the Jacobian will be studied via the tail of Nα,I,p(X).
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5.5 Gaussian rough paths

In this section3 and the next we let (W ,H, µ) be an abstract Wiener space
and (Xt)t∈I = (X1

t , . . . , X
d
t )t∈I be a continuous, mean-zero Gaussian process

with independent and identically distributed components on (W ,H, µ) each
one with covariant function R(s, t) = E[X1

tX
1
s ], s < t. Moreover we use the

notation

R( s,ts′,t′) := E[(X1
t −X1

s )(X1
t′ −X1

s′)], s < t, s′ < t′.

Condition 1 (Finite ρ-variation). There exists ρ ∈ [1, 2) such that R has
finite ρ-variation, i.e.

Vρ(R; I × I) :=

(
sup

(ti),(t′j)∈D(I)

∑
i,j

∣∣∣R (
ti,ti+1

t′j ,t
′
j+1

∣∣∣ρ )1/ρ

< +∞. (5)

The following lemma show that under certain conditions X(ω+h) is equal
to ThX(ω) for all h ∈ H on a set of µ-full measure.

Lemma 4 (Lemma 5.4). With (Xt)t∈I as above, assume that X has a natural
lift to a geometric p-rough path. Assume further that for some q ≥ 1 such that
1/p + 1/q > 1, we have H ↪→ Cq-var(I,Rd). Then there exists a measurable
subset E ⊂ W with µ(E) = 1, such that for all ω ∈ E, we have

ThX(ω) ≡ X(ω + h) for all h ∈ H.

The following corollary shows that in the examples of Gaussian processes
which interest us the most we indeed have that X lifts to path in GΩp(Rd)
and H continuously embed in Cq-var(I,Rd).

Corollary 5 (Corollary 5.5). Let (Xt)t∈I be such that the covariance function
R satisfies Condition 1. Suppose at least one of the following holds:
1. For some ρ ∈ [1, 3/2) the covariance function of X has finite ρ-variation
in the sense of Condition 1;
2. X is a fractional Brownian motion for H in (1/4, 1/2).

Then there exist real numbers p, q such that the following statements are
true simultaneoously
1. X has a natural lift to a geometric p-rough path;
2. H ↪→ Cq-var(I,Rd) where 1/p+ 1/q > 1.

3For more information on this section cfg. [4] and reference in [1].
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5.6 The tail behaviour of Nα,I,p(X(·)) via Gaussian isoperime-
try

Theorem 6 (Borell’s isoperimetric inequality). Let (W ,H, µ) be an abstract
Wiener space and K denote the unit ball in H. Suppose A is a Borell subset
of W such that µ(A) ≥ Φ(a) for some real number a. Then for every r ≥ 0,

µ∗(A+ rK) ≥ Φ(a+ r),

where µ∗ is the inner measure of µ, and Φ denotes the standard normal
cumulative distribution function.

The next Proposition is cucial. It allows for the application of Borell’s
inequality to control the tail of the random variable Nα,I,p(X(ω)).

Proposition 7 (Proposition 6.2). Let (Xt) as in the previous section. Sup-
pose that p, q are such that 1 ≤ p < 4 and 1/p + 1/q > 1. Assume fur-
thermore that 1. X has a natural lift to a geometric p-rough path X; 2.
H ↪→ Cq-var(I,Rd). Then there exists a set E ⊂ W, of µ-full measure, with
the following property: for all ω in E, h in H, and α > 0,

if ‖X(ω − h)‖p-var;I ≤ α, then |h|q-var;I ≥ αNα̃p,I,p(X(ω))1/q,

where Cp,q is the constant in Lemma 1 and α̃ = (2Cp,q)
1/pα.

Theorem 8 (Theorem 6.5: Moment estimates on the Jacobian). Let
(Xt)t∈I be as above. Let ρ ∈ [1, 3/2], p ∈ (2ρ, 3), and γ > p. Suppose
Condition 1. in the previous section holds.

Then 1. X lifts to a geometric p-rough path X, and for any collection of
Lip-γ vector fields V = (V 1, . . . , V d) on Re the RDE

dYt = V (Y )dXt, Y (0) = y0

has a unique solution. 2. The flow U
X(ω)
t←0 (·) induced by the solution ot this

RDE is differentiable. 3. The Jacobian JX
t←0(ω)(y0)·a := d

dε

∣∣
ε=0

U
X(ω)
t←0 (y0+εa)

satisfies

exp[(log |JX
t←0(·)(y0)|)r] ∈

⋂
q>0

Lq(µ)

for all y0 ∈ Re and all r < 2/rho.

The above result applies to fractional Brownian motion with H > 1/3. It
turns out that the hypothesis (on the specific embedding) can be leveraged
and a similar result can be derived also for H > 1/4 (Theorem 6.6 in [1]).
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6 Inverting the signature of a path

after T. Lyons and W. Xu [1]
A summary written by João Pedro Ramos.

Abstract

We give an explicit algorithm to recover – up to small Lipschitz-
norm error – a path given its set of signatures. Moreover, we give an
upper bound on the number of elements from the signature needed to
approximate the path up to order k, k sufficiently large.

6.1 Introduction

Let γ : [0, 1]→ Rd be a continuously differentiable path at natural parametriza-
tion, that is, such that, if γ = (γ1, · · · , γd), then

d∑
i=1

|γ′i(t)| = L = const.,

for all t ∈ [0, 1]. An object of extreme interest related to these paths, and
moreover to the analysis of rough paths, is the signature. Before describing
what a signature is, we mention that a word of length k is a sequence of
k elements, where each of those is taken from {e1, ..., ed}, where ei is the
vector consisting of 1 on the i-th position, and zero on every other one. For
example, if d = 2, {xy, xx, yx, yy} form the collection of all length 2 words.
We denote the concatenation of two words w1 = ei1 · · · eik , w2 = ej1 · · · ejs as
the word

w1 ∗ w2 = ei1 · · · eikej1 · · · ejs .

That being defined, we define the signature of the word w = ei1 · · · eik by
γ as the number

Cγ(w) =

ˆ
0<t1<···<tk<1

γ′i1(t1) · · · γ′ik(tk) dt1 · · · dtk.

Of course, the signature of the path γ is just the collection of the signatures
for all possible words, which can be concisely defined via the formal sum

X(γ) =
∑
k≥0

∑
|w|=k

Cγ(w)w.
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One natural question to ask is then if, given the signature of a path
X(γ), we can recover the path itself. Other references [2, 3] investigated
the problem in, respectively, the setting of finite length paths and geometric
rough paths. Nevertheless, there were no explicit reconstruction procedures
before [1]. Therefore, the main result is an explicit way to obtain a piecewise
linear path approximating the original one in Lipschitz norm directly from
the signatures up to a certain level. Explicitly:

Theorem 1. Let d = 2. Given the signatures of γ for words w such that
|w| ≤ 8k3 log k + k, we may find a path γ̃, which consists of k linear parts
concatenated, and

sup
t∈[0,1]

|γ′(t)− γ̃′(t)| ≤ Cηk,

where C > 0 depends only on (the signature of) γ, and ηk → 0 as k →
∞. Moreover, the rate of convergence of this sequence depends only on the
modulus of continuity of γ.

We remark that the same result holds in higher dimensions, and its proof
is just a simple adaption of the one for dimension 2. For the two-dimensional
proof, we are going to do a three-step argument, first recovering the direction
of the path, then its signs, only to find the length in the end of the procedure.

6.2 The unsigned directions
|∆jγi|
|∆jγ| .

For this part we will need some concepts derived directly from the definition
of a signature.

Definition 2 (Symmetrized signatures). Let n, k be two natural numbers.
Let also Lnk = {` = (l1, ..., lk); 0 ≤ li ≤ n,

∑k
i=1 li = n}

• The multiindex-word set Wn
k (w, `) associated to a word w = ei1 · · · eik−1

is the set of words {w′ = w1∗ei1 ∗w2∗· · ·∗eik−1
∗wk; |wi,x| = 2li, |wi,y| =

2n− 2li}, where ` ∈ Lnk , and |w̃x| stands for the quantity of letters x in
the word w̃.

• The symmetrized signature of the word w with respect to n and ` is,
then, defined as

Snk (w, `) = ((2n)!)k
∑

w′∈Wn
k (w,`)

Cγ(w
′).
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Furthermore, we define ∆k−1 = {u = (u1, ..., uk−1); 0 ≤ u1 ≤ u2 ≤ · · · ≤
uk−1 ≤ 1.}, ∆u,jγ = γ(uj+1) − γ(uj). With these definitions in hands, a
combination of Fubini’s theorem and the binomial theorem yields that∑

`∈Lnk

Snk (w, `)

should be comparable to

ˆ
∆k−1

k∏
i=1

|∆u,jγ|2n du,

at least for some choice of word w. We let now δ(ε) = sup{|γ′(r)−γ′(s)|; |r−
s| ≤ ε} be the modulus of continuity of γ′. The next lemma, which is a
simple consequence of the inequality of arithmetic and geometric means and a
straightforward majorization argument, allows us to focus on only a restricted
region of ∆k−1:

Lemma 3. Let k ≥ 0 be such that δ( 1
k
) < L

2
, and εk =

√
2

(√
δ( 1
k

)

L
+ 1√

k

)
.

If, for some j ∈ [1, k], we have |uj − j
k
| ≥ εk, then

k∏
i=1

(
|∆u,iγ|
|∆iγ|

)
<

1

e
.

Finally, using this lemma one can obtain the following precise quantitative
comparison stated above:

Theorem 4. Let k ≥ 0 such that δ(2εk) <
L
6
. Then there exists a word w∗

of length k − 1 such that, for every n ∈ N,

∑
`∈Lnk

|Snk (w∗, `)| ≥
(

3

6k
− (1 +

3

6k
)e3k log k−n

)
Lk−1

ˆ
∆k−1

k∏
i=1

|∆u,iγ|2n du.

With a little aid from this theorem and some work similar to the one
needed to prove it, we may already obtain the unsigned directions. We
first let ηk = δ(3εk) + L√

k
and, to shorten notation, rj =

|∆jγ1|
|∆jγ| . With this

definitions, the following holds:
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Theorem 5 (Choice of Directions). Let k ≥ 5 be such that ηk <
L
6
. Then it

holds that, for 0 ≤ j ≤ k,

 ∑
|w|=k−1

∑
`;|
lj
n
−rj |≥

2ηk
L

|Snk (w, `)|

 /

 ∑
|w|=k−1

∑
`∈Lnk

|Snk (w, `)|

 ≤ 16

k5

(
12

k4

)k
To choose (unsigned) directions from theorem 5 is easy: we simply want

to find ρj sufficiently close to rj. To this end, select any sequence {ρj}kj=1

that satisfies

 ∑
|w|=k−1

∑
`;|
lj
n
−ρj |≤

2ηk
L

|Snk (w, `)|

 /

 ∑
|w|=k−1

∑
`∈Lnk

|Snk (w, `)|

 >
1

2
.

From theorem 5, such a sequence obviously exists. On the other hand, such
a sequence must fulfill |rj − ρj| < 4ηk

L
, as otherwise we would fall into the

case of theorem 5, a contradiction.

6.3 The signs of directions

Once we have unsigned directions, we must find their signs. The strategy to
do so is essentially the same as in the previous section, but with a few new
concepts:

Definition 6 (Pseudo-symmetrized signatures). Let n, k be two natural num-
bers. Let also Lnk = {` = (l1, ..., lk); 0 ≤ li ≤ n,

∑k
i=1 li = n}

• The multiindex-word setWn
k,i,x(w, `) associated to a word w = ei1 · · · eik−1

is the set of words {w′ = w1∗ei1 ∗w2∗· · ·∗eik−1
∗wk; |wj,x| = 2li, |wj,y| =

2n− 2li, if j 6= i; |wi,x| = 2li + 1, |wi,y| = 2n− 2li.}, where ` ∈ Lnk , and
|w̃x| stands for the quantity of letters x in the word w̃.

• The pseudo-symmetrized signature of the word w with respect to n and
` is, then, defined as

Snk,i,x(w, `) = (2n+ 1)((2n)!)k
∑

w′∈Wn
k,i,x(w,`)

Cγ(w
′).
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The definition follows the same spirit for Wn
k,i,y and so on. To go on with

the analysis, we choose a word w̃ = ei1 · · · eik−1
as follows: if ρj >

1
2
, we set

eij = x. Otherwise, we set it equal to y. This defined, we pick the signs: we
set axi = +1 if ∑

`∈Lnk
Snk (w̃, `)∑

`∈Lnk
Snk,i,x(w̃, `)

> 0,

and, on the other case, we set axi = −1. The same procedure is made to select
ayi , and the following theorem shows that, when in the relevant cases, this
choice of signs is consistent:

Theorem 7 (Choice of Signs). Let k ≥ 0 be sufficiently large, with ηk <
L
32
.

Then, if ri >
2ηk
L
, ∑

`∈Lnk
Snk (w̃, `)∑

`∈Lnk
Snk,i,x(w̃, `)

>
1

6εkL
, if ∆jγ1 > 0,

and ∑
`∈Lnk
Snk (w̃, `)∑

`∈Lnk
Snk,i,x(w̃, `)

< − 1

6εkL
, if ∆jγ1 ≤ 0.

The same holds for γ2 and ayi under the hypothesis of ri ≤ 1− 2ηk
L
.

Now we are ready to approximate the normalized path: let θj = (axj ρj, a
y
j (1−

ρj)), and abuse notation to refer to the linear path defined on [0, 1
k
] and di-

rection θj also by θj. We finally define

ζ =
1

k
θ1 ∗ · · · ∗ θk.

By the choice of signs – namely, by the fact that axj has the same sign as

∆jγ1 when rj >
2ηk
L

, and the same for ayj when rj ≤ 1 − 2ηk
L

– it is easy to

prove that γ′

L
is 16ηk

L
-close to ζ ′.

6.4 The length and completion of the procedure

Finally, we approximate the length of the path, with maybe the simplest
procedure. We simply pick the shortest word w such that Cγ(w) 6= 0. Let
then m be its length, and define the “reconstructed” length

L̃ =

(
Cγ(w)

Cζ(w)

)1/m

.
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We have then

Theorem 8 (Approximating lengths). Let k ≥ 0 be large enough, such that

ηk ≤ (m−1)!
32Lm−1 |Cγ(w)|. Then

|L− L̃| ≤ 32Lmηk
(m− 1)!|Cγ(w)|

.

The proof is simple: we just use the bounds following from theorem 7
and the explicit definition of signature of a word. With this in hands, we call
γ̃ = L̃ζ, and, by theorems 5,7 and 8 we see that

sup
t∈[0,1]

|γ′(t)− γ̃′(t)| ≤ 16

(
1 +

32Lm

(m− 1)!|Cγ(w)|

)
ηk.

To finish, we remark that our chosen n in the procedure was n = 4k2 log k,
and, as words in Snk,i,x(w, `) have length k−1+2n+1+(k−1)2n = 8k3 log k+k,
this is the highest in the signature we have to get to achieve our current rate
of approximation.
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7 Characteristic functions of measures on ge-

ometric rough paths

after I. Chevyrev and T. Lyons [1]
A summary written by Micha l Warchalski

Abstract

We define a characteristic function for probability measures on the
signatures of geometric rough paths and study its properties. We
further apply it to study uniqueness of random variables based on
their expected signature.

7.1 Overview

We treat rough paths in the sense of Lyons [2]. Let us quickly recall some
necessary definitions. Further our setting is more general with a (possibly
infinite dimensional) Banach space V , however initially one can think of
V = Rd, since ultimately the results are applied to this case.

Let p ≥ 1, T > 0 and

∆[0,1] = {(s, t) : 0 ≤ s ≤ t ≤ T}

Rough paths are functions taking values in the (truncated) tensor algebra,
which is defined for n ≥ 0 as

T n(V ) =
⊕

0≤k≤n

V ⊗k = V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ ..⊕ V ⊗n

The space of p-rough paths Ωp(V ) is the collection of all continuous maps
x : ∆[0,1] → T bpc satisfying

• (multiplicativity) xs,txt,u = xs,u for all 0 ≤ s ≤ t ≤ u ≤ T ,

• (controlled p-variation) for some control function ω

sup
0≤k≤bpc

(
(k/p)!βp‖xks,t‖

)p/k ≤ ω(s, t)
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for all (s, t) ∈ ∆[0,T ]. The point of the control is to ensure that the
p-variation

‖x‖p−var;[0,T ] :=
∑

0≤k≤bpc

sup
D⊂[0,T ]

 ∑
t(j)∈D

(
(k/p)!βp‖xkt(j),t(j+1)‖

)p/k1/p

is finite.

We say that x(n) ∈ Ωp converges to x ∈ Ωp in the p-variation topology if

• the p-variations of x and x(n) for n ≥ 1 are controlled

• for a sequence an → ∞, sup0≤k≤bpc
(
(k/p)!βpan‖xks,t‖

)p/k ≤ ω(s, t) for
all (s, t) ∈ ∆[0,T ].

A fundamental result result in the theory of rough paths is that any path
x ∈ Ωp can be uniquely lifted to S(x) : ∆[0,T ] →

∏
k≥0 V

⊗k. In other words,
the more rough a path (the bigger p) is the more information (the more
initial coordinates) we need to uniquely determine it. Precisely, we have the
following result: let ΩEp := S(Ωp) together with the p-variation topology,
with sup0≤k≤bpc replaced by sup0≤k; then S is a homeomorphism between Ωp

and ΩEp.
We shall be working with the space of geometric rough paths. Consider

a rough path x ∈ Ωp and its lift S(x) ∈ ΩEp. Define the set of geometric
rough paths as the closure of “regular” paths Ω1 inside Ωp.

Definition 1. The space of geometric rough paths GΩp is the closure of Ω1

in Ωp.

For p ≥ 1, set Sp(V ) = {S(x)0,T : x ∈ GΩp} ⊂ E as the set of signatures
of geometric p-rough paths. It follows from the above discussion that S1 is
dense in Sp.

7.1.1 Expected signature

The value S(x)0,T is called the signature of x. It is morally “the sequence
iterated integrals of the path x0,· : [0, T ] → V ” and this relation is actu-
ally precise in the sense of Young for exponents in the range 1 ≤ p < 2.
The signature (S(x)0

0,T , S(x)1
0,T , S(x)2

0,T , ...) is thus an element of
∏

k≥0 V
⊗k
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and the expected signature is defined as the sequence of expectations taken
coordinatewise

ExpSig(S(x)0,T ) := (E[S(x)0
0,T ],E[S(x)1

0,T ],E[S(x)2
0,T ], ...)

One can show that if the expected signature decays fast, then S(x) is weakly
integrable. Moreover, one can prove that in such situation the expected
signature is unique in distribution:

Proposition 2. For two rough paths x, y if

ExpSig(S(x)0,T ) = ExpSig(S(y)0,T ),

and ExpSig(S(x)0,T ) decays fast enough, then S(x)0,T = S(y)0,T in distribu-
tion.

7.1.2 Characteristic functions of rough paths

Recall, the characteristic function of a random variableX is simply its Fourier
transform given by E[eiλX ]. Since we further treat rough paths as paths
taking values in a topological group we follow the classical extension of the
Fourier transform: we define the characteristic function as

φX(M) = E[M(X)],

where X is a random signature and M is a unitary representation of the
group. One of the main results is that the characteristic function uniquely
determines a rough path.

Proposition 3. For two rough paths x,y: S(x)0,T = S(y)0,T in distribution
if and only if φS(x)0,T = φS(y)0,T .

7.2 General setting

Most of the arguments are worked out in the following setting.
Let V be a Banach space and T (V ) =

⊕
k≥0 V

⊗k be the tensor algebra of
V . The multiplication is given by the tensor product and extended linearly
to the whole space.
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If γ and ξ are semi-norms on V and W , then by γ ⊗ ξ we denote the
projective semi-norm on V ⊗W :

γ ⊗ ξ(x) := inf

{
n∑
i=1

γ(ai)ξ(bi) : x =
n∑
i=1

aibi

}

Denote by V ⊗̂W the completion of V ⊗W in this norm.
In this manner we define the projective extension of a semi-norm γ on V

as the semi-norm
exp(γ) :=

∑
k≥0

γ⊗k.

We call a family of semi-norms Λ on V fundamental if for every semi-norm ξ
on V , there exists γ ∈ Λ such that γ ≥ ξ. Now, we can finally define what we
meant by fast decaying elements of P :=

∏
k≥0 V

⊗̂k. Let Λ be a fundamental
family of semi-norms on V , define

E = {x ∈ P : ∀γ ∈ Λ,
∑
k≥0

γ⊗k <∞}.

In particular the signature S(x)0,T of a rough path lies in E.
T (V ) is a Hopf algebra with

• coproduct: ∆v = 1 ⊗ v + v ⊗ 1 for v ∈ V , extended by ∆(v1...vk) =
∆(v1)...∆(vk) for v1...vk ∈ V ⊗,

• antipode: α(v1...vk) = (−1)kvk...v1 for v1...vk ∈ V ⊗k.

We denote by
G(V ) = {g ∈ E : ∆(g) = g ⊗ g, g 6= 0}.

the group of group-like elements of E, their inverse is given by the antipode.

7.3 Some results

Chen [3] proved that the signature of a path in S1(Rd) is a group-like element
of E(Rd), what immediately implies the same statement for paths in Sp(Rd).
This lets us apply results in the general setting to V = Rd. Furthermore, we
have the following.

Proposition 4. Let p ≥ 1. Then the set of signatures of gemetric p-rough
paths Sp(Rd) is a Borel subset of G(Rd).
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Let A(V ) be the family of finite dimensional representations of E coming
from extensions of linear maps from V to the Lie algebra of anti-Hermitian
operators on a finite dimensional Hilbert space H. Note that M(αx) =
M(x)∗ for x ∈ E, which implies that M(x) is unitary for all x ∈ G. Hence,
every M ∈ A is a unitary representation of G. The Stone-Weierstrass theo-
rem implies that if a ∗-subalgebra B ⊂ Cb(G,C) separates points of G, then
two (tight) measures µ = ν if and only if µ(M) = ν(M) for all M ∈ B.

One can actually prove that the algebra A(Rd) separates points of E(Rd),
which lets us conclude

Proposition 5. For Borel probability measures µ and ν on G(Rd), it holds
that µ = ν if and only if µ(M) = ν(M) for all M ∈ A(Rd).

It follows from the above proposition that if X is a G(Rd)-valued random
variable and µ is its distribution, then the function φX := µ|A uniquely
characterizes µ and thus implies Proposition 3.

Since for ExpSig(X) ∈ E and f ∈ E ′, E[f(X)] is determined by ExpSig(X),
we obtain from the previous proposition:

Proposition 6. Let X, Y be G(Rd)-valued random variables. If ExpSig(X) =
ExpSig(Y ) and ExpSig(X) ∈ E, then X = Y in distribution.

Recall, the signature of a rough path is G(Rd)-valued - in view of this
fact Proposition 2 follows from the above.
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8 Decay rate of iterated integrals of branched

rough paths

after H. Boedihardjo [1]
A summary written by Marco Fraccaroli

Abstract

We prove a factorial decay estimate, conjectured by Gubinelli [2],
for the iterated integrals of non-geometric rough paths. We also ex-
plain through a counterexample why the conventional approach of
using the neoclassical inequality fails. The proof of our theorem in-
volves instead a concavity estimate for sums over rooted trees and a
non-trivial extension of Lyons’ proof for the factorial decay of iterated
Young’s integrals [3].

8.1 Introduction

The iterated integrals of a path x, defined by

Xn
0,1 :=

ˆ
0<s1<...<sn

dxs1 ⊗ . . .⊗ dxsn

as n varies, arise naturally from the Taylor’s expansion of a controlled differ-
ential equation driven by the path and play a fundamental role in the theory
of rough paths. The convergence of the series expansion is often studied
using their decay. Lyons in [4] proved a factorial decay for geometric rough
paths case through a highly non-trivial binomial-type inequality known as
the neoclassical inequality.
Gubinelli in [2] proposed a theory of non-geometric rough paths, known as
the branched rough paths, and conjectured that an analogous tree factorial
decay holds even in this case.
Therefore the main result we want to prove is the following:

Theorem 1. Let 0 < γ ≤ 1 and N = bγ−1c. Let X be a γ-branched rough
path. For all rooted trees τ and all s ≤ t,

|〈Xs,t, τ〉 ≤
c̄
|τ |
N (t− s)γ|τ |

τ !γ
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where

c̄N = 6 exp

(
7
N+1∑
i=0

(N + 1)i+1

)
|T N |2−2γ2(N+1)γζ((N+1)γ)N !γ max

1≤|σ|≤N
‖X‖|σ|−1

γ,σ

and T N is the set of unlabelled rooted trees with at most N vertices.

Remark 2. Unless explicitly stated, from now on 0 < γ ≤ 1 and N = bγ−1c.

The theorem, together with the Hairer-Kelly way of extending a geometric
rough path to a branched one, gives another proof for the factorial decay for
the former ones and in some cases it even provides a sharper estimate.
The strategy of proof cannot rely on the neoclassical inequality as in the
case of γ-geometric rough paths since we can provide a counterexample for
a version of it for rooted trees.
Instead we want to follow Lyons’ approach in [3], which proved the factorial
decay for γ-geometric rough paths in the γ > 1

2
case without neoclassical

inequality. We define

Xn
u,t = lim

P⊂[u,t]
|P|→0

m−1∑
i=1

N∑
k=1

Xn+1−k
s,ti

? Xk
ti,ti+1

where N = bγ−1c, n ≥ N + 1 and the limit is taken as the mesh size
max0≤i<m |ti+1 − ti| of the partition P = {s = t0 < t1 < . . . < tm = t}
goes to zero. The purpose is to use Young’s method of estimating Xn

u,t

by successively removing partition points from the partition. In order to
do this we need to find a control function (s, t) → Ru(s, t) (i.e. such that
Ru(s, v)+Ru(v, t) ≤ Ru(s, t) ) which dominates the function (s, t)→ ωu(s, t)
defined by

ωu(s, t) := ‖
∑

k≥N+1

Xn−k
u,s ? Xk

s,t‖T ,γ,β

and satisfies some binomial properties. The strategy of the proof consists of:

1. prove a bound for the multiplication operator ? with respect to some
norm, analogously to the bound of tensor product ‖a ⊗ b‖ ≤ ‖a‖‖b‖
for a ∈ V ⊗m and b ∈ V ⊗n in the geometric case;

2. prove that our function R is compatible with the tree multiplication,
which corresponds to the multiplication of the coordinate components
of the path in the geometric case;
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3. prove that our function R is compatible with the operation of joining
trees to a single root, which corresponds to integrating against the path
in the geometric case.

8.2 Notation and terminology for branched rough paths

A rooted tree is a connected, rooted graph such that, for every vertex in the
graph, there exists a unique path from the root to the vertex. Let 1 denote
the empty tree and • the one consisted of a single vertex. A forest is a finite
set of rooted trees. We use bold symbols (e.g. τ) for forests and normal
symbols (e.g. τ) for rooted trees.
We denote with T the set of rooted trees and with F the one of forests.
We define a commutative multiplication · on F by x · y := x ∪ y.
For σ = {τ1, . . . , τn} = τ1 . . . τn ∈ F , where τ1, . . . , τn are rooted non-empty
trees, let [σ]• denote the rooted tree obtained by joining the roots of τ1, . . . , τn
to the vertex •.
We denote with H the formal vector space spanned by F over R.
For a forest τ let c(τ) denote the number of non-empty trees in τ and |τ | the
total number of vertices in the forest. For each tree τ the tree factorial τ ! is
defined inductively by

•! = 1,

[τ1, . . . , τn]•! = |[τ1, . . . , τn]•|τ1! . . . τn!,

τ1 . . . τn! = τ1! . . . τn!.

A coproduct of rooted trees can be inductively defined as ∆ : H → H ⊗H
by

∆1 = 1⊗ 1,

∆[τ1, . . . , τn]• = [τ1, . . . , τn]• ⊗ 1 +
∑

τ
(1)
1 . . . τ (1)

n ⊗ [τ
(2)
1 , . . . , τ (2)

n ]•,

∆(τ1 . . . τn) = ∆τ1 . . .∆τn.

where the sum in the second definition is taken over all terms τ
(1)
i and τ

(2)
i

in ∆τi =
∑
τ

(1)
i ⊗ τ (2)

i .
The coproduct ∆ also has an interpretation in terms of admissible cuts. An
admissible cut c of a rooted tree τ is a set of edges of the rooted tree such
that, for any vertex in τ , the path from the root to the vertex passes through
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at most one element in the cut. If we denote by τ
(1)
c and τ

(2)
c respectively the

components in τ \ c that is disconnected from the root and the component
that is connected to the root, then

∆τ = τ ⊗ 1 +
∑

c admissible cut

τ (1)
c ⊗ τ (2)

c .

8.3 Counterexample to the tree neoclassical inequality

The following lemma exhibits the counterexample for a weaker version of
the neoclassical inequality which would have been sufficient in proving the
factorial decay for the iterated integrals of branched rough paths (as Gubinelli
showed in [2]).

Lemma 3. Let τn be the tree [•n]•. Then for all 0 ≤ γ < 1, for all β > 0,
there exist a, b > 0 such that, as n→∞,

(a+ b)−γ|τn|
∑(

τn!

τ
(1)
n !τ

(2)
n !

)γ
1

βc(τ
(1)
n )+c(τ

(2)
n )

aγ|τ
(1)
n |bγ|τ

(2)
n | →∞.

8.4 Tools for the proof

8.4.1 Bound for the multiplication operator ?

Let X ∈ H∗. Define a linear functional Xk ∈ H∗ for every τ ∈ F by

〈Xk, τ〉 :=

{
〈X, τ〉 if |τ | = k,

0 otherwise.
.

Then for X, Y ∈ H∗ we define the linear functional Xn ? Y k ∈ H∗ by

〈Xn ? Y k, τ〉 := 〈Xn ⊗ Y k,∆τ〉

for every τ ∈ F . Let

‖Xk‖T ,γ,β := max
τ∈T ,|τ |=k

|〈X, τ〉|β
c(τ)τ !γ

|τ |!γ
,

and

‖Xk‖F ,γ,β := max
τ∈F ,|τ |=k

|〈X, τ〉|β
c(τ)τ !γ

|τ |!γ
.
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Lemma 4. Let

ck := exp

[
k∑
i=1

ki(1− γ)

]
, β ≥ ck.

Let X, Y ∈ H∗. Then for n ≥ 1,

‖Xn ? Y k‖T ,γ,β ≤ ck|T k|1−γβ−1‖Xn‖F ,γ,β‖Y k‖T ,γ,β,

where T k denotes the set of rooted trees with k vertices.

Remark 5. Notice that the norm of the multiplication operation can be
bounded by a function of k, independently of n.

The proof requires the following concavity estimate, which in the non-
geometric case has the same role of the neoclassical inequality in the geomet-
ric one, namely of taking the fractional power γ outside a sum.

Lemma 6. For any rooted tree σ, let c|σ| be defined as above and β ≥ c|σ|.
For all rooted trees τ such that σ ( τ , we have

∑
τ (2)=σ

β−c(τ
(1))

τ (1)!γ
≤ c|σ|β

−1

( ∑
τ (2)=σ

1

τ (1)!

)γ

.

Remark 7. The key point of this lemma is that the constant we lose by
taking the power γ outside the sum, c|σ|, depends only on |σ| but not on |τ |.

8.4.2 Compatibility of our estimate with tree multiplication

For each a, b > 0 define a one-dimensional path ρba by

ρba(t) :=
1

b
(t− a)b.

Let ∆m(r, r′) denote the m-dimensional simplex

{(s1, . . . , sm) ∈ Rm : r < s1 < . . . < sm < r′}.

For a one-dimensional path ρ, we define

Sm(ρ)s,t :=

ˆ
∆m(r,r′)

dρ(s1) . . . dρ(sm).
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Lemma 8. Let X be a γ-branched rough path. Let

ĉN := 3|T N |1−γ(N + 1)3(1−γ) exp [2(N + 1)], β ≥ ĉN .

Suppose that for all n ≤M and u ≤ s ≤ t,

‖
∑

k≥N+1

Xn−k
u,s ? Xk

s,t‖T ,γ,β ≤
[

1

(n−N − 1)!
S(N+1)

(
ρ

n
N+1
u

)
s,t

]γ
.

Then for all n ≤M and u ≤ s ≤ t,

‖
∑

k≥N+1

Xn−k
u,s ? Xk

s,t‖F ,γ,βĉ−1
N
≤
[

1

(n−N − 1)!
S(N+1)

(
ρ

n
N+1
u

)
s,t

]γ
.

8.4.3 Estimate for the remainder of a coproduct sum of branched
rough paths

Lemma 9. Let X be a γ-branched rough path. If for any 0 ≤ n ≤ N ,

‖Xn
s,t‖T ,γ,β ≤

[
(t− s)n

n!

]γ
,

and

β ≥ 6 exp

(
7
N+1∑
i=1

(N + 1)i

)
∞∑
r=2

(
2

r − 1
∧ 1

)(N+1)γ

|T N |1−γ

then for any n ≥ N + 1,

‖
∑

k≥N+1

Xn−k
u,s ? Xk

s,t‖T ,γ,β ≤
[

1

(n−N − 1)!
S(N+1)

(
ρ

n
N+1
u

)
s,t

]γ
.
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9 Physical Brownian Motion in Magnetic Field

as Rough Path

after P. Friz, P. Gassiat, and T. Lyons [1]
A summary written by Kevin O’Neill

Abstract

We summarize [1], which shows that under the influence of a mag-
netic field, physical Brownian motion (meaning with nonzero mass)
converges in the sense of rough paths to the massless case plus a non-
trivial area term. In this summary, we also give brief introductions to
the tools needed to understand this main theorem.

9.1 Introduction

A Brownian motion is a stochastic process used to model the random mo-
tions of a massless particle. Mathematically speaking, we have the following
definition [3]:

Definition 1. A real-valued stochastic process Wt is a one-dimensional Brow-
nian motion if

(i) W0(ω) = 0 for all ω.
(ii) The map t 7→ Wt(ω) is a continuous function for all ω, and
(iii) For every t, h ≥ 0,Wt,t+h := Wt+h −Wt is independent of (Wu : 0 ≤

u ≤ t) and has a Gaussian distribution of mean 0 and variance h.
A d-dimensional Brownian motion is an Rd-valued stochastic process with

each component an independent one-dimensional Brownian motion.

This is intended to describe phenomena such as a speck of dust floating in
a glass of water, however in the real world no speck of dust or other particle
has precisely zero mass. For this reason, we consider a physical Brownian
motion described by the stochastic differential equation

mẍ = −Aẋ+ ξ (1)

and take the limit of solutions as m→ 0. In (1), m is the mass of the particle,
ξ is the (distributional) derivative of a Brownian motion W , and A is a d×d
diagonal matrix with positive diagonal entries. If our particle is charged and
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moving through a constant magnetic field, one may show that the position
X(t) of our particle obeys the system

dX =
1

m
Y dt (2)

dY = − 1

m
MY dt+ dW (3)

where M is a d × d matrix whose eigenvalues all have strcitly positive real
part. Our goal is to examine the limit of solutions to (2) and (3) as m→ 0.

9.2 Rough Paths

It may be shown that a Brownian path (i.e., a realization of Brownian motion)
is almost surely α-Hölder continuous for any α < 1/2, but not for α = 1/2.
This presents a challenge in solving any stochastic differential equations such
as (2) and (3); in particular, one may show that the solution is not continuous
as a function of the driving noise. However, this issue may be resolved by
the introduction of rough paths, as the solution map with domain the space
of rough paths may be continuous.[2]

Definition 2. A rough path X in Rd on an interval [0, T ] is a continuous
function X : [0, T ] → Rd equipped with a continuous function X : [0, T ]2 →
Rd ⊗ Rd satisfying the relation

Xs,t − Xu,t − Xs,u = Xs,u ⊗Xu,t. (4)

The α-Hölder rough path metric is given by

ρα(X,Y) := sup
s 6=t∈[0,T ]

|Xs,t − Ys,t|
|t− s|α

+ sup
s 6=t∈[0,T ]

|Xs,t − Ys,t|
|t− s|2α

.

9.3 Stochastic Integration

As long as α ≥ 1/2, there is a canonical choice of X, given by

Xs,t =

ˆ t

s

Xs,r ⊗ dXr,

the Young integral which shows up in a second-order Euler process. Since
Brownian motion is only α-Hölder continuous almost surely for a < 1/2,
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there is no such canonical choice. While there are an infinite number of
choices of X for any given X under which (4) is satisfied, we restrict our
attention to two choices which are based on two different forms of stochastic
integration.

The first of these is Itô integration, which is defined as

WItô
0,t =

ˆ t

0

W0,r ⊗ dWr = lim
n→∞

∑
[ti−1,ti]∈Dn

Wti−1
(Wti −Wti−1

),

where Dn is a sequence of partitions with mesh going to 0. One may show
this limit converges in probability. The other kind of stochastic integration
is called Stratonovich integration and may be defined as

WStrat
0,t =

ˆ t

0

W0,r ⊗ ◦dWr =

ˆ t

0

W0,r ⊗ dWr +
1

2
[W,W ]t

as in [2]. However, this just reduces to WStrat
0,t = WItô

0,t + 1
2
I(t − s). Both

of these are valid ways to turn a Brownian path into a rough path (with
probability 1), though we briefly note that Stratonovich integration gives
what is known as a geometric rough path while Itô integration does not.

9.4 Theorem Statement and Remarks

Now that we have a notion of Brownian motion which includes second-order
terms, we would like to have some statement which says that physical Brow-
nian motion converges to the usual Brownian motion under the metric ρα.
However, it turns out that in our particular scenario, we have an extra non-
trivial second-order term in the limit. Additionally, we must recall that these
are stochastics processes, so we may not simply use ρα without consideration
of the underlying probability measure. Taking thiese factors into account,
the main theorem proved in [1] is as follows:

Theorem 3. Let X and Y be solutions to (2) and (3). Let Ŵ = (W, Ŵ),
where

Ŵs,t = Ws,t + (t− s)1

2
(MC − CM∗)

and C =
´∞

0
e−Mse−M

∗sds. Then, as m → 0, MX converges to Ŵ in Lq

and under the metric ρα for any q ≥ 1 and α ∈ (1/3, 1/2).
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Remark 4. In the case where there is no magnetic field, M is symmetric
and Ŵ = (W,W) so there is no extra (area) term in the above limit.

Remark 5. If one instead chooses to consider the differential equation

mẍ = −Mẋ+ γ̇,

where γ is α-Hölder continuous of order α > 1/2, then there is no area term
in the limit.

To summarize the above remarks, the major hypotheses are necessary for
the conclusion.

9.5 Idea of Proof

The idea behind the proof is as follows. Begin by rescaling with m = ε2 and
denote solutions as Xε and Y ε. Defining W̃t = εWε−2t, it suffices to consider
the system

dỸ = −MỸ dt+ dW̃ dX̃ = Ỹ dt,

since under identical initial data, (Y ε
t , ε
−1Xε

t ) = (Ỹε−2t, X̃ε−2t). Convergence
of the first-order terms follows from the equation MXε

t = Wt− εY ε
0,t and the

fact that εỸε−2t = εY ε
t → 0 in L2 uniformly in t.

Next, one may show that the matrix C is equal to E(Ỹ stat
0 ⊗ Ỹ stat

0 ), and
furthermore that

ˆ t

0

Y ε
s ⊗ Y ε

s ds→ tC

as ε→ 0, using either the ergodic theorem, or direct computation (the latter
of which may determine rates of convegence). This allows one to compute
the limit of

´ t
0
MXε

s ⊗ d(MXε)s, getting W0,t + t(MC − 1
2
I). This gives the

desired limit since (MC − 1
2
I) is antisymmetric.

However, we have only shown pointwise convergence (with respect to the
probability measure). In order to establish convergence with respect to ρα
and in Lq, we prove uniform rough path bounds in Lq, meaning that

sup
0<ε≤1

E[||MXε||qα] <∞, sup
0<ε≤1

E

[∣∣∣∣∣∣∣∣ˆ MXε ⊗ d(MXε)

∣∣∣∣∣∣∣∣q
2α

]
<∞.
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This may be proven via use of the Kolmogorov criterion for rough paths
(also used to establish 2α-Hölder regularity of area terms of Brownian mo-
tion), which states we need only show

sup
0<ε≤1

E[|Xε
s,t|q] . |t− s|q/2 sup

0<ε≤1
E

[∣∣∣∣ˆ t

s

Xε
s ⊗ dXε

∣∣∣∣q] . |t− s|q.
It should be noted that important elements of the remainder of the proof

are 1) interpolation of convergence of rough paths via these uniform bounds,
and 2) the use of the positive real parts of the eigenvalues of M to establish
finiteness of certain integrals.

References

[1] P. Friz, P. Gassiat, T. Lyons, Physical Brownian Motion in Magnetic
Field as Rough Path. Trans. Amer. Math. Soc. 367 (2015), no. 11, 7939-
7955;

[2] P. Friz and M. Hairer, A Course on Rough Paths. With an Introduction
to Regularity Structures Springer International Publishing, Switzerland,
2014.

[3] P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough
Paths. Theory and Applications Cambridge University Press, Cam-
bridge, 2010.

Kevin O’Neill, University of California, Berkeley
email: oneill@math.berkeley.edu

62



10 Reflected rough differential equations

after S. Aida [1]
A summary written by Joris Roos

Abstract

The author of the paper proves existence of solutions for reflected
differential equations on a domain in Rd with the boundary satisfy-
ing certain conditions. In particular, the boundary is not necessarily
smooth. The driving paths are assumed to be continuous and of finite
p-variation with 1 ≤ p < 2, or p-rough with 2 ≤ p < 3.

10.1 The Skorohod problem

Let D be a connected subset of Rd. We will need certain conditions on the
boundary of D which are formulated in terms of inward unit normal vectors.
The set of inward unit normal vectors at a point x ∈ ∂D is defined by

Nx = {n ∈ Sd−1 : ∃r > 0 s.t. n ∈ Nx,r},

where
Nx,r = {n ∈ Sd−1 : B(x− rn, r) ∩D = ∅}.

Here B(x, r) = {y ∈ Rd : |x− y| < r} denotes the open ball of radius r > 0
around a point x ∈ Rd. Clearly we have Nx,r ⊆ Nx,s if 0 < s ≤ r.
For a path (xt)t∈[0,T ] and 0 ≤ s ≤ t ≤ T , 1 ≤ p <∞ we set

‖x‖p;[s,t] := sup
N∈N,s=t0<t1<···<tN≤t

(
N−1∑
i=0

|xti+1
− xti |p

)1/p

,

‖x‖∞;[s,t] := max
s≤u≤v≤t

|xu − xv|.

Recall that we say xt has finite p-variation if ‖x‖p;[0,T ] <∞.
Now the Skorohod problem associated with a continuous path w ∈ C([0, T ],Rd)

is to find (ξ, φ) such that for all 0 ≤ t ≤ T

ξt = wt + φ(t), ξt ∈ D,

φ(t) =

ˆ t

0

1∂D(ξs)n(s)d‖φ‖1;[0,s], n(s) ∈ Nξs if ξs ∈ ∂D. (1)
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10.1.1 A basic example

The most basic example is the case d = 1, D = [0,∞). This is the origi-
nal problem considered by Skorohod. Here we interpret the value ξt as the
position of a particle at time t. Then the Skorohod problem asks for the
particle’s trajectory under the following constraints. First, it must always
remain within the given domain. It must never cross the boundary, that
is in our case ξt ≥ 0. Second, the particle should move according to the
function w (except when it would otherwise cross the boundary). That is,
the increments of ξ should equal the increments of w whenever ξt > 0. The
precise way to express this constraint is the equation (1). Here the function
φ should be interpreted as compensating for the times when w is trying to
lead ξ out of the domain. In our basic example, the equation (1) reads as

φ(t) =

ˆ t

0

1ξs=0 dφ(s)

This is equivalent to

0 =

ˆ T

0

1(0,∞)(ξs)dφ(s)

which means precisely that the compensation function is not supposed to
change whenever ξs > 0. In this one-dimensional example, the solution to
the Skorohod problem is very simple. It is given by the function

ξt = wt − min
0≤s≤t

min{ws, 0}.

In higher dimensions, it is a more delicate issue and the existence and unique-
ness depend on properties of the boundary of the domain. For further read-
ing, see the exposition [4].

10.2 Main results

We are going to consider the following conditions on the boundary of D.

(A) There exists r0 > 0 such that we have

Nx = Nx,r0 6= ∅

for all x ∈ ∂D.
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(B) There exist δ > 0 and β ≥ 1 such that for every x ∈ ∂D there exists a
unit vector lx satisfying

〈lx,n〉 ≥
1

β

for all n ∈
⋃
y∈B(x,δ)∩∂DNy.

If the assumptions (A) and (B) are satisfied, then the Skorohod problem
considered above has a unique solution.

A continuous map ω : {(s, t) : 0 ≤ s ≤ t ≤ T} → [0,∞) satisfying

ω(s, t) + ω(t, u) ≤ ω(s, u)

for all s ≤ t ≤ u is called a control function for (xt)t∈[0,T ] if there exists a
constant 0 < C <∞ such that for every 0 ≤ s ≤ t ≤ T we have

|xt − xs| ≤ Cω(s, t).

We can now formulate the first main result.

Theorem 1. Let xt for 0 ≤ t ≤ T be a continuous path on Rn that is of
finite p-variation for some 1 ≤ p < 2. Let ω(s, t) be a control function of xt
and σ ∈ C1

b (Rd,Rn ⊗ Rd), y0 ∈ D. Assume that (A) and (B) hold. Then
there exists a solution (y,Φ) to the reflected differential equation,

yt = y0 +

ˆ t

0

σ(ys)dxs + Φ(t).

The integral here is in the sense of Young [5]. Moreover, the solution satisfies

|yt − ys| ≤ Cω(s, t)1/p,

‖Φ‖[s,t] ≤ Cω(s, t)1/p.

Here C is a constant that depends on ω(0, T ), σ and the domain D.

The rough idea of the proof is to follow an Euler approximation argument
in the spirit of Davie [3].

The second main result is concerned with reflected differential equations
driven by p-rough paths, where 2 ≤ p < 3. For definition and an accessible
exposition of p-rough paths and other basic topics of rough paths theory, see
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[2]. Before stating the result we need some preliminary definitions. Let 2 ≤
p < 3, 0 ≤ s ≤ t ≤ T and Xs,t = (1, X1

s,t, X
2
s,t) ∈ Ωp(Rn), Ys,t = (1, Y 1

s,t, Y
2
s,t) ∈

Ωp(Rd) be p-rough paths and Φ(t) a continuous bounded variation path on
Rd. Also, let σ ∈ C2

b (Rd,Rn ⊗ Rd). Then the pair (Y,Φ) is called a solution
to the rough differential equation on D driven by X with normal reflection
and starting point y0 ∈ D,

dYt = σ(Yt)dXt + dΦ(t), Y0 = y0, (2)

if the following conditions hold (always 0 ≤ s ≤ t ≤ T ):

1. Let Yt = y0 + Y 1
0,t. Then Yt ∈ D and there exists a Borel measurable

map n : [0, T ]→ Rd such that n(s) ∈ NYs if Ys ∈ ∂D and

Φ(t) =

ˆ t

0

1∂D(Ys)n(s)d‖Φ‖1;[0,s]

for all 0 ≤ t ≤ T .

2. Ys,t is a solution to the following rough differential equation:

dYt = σ̂(Yt)dX̂t, Y0 = y0,

where σ̂(x) is a linear map Rn × Rd → Rd defined by

σ̂(x)(ξ, η) = σ(x)ξ + η

and the driving rough path X̂ ∈ Ωp(Rn × Rd) is given by

X̂1
s,t = (X1

s,t,Φ(t)− Φ(s)),

X̂2
s,t =

(
X2
s,t,

ˆ t

s

X1
s,u⊗dΦ(u),

ˆ t

s

(Φ(u)−Φ(s))⊗dX1
s,u,

ˆ t

s

(Φ(u)−Φ(s))⊗dΦ(u)
)
.

The main theorem is as follows.

Theorem 2. Let σ ∈ C3
b (Rd,Rn⊗Rd). Also, assume condition (A) and that

the Skorohod problem has a unique solution (ξ, φ) for every w and denote
L(w) = φ. Moreover, suppose there exists a positive constant CD such that
for all continuous paths w on Rd we have

‖L(w)‖1;[s,t] ≤ CD‖w‖∞;[s,t]
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for 0 ≤ s ≤ t ≤ T . Let ω be the control function of Xs,t, i.e., we have that

|X i
s,t| ≤ ω(s, t)i/p

for 0 ≤ s ≤ t ≤ T and i = 1, 2. Then there exists a solution (Y,Φ) to the
reflected rough differential equation (2) such that for all 0 ≤ s ≤ t ≤ T ,

|Y i
s,t| ≤ C(1 + ω(0, T ))3ω(s, t)i/p, i = 1, 2,

‖Φ‖1;[s,t] ≤ C(1 + ω(0, T ))3ω(s, t)1/p,

where 0 < C <∞ is a constant that depends only on σ,CD and p.

A further result, which we will discuss if time allows, is concerned with
the relation between the solution to a reflected rough differential equation
and a reflected stochastic differential equation when the driving process is a
Brownian motion.
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11 Rough solutions for the periodic Korteweg-

de Vries equation

after M. Gubinelli [1]
A summary written by Jonas Jansen

Abstract

We show how to apply ideas from the theory of rough paths to the
analysis of low-regularity solutions to non-linear dispersive equations.
Our basic example will be the one dimensional Korteweg-de Vries
equation (KdV) on a periodic domain and with initial condition in
FLα,p spaces.

11.1 Introduction

We want to solve the classical Korteweg-de Vries equation (KdV)

∂tu(t, ξ) + ∂3
ξu(t, ξ)− 1

2
∂ξ(u(t, ξ)2) = 0, u(0, ξ) = u0(ξ) (1)

for (t, ξ) ∈ [0, T ∗] × T where T = [−π, π] is the torus and u0 is of low
regularity.

We denote with Ff = f̂ : Z→ C the Fourier coefficients of a real function
f : T → R : f(ξ) =

∑
k∈Z f̂(k)eikξ. Now we define the space FLα,p in which

our initial condition will live:

FLα,p := {f ∈ S ′(T) : f̂(0) = 0, |f |FLα,p = |(1 + | · |2)
1
2 f̂(·)|`p <∞}

where S ′(T) is the space of Schwartz distributions on the torus. Due to con-
servation laws, the restriction to mean zero function is a natural setting to
discuss KdV and we remark FLα,p = Hα/R.
Furthermore, given normed vector spaces V,W we denote by L(V,W ) the
Banach space of bounded linear operators and introduce the short-hand
LnV := L(V n, V ). We use the convention that for X ∈ LnV , we write
X(a) instead of X(a, . . . , a) for a ∈ V .
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11.2 The sewing map

We want to use similar techniques as for RDEs when solving a fixed-point
equation. So we introduce CnV := {a ∈ C([0, T ]n, V ) : at1,...,tn = 0 when ti =
tj for i 6= j} and operators δ : C1V → C2V : δfts = ft − fs, δ : C2V → C3V :
δatus = ats − atu − aus. It is δ2 = 0 and if a ∈ C2V satisfies δa = 0, then
there is f ∈ C1V with δf = a. Define ZC3V = C3V ∩ im δ. We introduce
Hölder-like norms on CnV :

‖f‖µ := sup
t,s∈[0,T ]

|fts|
|t− s|µ

, Cµ2 V := {f ∈ C2V : ‖f‖µ <∞}

and setting ‖h‖γ,ρ := sup
t,u,s∈[0,T ]

|htus|
|u−s|γ |t−u|ρ

‖h‖µ :=?? inf

{
n∑
i=1

‖hi‖µ−ρi,ρi :
n∑
i=1

hi = h, hi ∈ C3V, n ∈ N, ρi ∈ (0, µ)

}
we define the space Cµ3 V := {h ∈ C3V : ‖h‖µ < ∞}. Define C1+

n V :=⋃
γ>1 CγnV . Use the norms and notations also for ZC3V . Then we have the

following well-known Theorem (cp. [1], [3],[5]):

Theorem 1. There is a unique linear map Λ: ZC1+
3 V → C1+

2 V such that
δΛ = IdZC3V and for any µ > 1, Λ: ZCµ3 V → C

µ
2 V satisfies

‖Λh‖µ ≤
1

2µ − 2
‖h‖µ.

11.3 The equation

Using the Duhamel principle, we can rewrite equation (1) via the fixed-point
problem

u(t) = U(t)u0 +

ˆ t

0

U(t− s)N (u(s))ds (2)

where N (u(t, ξ)) := 1
2
∂ξ(u(t, ξ)2) and U(t) is the Airy group associated with

the linear problem ∂tu+∂3
ξu = 0, ?? u(0, ·) = u0 ∈ FLα,p. U(t) is acting on

FLα,p by isometries and it is F(U(t)φ)(k) = eik
3tφ̂(k). Changing variables

v(t) = U(−t)u(t) we find

v(t) = v0 +

ˆ t

0

Ẋs(v(s))ds (3)
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where v0 = u0 and Ẋs ∈ L2FLα,p is given by Ẋs(φ1, φ2) = U(−s)∂ξ[(U(s)φ1)(U(s)φ2)]/2.
Now, formally, we expand the integral part:

ˆ t

0

Ẋs(v(s))ds =

ˆ t

0

Ẋs(v0)ds+

ˆ t

0

Ẋs(v(s))− Ẋs(v0)ds =

ˆ t

0

Ẋs(v(s))− Ẋs(v0)ds

=

ˆ t

0

ˆ s

0

∂σẊs(v(σ))dσds = 2

ˆ s

0

Ẋs(∂σv(σ), v(σ))dσds.

This leads to the power series expansion

v(t) = v0 +

ˆ t

0

Ẋs(v0)ds+ 2

ˆ t

0

ˆ s

0

Ẋs(v0, Ẋσ(v0))dσds+ h.o.t. (4)

We are not trying to show convergence of this series but rather use methods
from rough paths writing

δvts = Xts(vs) + rts (5)

where rts is a remainder that we hope to be in some sense small and Xts is
given by the first-order term of the power series expansion, i.e.

FXts(φ1, φ2)(k) =

ˆ t

s

FẊσ(φ1, φ2)(k)dσ.

You can immediately check that δXtus = 0 and hence using bilinearity
δrtus = Xtu(δvus, vs) +Xtu(vu, δvus). Using the sewing map, we would like to
solve the fixed-point equation

δv = X(v, v) + Λ[X(δv, v) +X(v, δv)]

provided X(δv, v) +X(v, δv) ∈ ZC1+
3 V . As we are not able to prove this, we

go to second order, obtaining the equation

δvts = Xts(vs) +X2
ts(vs) + r2

ts

where X2 ∈ C2L3FLα,p is given by

X2
ts(φ1, φ2, φ3) = 2

ˆ t

s

dσ

ˆ σ1

s

Ẋσ(φ1, Ẋσ1(φ2, φ3)).

Computing δr2
tus, we obtain the second-order Λ-equation
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δv = X(v) +X2(v) + v[ (6)

with v[ts = Λ[2Xtu(δvus − Xus(vs), vs) + Xtu(δusv, δvus) + X2
tu(δvus, vs, vs) +

X2
tu(vu, δvus, vs) +X2

tu(vu, vu, δvus)]ts.
For this equation to be well-defined, we need 2X(δv−X(v), v)+X(δv, δv)+

X2(δv, v, v) + X2(v, δv, v) + X2(v, v, δv) to be in the domain of Λ. There-
fore, we first establish bounds on X,X2 respectively: given D ⊂ R× R+ by
Dp := {(γ, α) : α ≥ −1

2
− 1

p
+ γ, γ ∈ [0, 1

4
)} ∪ {(γ, α) : α > −1− 1

p
+ 3γ, γ ∈

[1
4
, 1

2
)} if p > 2 and Dp := {(γ, α) : α ≥ −1 + γ, γ ∈ [0, 1

2p
)} ∪ {(γ, α) : α >

−1− 1
p

+3γ, γ ∈ [ 1
2p
, 1

2
)} if 1 ≤ p ≤ 2, the following result gives a quantitative

control on Xts:

Lemma 2. For any (γ, α) ∈ Dp Xts ∈ L2FLα,p and |Xts|L2FLα,p . |t− s|γ.

We also have a bound forX2 onD′p := Dp∩{α > α∗(p)} := max{−1
p
,−1

2
}.

Remark that X2 is an unbounded operator.

Lemma 3. There exist unbounded linear operators X̂2
ts, X̌

2
ts : (FLα,p)3 →

FLα,p, X2
ts = X̂2

ts+X̌
2
ts, δX̌

2 = 0, such that when α > α∗(p), it is |X̌2
ts|L3FLα,p .

|t− s| and for any (γ, α) ∈ D it is |X̌2
ts|L3FLα,p . |t− s|2γ.

11.4 The main result

We fix the requirements for a solution:

sup
t∈[0,T ]

|vt|FLα,p <∞, δv ∈ Cγ1FLα,p, ?? δv −X(v, v) ∈ C2γ
2 FLα,p.

Then using Lemmas (2) and (3), it is easy to check that v[ is well-defined
via the sewing map if 3γ > 1. So remark that for every α > α∗(p) and every
p ∈ [1,∞], there is a pair (γ, α) ∈ D′p with γ > 1

3
.

Solving equation (6) we use a standard fixed-point argument involving
a contraction. So the last bit is to define a space on which to define the
contraction mapping. For 0 < η ≤ γ, define

Qη := {(y, y′, y#) : y, y′ ∈ Cη1FLα,p, y# ∈ C2η
2 FLα,p}

together with the metric

dQ,η(y, z) := |y0 − z0|+ ‖y − z‖η + ‖y# − z#‖η.
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Now, for η < γ we want to find a fixed-point of the map Γ: Qη → Qη :
Γ(y, y′, y#) = (z, z′, z#) with

z0 = y0, δz = X(y, y) +X2(y, y, y) + z[

for z[ = Λ[2X(y#, y) +X(δy, δy) +X2(δy, y, y) +X2(y, δy, y) +X2(y, y, δy)].
Further we set z′ = y, z# = X2(y, y, y) + z[. If η > 1

3
, then z[ is well-

defined, as all arguments of the sewing map belong to C3η
3 FLα,p. Now for

T sufficiently small, Γ(y) ∈ Qγ and Γ is a contraction. Thus we obtain the
following Theorem.

Theorem 4. For any α > α∗(p), (γ, α) ∈ D′p γ > 1
3
, any v0 ∈ FLα,p there

is T ∗ = T ∗(|v0|FLα,p) > 0 sufficiently small and a unique v ∈ CγFLα,p such
that v(0) = v0 and

vt = vs +Xts(vs) +X2
ts(vs) + o(|t− s|) ∀0 ≤ s ≤ t ≤ T ∗.

The solution map Θ: Cγ2L2FLα,p×C2γ
2 L3FLα,p×FLα,p → Qγ : v = Θ(X,X2, v0)

is locally Lipschitz.

As in the finite-dimensional theory of RDEs, given partitions Π = {0 =
t0 < . . . < tn = t}, we can use the approximation by Riemann sums as in [2]
to write

vt = v0 + lim
|Π|→0

∑
i

Xti+1ti(vti) +X2
ti+1ti

(vti).

It remains to connect the solution of the Λ-equation (6) with solutions of
KdV. Therefore denote by (PNf)(ξ) =

∑
|k|≤N f̂(k)eikξ the Fourier projector.

Defining u(t) = U(t)v(t) where v is a solution as in Theorem (4), PNu is
smooth and we have the following Corollary.

Corollary 5. N (PNu) converges in C([0, T ],S ′(T)) to a limit we denote by
N (u), i.e. for any φ ∈ S(T) it is supt∈[0,T ] |N (PNu)(t, φ)−N (u)(t, φ)| → 0
as N →∞. Furthermore N (u) satisfies the distributional equation

∂tz + ∂3
ξ z −N (u) = 0.

11.5 Applications

Due to keep this summary short I will not go into detail concerning various
applications of the methods introduced. By an L2-conservation law, you can
show that if the initial condition v0 is in L2 then the solution is global.
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Furthermore there exist applications to show convergence of numerical
schemes. As shown in [6], the solutions of the approximate KdV

∂tu
(N) + ∂3

ξu
(N) − PNN (u(N)) = 0, u(N)(0) = PNu0

do not even weakly converge to a solution of KdV. But inspired by rough
path analysis and using the methods introduced above you can show that a
modified scheme

∂tu
(N) + ∂3

ξu
(N) − PNN (u(N))− Γ(N)(u(N)) = 0, u(N)(0) = PNu0

is converging to a solution of KdV.
Another application is given by a similar result as in Theorem (4) of

unique pathwise solutions in CγFLα,p for the KdV-equation with presence
of an additive random force

∂tu+ ∂3
ξu−

1

2
∂ξ(u

2)??Φ∂t∂ξB, u(0) = u0 ∈ FLα,p

where ∂t∂ξB is white noise on R× T and Φ is a linear operator acting diag-
onally on ξ in Fourier space.
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12 Deterministic homogenization for fast-slow

systems with chaotic noise

after D. Kelly and I. Melbourne [1]
A summary written by Johanna Richter

Abstract

We consider a smooth, deterministic flow (φt)t≥0 on a finite dimen-
sional manifold and give conditions under which the solutions xε of
the ordinary differential equation ẋε = a(xε, yε) + ε−1b(xε, yε), yε(t) =
φε−2ty0 converge weakly to an Itô diffusion X as ε→ 0.

12.1 Introduction

Let (φt)t≥0 be a smooth flow on a finite dimensional manifold M. Suppose
that Ω ⊂ M is a closed flow-invariant set with ergodic probability measure
µ. Define the random variable y(t) = y(t, y0) = φty0 on the probability space
(Ω, µ), and set yε(t) = y(ε−2t) for ε > 0. Further, let a, b : Rd ×M → Rd

be two vector fields and let the random variable xε on Ω be defined as the
solution to the ODE

dxε
dt

= a(xε, yε) +
1

ε
b(xε, yε), xε(0) = ξ (1)

with deterministic initial condition ξ ∈ Rd. If a and b are suitably regular, xε
takes values in the space of continuous functions C([0, T ],Rd) for some finite
T > 0. The aim is to identify the limiting behaviour of xε on C([0, T ],Rd) as
ε→ 0.

12.2 Main result

Definition 1. For u : Rd ×M → R and α ∈ [0,∞), κ ∈ [0, 1) define the
mixed Hölder norm

‖u‖Cα,κ =
∑
|k|≤bαc

sup
x∈Rd
‖∂kxu(x, ·)‖Cκ +

∑
|k|=bαc

sup
x,z∈Rd

‖∂kxu(x, ·)− ∂kxu(z, ·)‖Cκ
|x− z|α−bαc

,

where the second summation is omitted when α is an integer and ‖·‖Cκ is the
standard Hölder norm acting on the y component. If u is vector-valued, we
define ‖u‖Cα,κ =

∑
i ‖ui‖Cα,κ . We write u ∈ Cα,κ(Rd×M,Rd) if ‖u‖Cα,κ <∞.
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In the following we say u ∈ Cα,κ
0 if u ∈ Cα,κ and

´
Ω
u(x, y) dµ(y) = 0, and

we write u ∈ C1+,κ if there exists α > 1 such that u ∈ Cα,κ. Furthermore, we
assume that the flow φt has the following properties.
Assumption A. For v ∈ Cκ

0 (Ω,Rm), κ > 0 define

Wv,n(t) = n−1/2

ˆ tn

0

v ◦ φs ds and Wv,n(t) = n−1

ˆ tn

0

ˆ s

0

v ◦ φr ⊗ v ◦ φs drds.

Assume there is a bilinear operator B : Cκ
0 (Ω,R)×Cκ

0 (Ω,R)→ R such that
for all v ∈ Cκ

0 (Ω,Rm),

(Wv,n,Wv,n)→ (Wv,Wv)

as n → ∞, in the sense of finite dimensional distributions, where Wv is a
Brownian motion in Rm and Wv is the process with values in Rm×m defined
by

Wij
v (t) =

ˆ t

0

W i
vdW

j
v + B(vi, vj)t.

Assumption B. For v, w ∈ Cκ
0 (Ω,R), κ > 0 define

vt =

ˆ t

0

v ◦ φs ds and St =

ˆ t

0

ˆ s

0

v ◦ φrw ◦ φs drds.

Assume there is a p > 3, and for all v, w ∈ Cκ
0 (Ω,R) there isK = K(v, w, p) >

0 such that for all t ≥ 0

(Eµ|vt|2p)1/2p ≤ Kt1/2 and (Eµ|St|p)1/p ≤ Kt.

Now we state the main result.

Theorem 2. Suppose that Assumptions A and B hold with some p ∈ (3,∞]
and κ > 0. Further let a ∈ C1+,0(Rd ×M,Rd) and b ∈ Cα,κ

0 (Rd ×M,Rd) for
some α > 2 + 2

p−1
+ d

p
. Then

(i) The limit

B(v, w) = lim
n→∞

n−1

ˆ
Ω

ˆ n

0

ˆ s

0

v ◦ φrw ◦ φs drdsdµ

exists for all v, w ∈ Cκ
0 (Ω,R) and the resulting bilinear operator B :

Cκ
0 (Ω,R)× Cκ

0 (Ω,R)→ R is bounded and positive semidefinite.
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(ii) The drift and diffusion coefficients given by

ãi(x) =

ˆ
Ω

ai(x, y)dµ(y) +
d∑

k=1

B(bk(x, ·), ∂xkbi(x, ·)), i = 1, . . . , d,

(σ(x)σ(x)T )ij = B(bi(x, ·), bj(x, ·)) + B(bj(x, ·), bi(x, ·)), i, j = 1, . . . , d,

are Lipschitz.

(iii) The family of solutions xε to the ODE (1) converges weakly in the
supnorm topology to the unique solution X of the SDE

dX = ã(X)dt+ σ(X)dB, X(0) = ξ, (2)

where B is a standard Brownian motion in Rd.

(iv) Let v, w ∈ Cκ
0 (Ω,R). If the integral

´∞
0

´
Ω
v w ◦ φt dµdt exists, then

B(v, w) =

ˆ ∞
0

ˆ
Ω

v w ◦ φt dµdt.

The strategy is to prove a localized version of Theorem (2). Then, the
full result follows via a smooth cutoff of the drift and diffusion coefficients of
the SDE (2) and the repeated application of the portmanteau lemma.

12.3 Localized version

We say that a : Rd×M → Rd has compact support, if there exists an E > 0
such that a(x, y) = 0 for any |x| > E and y ∈M.

Theorem 3. Suppose that Assumptions A and B hold with some p ∈ (3,∞]
and κ > 0. Further, let a ∈ C1+,0(Rd ×M,Rd), b ∈ Cα,κ

0 (Rd ×M,Rd) for
some α > 2 + 2

p−1
+ d

p
, and suppose that a, b have compact support. Then the

conclusions from Theorem 2 hold.

The proof of Theorem 3 is split in three steps and makes use of rough
path theory, especially the theory of rough differential equations (RDEs).
One essential ingredient of the proof is the following result on existence,
uniqueness and continuous dependence of solutions to RDEs, see [2], Section
8.

76



Theorem 4. Let A,B be Banach spaces. Suppose that Vε : [0, T ]→ A,Wε :
[0, T ] → B are smooth paths, and that Wε(t) =

´ t
0
Wε ⊗ dWε is the iter-

ated Itô integral of Wε. Let γ ∈ (1
3
, 1

2
] and F ∈ C1+(Rd,L(A,Rd)), H ∈

C
1
γ

+(Rd,L(B,Rd)), where L denotes the space of continuous linear function-
als. Moreover, suppose that Xε solves the ODE

dXε = F (Xε)dVε +H(Xε)dWε, Xε(0) = ξ. (3)

If (Vε,Wε,Wε) →w (V,W,W) in the space C β,γ of (β, γ)-rough paths for all
β ∈ (1

2
, 1), then Xε →w X in the supnorm topology, where X solves the RDE

dX = F (X)dV +H(X)dW, X(0) = ξ, (4)

with W = (W,W).

The steps of the proof of Theorem 3 are

1. Reformulation of xε into a rough path framework and showing that xε
solves an ODE of the form (3).

2. Showing that xε converges weakly to the solution X of a RDE of the
form (4).

3. Rewriting the RDE (4) as the desired Itô SDE (2).

12.3.1 Rough path reformulation of the ODE (1)

Take A = C1+(Rd,Rd),B = Cθ(Rd,Rd) with θ > 2 + 2
p−1

and define the
smooth paths

Vε(t) =

ˆ t

0

a(·, yε(r))dr and Wε(t) = ε−1

ˆ t

0

b(·, yε(r))dr, t ∈ [0, T ],

and the multidimensional Dirac distribution operators F : Rd → L(A,Rd)
and H : Rd → L(B,Rd) by setting H(x)(u) = u(x). One proves by plugging
in the definitions

Lemma 5. Suppose that a and b are as in Theorem 3 and let Vε,Wε, F,H be
defined as above. Then F ∈ C1+(Rd,L(A,Rd)), H ∈ Cθ(Rd,L(B,Rd)) and
the solution xε of the ODE (1) satisfies the ODE

dxε = F (xε)dVε +H(xε)dWε, xε(0) = ξ. (5)

77



12.3.2 Convergence to the RDE (4)

Let Wε : [0, T ]→ B ⊗ B be the iterated integral of Wε

Wε(t) =

ˆ t

0

Wε ⊗ dWε = ε−2

ˆ t

0

ˆ r

0

b(·, yε(u))⊗ b(·, yε(r))dudr,

set Wε = (Wε,Wε) : [0, T ] → B × (B ⊗ B), and define the deterministic
element V ∈ C1([0, T ],A) by V (t) = āt with

ā =

ˆ
Ω

a(·, y)dµ(y) ∈ A.

Theorem 6. Assume the set up of Theorem 3. Then for any β ∈ (1
2
, 1) and

γ ∈ (1
3
, 1

2
− 1

2p
)

(a) the family (Vε,Wε)ε>0 is tight in C β,γ.

(b) Vε →w V in the space C β of β-rough paths.

(c) the family (xε)ε>0 is tight in C([0, T ],Rd), and every limit point X
satisfies the RDE

dX = F (X)ādt+H(X)dW, X(0) = ξ, (6)

where W is a limit point of (Wε)ε>0 in the space C γ of γ-rough paths.

Idea of the Proof. (a) Apply a standard Arcela-Ascoli argument in combina-
tion with estimates on the C β,γ-norm, that are based on the embedding of
Hölder spaces into Besov spaces.
(b) By ergodicity of µ it follows that πVε → πV in probability in C([0, T ],R)
for every π ∈ L(A,R). Proof by contradiction gives convergence in probabil-
ity in C β,γ, which in turn implies weak convergence.
(c) Assume (a) and apply Prokhorov’s theorem. After passing to a subse-
quence, we get weak convergence of (Vε,Wε) in C β,γ. Application of Theorem
4 and Lemma 5 in combination with (b) proves the claim.

12.3.3 Rewriting the RDE (4) as the SDE (2)

Let us partly characterize the limit points of (Wε)ε>0 first. Take an arbitrary
π ∈ L(B,Rm). Then it is πb ∈ Cκ

0 (Ω,Rm) and after a change of variables we
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have

(πWε, (π ⊗ π)Wε) =

(
ε

ˆ ε−2t

0

(πb) ◦ φsds, ε2

ˆ ε−2t

0

ˆ s

0

(πb) ◦ φr ⊗ (πb) ◦ φsdrds

)
.

By Assumption A, we see that (πWε, (π⊗π)Wε)→ (Wπb,Wπb), as ε→ 0, in
the sense of finite dimensional distributions, where Wπb is a Brownian motion
in Rm and Wπb is given by

Wij
πb(t) =

ˆ t

0

W i
πbdW

j
πb + B(πib, πjb)t. (7)

Lemma 7. Let W be any limit point of (Wε)ε>0 and let X be the solution
to the RDE (4) driven by W. Then X is a weak solution to the SDE (2).

Idea of the Proof. By [3] it is sufficient to solve the martingale problem
associated with the generator of the SDE (2). This is equivalent to showing
that for any ϕ ∈ C2(Rd,R) the process Mn

∆ given by

Mn+1
∆ = Mn

∆ + π1(X(tn))W (tn, tn+1) + (π2(X(tn))⊗ π3(X(tn)))W(tn, tn+1)

−
d∑

k=1

B(bk(X(tn), ·), ∂k(bi(X(tn), ·)∂iϕ(X(tn)))(tn+1 − tn),

is a martingale with respect to the filtration (Ftn)n generated by W : [0, T ]→
B × (B ⊗ B). Here ∆ = (tn)n is a partition of [s, t] ⊂ [0, T ], and π(x) =
(π1(x), π2(x), π3(x)) ∈ L(B,R3) with π1(x) = ∂iϕ(x)H i(x), π2(x) = Hk(x),
π3 = ∂k(∂iϕ(x)H i(x)). Thus, the martingale property of Mn

∆ is a consequence
of the fact that

(π1(x)W, (π2(x)⊗ π3(x))W)
dist
= (Wπ1(x)b,Wπ2(x)bπ3(x)b)

with Wπ1(x)b a Brownian motion in R and Wπ2(x)bπ3(x)b defined analogous to
(7).

Now we are ready for the
Proof of Theorem 3. By Theorem 6, any solution xε of the ODE (1) converges
weakly along subsequences to a solution X of the RDE (4), which is a unique
weak solution of the SDE (2) by Lemma 7. Thus, all subsequences converge
to the same limit. The formula for B follows by taking the expectation value
in Assumption A and applying Assumption B to obtain convergence.
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13 A signed measure on rough paths associ-

ated to a PDE of high order: results and

conjectures

after D. Levin, T Lyons [1].
A summary written by Gennady Uraltsev.

Abstract
This paper presents an attempt of defining a measure on the path

space associated to the diffusion process governed by a higher order
constant coefficient differential operator.

This approach is a generalization of the construction of the measure
associated to the Laplacian, and thus to the heat semigroup, that
yields the classical Wiener measure on the path space of the Brownian
motion.

Generalizing this approach to higher order differential operators
presents significant difficulties because for general differential opera-
tors the measure induced on the path space is not positive tends to
have locally infinite total variation. Herein we construct a measure
defined on piecewise linear paths subordinate to a given time parti-
tion.

We then show that when the mesh of the partitions go to zero
the measures converge in a weak sense when evaluated against test
functions consisting of iterated integrals of the paths.

In particular this allows one to calculate the expectation of the
signature of a “random” path and suggests that the distributional limit
may be actually be a measure on the path space of unparameterized
paths (the path space quotiented by reparameterization.)

13.1 Motivation in the case of the Laplacian

Consider the heat equation on [0, T ]×Rd i.e. the diffusion equation associated
with the Laplacian operator on Rd:

∂tf(t, x)− 1

2
∆xf(t, x) = 0.

It is a well known fact that the solution for initial data f(0, x) = f0(x) ∈ S(R)
is given by the diffusion semigroup

f(t, x) = e
t
2

∆f0(x)
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where the action of the semigroup is given by the convolution with a Schwartz

kernel φt(x) := 1
(2πt)d/2

e−
|x|2
2t :

S(t)f0(x) = e
t
2

∆f0(x) =

ˆ
Rd
f(x′)φt(x− x′)dx′

S(t)S(s)f0(x) = φt ∗ φs ∗ f0(x) = φt+s ∗ f0(x) = S(t+ s)f0(x) (1)

where the second entry encodes the semigroup property.
The kernel φt is a normalized positive function and as such is a density of

a probability measure on Rd. Kolmogorov’s Extention Theorem allows us to

define a probability measure on the product measure space
((

Rd
)[0,T ]

, E [0,T ]
)

that is naturally associated to the semigroup generated by setting

µ(CA1...An
t1...tn ) =

˚
A1×···×An
φt1(x1)φt2−t1(x2 − x1) . . . φtn−tn−1(xn − xn−1)dx1 . . . dxn

(2)

for cylindrical sets

CA1...An
t1...tn :=

{
(xt)t∈[0,T ] ∈

(
Rd
)[0,T ]

: xti ∈ Ai ∀i ∈ {1, . . . , n}
}
.

Furthermore we can restrict the measure to the Wiener path space of con-
tinuous functions

C0 = {f ∈ C ([0, T ]) : f(0) = 0}

thanks to Kolmogorov’s Continuity Theorem that relies on some integrability
conditions on the kernels φt. This construction effectively yields the Wiener
measure, that is the law of the Brownian motion.

13.2 Generalities of higher order differential operators

A constant coefficient differential operator on Rd is an operator of the form

L :=
∑
I

aI∂
I =

∑
I=(i1...,id)

a(i1,...,id)∂
i1
1 . . . ∂idd aI ∈ R; (3)

we consider operators with real coefficients such that a0...0 = 0 i.e. without
the constant term. The degree of L is given by

degL := max (|I| = |i1|+ . . . |id| : aI 6= 0) .
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Let S(Rd) be the set of Schwartz function and f 7→ f̂ , f 7→ f̌ : S(Rd) 7→
S(Rd) be the Fourier transform and its inverse respectively. The operator L
acts on S(Rd) as a multiplier operator

Lf(x) =
(
P (ξ)f̂(ξ)

)∨
(x) P (ξ) =

∑
I

aI (2πiξ)I =
∑
I

aI (2πiξ1)i1 . . . (2πiξd)
id .

We require weak growth condition on the multipliers.

Definition 1 (Minimal growth condition). A polynomial P (ξ) satisfies the
minimal growth condition if

P (ξ)→ +∞ as |ξ| → ∞ (4)

Similarly to the case with the heat equation the solution of the diffusion
equation {

∂f(t, x) + Lf(t, x) = 0 on [0, T ]× Rd

f(0, x) = f0(x) ∈ S(Rd)
(5)

is given by the semigroup t ∈ [0, T ] 7→ e−tL operating continuously on S(Rd)
via two equivalent definitions

e−tLf(x) =
(
e−tP (ξ)f̂(ξ)

)∨
(x) e−tLf(x) = 1 +

∞∑
n=1

(−t)nLn

n!
. (6)

The minimal growth condition (4) guarantees that for t > 0 the Schwartz
kernel

φt(x) =
(
e−tP (ξ)

)∨ ∈ S(Rd) (7)

is actually an element of S(Rd) and thus the action of the semigroup is given
by the convolution i.e. (1) still holds.

The crucial analytic result states that the semigroup e−tL actually acts
on all polynomials.

Proposition 2. Suppose that L is a constant coefficient differential operator
satisfying the minimal growth condition (4). Then the semigroup t 7→ e−tL

acts on the space of polynomials of degree up to N ≥ degL for an arbitrarily
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large N . In particular for all t ∈ (0, T ) and any polynomial p(x) the pointwise
identity

∞∑
n=0

(−tL)n

n!
p(x) = φt ∗ p(x) :=

ˆ
Rd
p(x− x′)φt(x′)dx′

holds and the generator of the action of the semigroup is −L i.e.

lim
t→0

e−tLp(x)− p(x)

t
= −Lp(x)

where the limit is pointwise and in norm for any norm that is finite on
polynomials up to a fixed degree.

13.3 Random paths and the main result

Unlike in the case of L = −1
2
∆ the defining equality for the finite-dimensional

marginal distributions cannot be extended to a measure on
(
Rd
)[0,T ]

. Thus
the approach to defining a measure on the path space via Kolmogorov’s
Extention Theorem is precluded.

We proceed by a cubature technique i.e. we approximate the measure by
a sequence of measures supported on a simpler subset of the path space.

Let D = (t0, t1, . . . , tn, tn+1) with 0 = t0 < t1 < · · · < tn < tn+1 = T be a
partition of the interval [0, T ] and we indicate by

#D := max
i∈{0,...,n}

|ti+1 − ti|

the mesh of the partition. We work with the set of piecewise linear paths
PLD[0, T ] i.e. paths that are of the form

γ(t) =
(t− ti)γi+1 − (t− ti+1)γi

ti+1 − ti
for t ∈ [ti, ti+1] (8)

where γi ∈ Rd i ∈ {0, . . . , n + 1}. We denote the bijection from
(
Rd
)n+1

to
PLD[0, T ] via πD : (γ0, . . . , γn+1) 7→ γ with γ defined in (8). Equation (2)
then defines a signed finite measure µD on

(
Rd
)n

and we indicate

PD = µD ◦ π−1
D

the signed finite measure on PLD[0, T ].
The following weak convergence result result holds.
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Theorem 3 (Expectation of the signature). Let X(γ) be the signature of a
path γ then as we refine the partition D the following convergence result holds

lim
#D→0

E (X) = lim
#D→0

ˆ
PLD[0,T ]

X(γ)dµD(γ) = exp

(
−
∞∑
n=0

L(x⊗ · · · ⊗ x︸ ︷︷ ︸
n times

)

)
.

We recall that the signature of a path γ is an element X[0,T ](γ) of the
infinite tensor algebra

T (Rd) =
∞⊕
n=0

(
Rd
)⊗n

given by the iterated integrals

X[0,T ](γ) = 1 +
∞∑
n=1

X(n)
[0,T ](γ) X(n)

[0,T ](γ) =

˚
∆n[0,T ]

dγ(t1)⊗ . . . dγ(tn) (9)

∆n[0, T ] = {(t1, . . . , tn) ∈ [0, T ]n : t1 < · · · < tn}.

This quantity is well defined for Lipschitz paths and on PLD[0, T ] the sig-
nature is a polynomial expression in (γ0, . . . , γn+1). As an example it is
straight-forward to compute that for an affine path γ(t) = (1 − t

T
)γ0 + t

T
γ1

the signature is given by

Xn
[0,T ](γ) =

(γ1 − γ0)⊗n

n!
:=

1

n!
(γ1 − γ0)⊗ (γ1 − γ0)︸ ︷︷ ︸

n times

Another crucial algebraic property of the signature is Chen’s relation:

Theorem 4 (Chen’s rule). The signature is multiplicative under concatena-
tion i.e. for S < U < T one has [2]

X[S,T ](γ) = X[S,U ](γ)⊗ X[U,T ](γ) =
∞∑
n=0

∑
m+l=n

X(m)
[S,U ](γ)⊗X(l)

[U,T ](γ). (10)

13.4 Remarks and open problems

It is interesting to note that is L = −1
2
∆ as we saw in Section 13.1 i.e. when

the measures PD are the finite dimensional distributions of the Brownian
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motion law, Theorem 3 recovers the result of Fawcett [3] or Lyons-Victoir
[4]:

E(X(γ)) = exp

(
1

2

d∑
1

ei ⊗ ei

)
(ei)i∈{1,...,d} basis of Rd.

Some open problems are:

1. The signature (9) is also defined for p rough paths. Can a result similar
to 3 hold on the space of rough paths of a given regularity? We have
already noticed that µD cannot be extended to a unique measure on
the Wiener space. However we know that the signature X is are repa-
rameterization invariant. Possibly µD can be extended to the quotient
space of parameterization-free rough paths.

2. More weakly, can the measure µD on the signature as a subset of the
tensor algebra T (Rd) be extended to a measure on the whole (or pos-
sibly truncated) tensor algebra?

3. Since the adopted approach relies on cubature, does it have possible
application to numerical methods?
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14 The partial sum process of orthogonal ex-

pansion as geometric rough process with

Fourier series as an example—an improve-

ment of Menshov-Rademacher theorem

after T. Lyons and D. Yang [2]
A summary written by Dominique Maldague

Abstract

The Menshov-Rademacher theorem gives a sufficient condition for
the almost everywhere existence of general orthogonal series in L2.
Under the same condition, the authors prove that the partial sum pro-
cess of orthogonal series is a geometric 2-rough process. Since being a
geometric 2-rough process implies the almost everywhere convergence
of the series, this improves the Menshov-Rademacher theorem. The
condition can be improved for Fourier series, and an equivalent condi-
tion on the limit function is identified. We summarize their results.

14.1 Introduction

The collection {un}∞n=0 is said to be an orthonormal system in L2, if there
exist measure space (Ω,F , µ) and Hilbert space (V , 〈·, ·, 〉), such that for each
n ∈ N un : (Ω,F , µ)→ (V , 〈·, ·, 〉) and

ˆ
Ω

〈un(ω), um(ω)〉µ(dω) = δmn ∀n,m ∈ N.

Definition 1. Suppose {w(n)}∞n=0 is a sequence of positive non-decreasing
numbers. {w(n)} is said to be a Weyl multiplier for property p if p holds for
all orthogonal series

∑∞
n=0 cnun for any orthonormal system {un} in L2 and

any sequence of numbers {cn} satisfying
∑∞

n=0 w(n)|cn|2 <∞.

Menshov [3] and Rademacher [4] independently proved that the exact
Weyl multiplier for almost everywhere convergence of general orthogonal se-
ries is (log2(n+ 1))2, which is the classical theorem stated below.

Theorem 2. (Menshov −Rademacher) The orthogonal series
∑∞

n=0 cnun
converges almost everywhere, for any {un}∞n=0 ∈ L2 and any sequence of

88



numbers {cn}∞n=0 satisfying
∑∞

n=0(log2(n + 1))2|cn|2 < ∞. Furthermore,
(log2(n+1))2 cannot be replaced by o(log2(n+1))2 and there exists an absolute
constant C such that

ˆ
Ω

max
0≤i≤j<∞

‖
j∑
n=i

cnun‖2µ(dω) ≤ C

∞∑
n=0

(log2(n+ 1))2|cn|2. (1)

Let X denote the partial sum process of
∑∞

k=0 cnun, i.e. a process indexed
by N where for each ω ∈ Ω we define

Xω(n) :=
n∑
k=0

ckuk(ω), ∀n ∈ N.

In the following, we often write X(n) for Xω(n) for ease in notation. The
integrand appearing in ((1)) is the ∞-variation squared of the path Xn(ω)
indexed by N. More generally, for any α : N → V , we can define the p-
variation as

‖α‖p−var := sup
N≥1

(
sup

0≤k0<···<kn≤N

n−1∑
j=0

‖α(kj + 1)− α(kj)‖p
)1/p

.

For fixed α, the function p 7→ ‖α‖p−var is nonincreasing on p ∈ [1,∞],
so ‖α‖∞−var ≤ ‖α‖2−var. A. Lewko and M. Lewko [1] strengthened the
Menshov-Rademacher theorem by replacing ‖X‖∞−var by ‖X‖2−var in (1).

14.2 Geometric 2-rough norm

The authors improved the result of A. Lewko and M. Lewko by strengthening
the norm that appears in the integrand in (1). To define this stronger norm,
we introduce the following.

For u, v ∈ V , denote [u, v] := u ⊗ v − v ⊗ u, with ⊗ the tensor product.
Assume the norm on tensor products satisfies (up to a universal constant)

‖u⊗ v‖ ≤ ‖u‖‖v‖, ∀u, v ∈ V .

Denote V⊗2 as the completion of {
∑n

i=1 ui⊗vi|ui, vi ∈ V , n ≥ 1} with respect
to the norm selected.
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Definition 3. Suppose γ : N → V. Define the area of γ, A(γ) : {(i, j) : i ≤
j} → V⊗2 by setting

A(γ)(k1, k2) = 0, when k2 = k1 or k1 + 1,

and when k2 ≥ k1 + 2,

A(γ)(k1, k2) := 2−1
∑

k1≤j1<j2≤k2−1

[γ(j1 + 1)− γ(j1), γ(j2 + 1)− γ(j2)].

The area form satisfies what the authors call a multiplicativity property:
for 0 ≤ k1 ≤ k2 ≤ k3 <∞,

A(γ)(k1, k2) = A(γ)(k1, k2) + A(γ)(k2, k3) (2)

+
1

2
[γ(k2)− γ(k1), γ(k3)− γ(k2)].

Definition 4. If γ is a path indexed by N, and A(γ) is the associated area,
then γ is a geometric 2-rough path if

‖(γ,A(γ))‖G(2) :=
(
‖γ‖2

2−var + ‖A(γ)‖1−var
)1/2

<∞.

The motivation for the definition of the geometric 2-rough norm comes
from rough path theory: ‖X‖G(2) <∞ is a sufficient condition to give mean-
ing to a stochastic differential equation controlled by X (see [5] for details).

14.3 Main results

Theorem 5 (Lyons–Yang ’13). The partial sum process of
∑

n cnun, when
enhanced by its area process, is a geometric 2-rough process (denotes as X) for
any orthonormal system {un} ∈ L2 satisfying

∑∞
n=0(log2(n+ 1))2|cn|2 <∞.

Moreover, (log2(n+ 1))2 cannot be replaced by o((log2(n+ 1)))2, and

ˆ
Ω

‖Xω‖2
G(2)µ(dω) ≤ 121

∞∑
n=0

(log2(n+ 1))2|cn|2. (3)

Note that this is an improvement on the work of A. Lewko and M. Lewko
because of the addition of the 1-variation of the area which appears in the
geometric 2-rough norm. It is thus important to realize that the area term
is not controlled by the 2-variation of the path; see Example 40 in [5] for
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a sequence of paths with vanishing 2-variation and unbounded area. Also,
since area vanishes in the 1-dimension, this is only an improvement in the
multidimensional case.

For specific orthonormal systems, the Weyl multiplier for a.e. convergence
can be strengthened. As such, we restrict our attention to orthonormal sys-
tems which satisfy the following property (which includes Fourier systems).

Definition 6. {un} ∈ L2 is said to have the Hardy property with constant
C, if for any sequence of numbers {an}∞n=0 satisfying

∑∞
n=0 |an|2 <∞,

ˆ
Ω

sup
0≤i≤j<∞

∥∥∥∥∥
j∑
k=i

akuk(ω)

∥∥∥∥∥µ(dω) ≤ C

(
∞∑
n=0

|an|2
)
.

Theorem 7. Suppose {un} ∈ L2 has the Hardy property with constant C.
Then, for {cn} satisfying

∑
n log2(n+1)|cn|2 <∞, the partial sum process of∑

n cnun, when enhanced by its area process, is a geometric 2-rough process
(denoted as X). Moreover,

ˆ
Ω

‖Xω‖2
G(2)µ(dω) ≤ (604 + 26C)

∞∑
n=0

log2(n+ 1)|cn|2. (4)

14.4 Decomposition into local and long-time behavior

In the proof of Theorem 5, the authors use the same basic technique as is
used by A. Lewko and M. Lewko in [1], and as appears in the proof of the
Menshov-Rademacher theorem: decompose the partial sum process into a
part encoding long range displacement and a part which tracks variation on
a prescribed local scale.

Lemma 8. Suppose γ : N → V is a continuous path, and {mn}∞n=0 is a
sequence of strictly increasing integers satisfying limn→∞mn = +∞. Define
γ1 : N→ V as γ1(n) := γ(mn), ∀n ∈ N. Then

‖γ‖2
2−var ≤ 3

(
‖γ‖2

2−var,[0,m0] +
∞∑
n=0

‖γ‖2
2−var,[mn,mn+1] + ‖γ1‖2

2−var

)
,

and ‖A(γ)‖1−var ≤ ‖γ‖2
2−var + ‖A(γ)‖1−var,[0,m0]

+
∞∑
n=0

‖A(γ)‖1−var,[mn,mn+1] + ‖A1(γ)‖1−var.
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We control the variation on a finite interval [mk,mk+1] using the following
lemma.

Lemma 9. Suppose X is the partial sum process of
∑n

k=0 cnun, then,

ˆ
Ω

‖Xω‖2
2−var,[0,n]µ(dω) ≤ 8(log2(n+ 1))2

n∑
k=1

|ck|2. (5)

If we define Xk : {0, 1, . . . ,mk+1−mk} → V by Xk(n) = X(mk +n), then
we conclude from the lemma that

ˆ
Ω

‖Xk(ω)‖2
2−var,[0,mk+1−mk]µ(dω) ≤ 8(log2(mk+1 −mk + 1))2

mk+1∑
n=mk

|cn|2

Choosing mk = 2k imples that log2(mk+1 − mk + 1) ≤ log2(n + 1) for n ∈
[mk,mk+1], so we obtain the desired upper bound

∑mk+1

n=mk+1(log2(n+1))2|cn|2.
For the area term on [mk,mk+1], we use the multiplicativity (2) property to
translate the local 1-variation of the area to the local 2-variation of the path.

The long-term process X1 from Lemma 8 with mk = 2k is the partial sum
process of

∑∞
k=1 akvk(ω) where

ak =

√√√√ 2k+1∑
n=2k+1

|cn|2 and vk =
1

ak

2k+1∑
n=2k+1

cnun.

Since
∑∞

k=0 k
2|ak|2 ≤

∑∞
k=0

∑2k+1

n=2k+1(log2(n + 1))2|cn|2, it remains to prove
(3) with w(n) = (log2(n + 1))2 replaced by w(n) = n2. One way we exploit
this extra room in the upper bound is as follows: (using

∑
n

1
w(n)

<∞)

‖A(X1)‖1−var ≤
∑

1≤i<j<∞

‖aivu‖‖ajvj‖ =
∞∑
i=1

∞∑
j=i+1

w(i)
‖aivu‖
w(j)

w(j)
‖ajvj‖
w(i)

≤
∞∑
i=1

∞∑
j=i+1

w(i)w(j)

2

(
‖aivu‖2

w(j)2
+
‖ajvj‖2

w(i)2

)

≤
∞∑
i=1

(
∞∑
j=1

1

w(j)

)
w(i)‖aivu‖2 = K

∞∑
i=1

w(i)‖aivi‖2.

92



14.5 Further results

The authors give an equivalent condition for Fourier coefficients to satisfy∑∞
n=0 log2(n+ 1)|cn|2 <∞, which involves defining the Sobolev space Hs

Log.
In Theorem 7, log2(n + 1) is not an exact Weyl multiplier for being a

geometric 2-rough process. The authors construct an L2 Fourier series that is
a geometric 2-rough process with nontrivial area term, but whose coefficients
satisfy

∑
nw(n)|cn|2 =∞ for w(n) increasing faster than (log2 log2(n+ 1))2.

Finally, the authors construct an L2 Fourier series whose partial sum process
has infinite 2-variation almost everywhere.

References

[1] Lewko, A., Lewko, M., Estimates for the square variation of partial sums
of Fourier series and their rearrangements, J. Funct. Anal., 262(6), 2561-
2607, (2012).

[2] Lyons, T. and Yang, D., The partial sum process of orthogonal expan-
sions as geometric rough process with Fourier series as an example of
an improvement of Menshov-Rademacher theorem, J. Funct. Anal. 265
(2013), no. 12, 3067-3103.

[3] Mensov, D., Sur les s??eries de fonctions orthogonales, Fund. Math., 4,
82-105 (1923).

[4] Rademacher, H., Einige S??atze ??uber Reihen von allgemeinen Orthog-
onal funktionen, Ann. Math., 87, 112-138, (1922).

[5] Yang, D., Notes on Area Operator, Geometric 2-Rough Path and Young
integral when 1

p
+ 1

q
= 1, Int. J. Math. Anal., 35(6), 1717-1746, (2012)

Dominique Maldague, University of California, Berkeley
email: dmaldague@berkeley.edu

93



15 Paracontrolled distributions and singular

PDEs

after M. Gubinelli, P. Imkeller, and N. Perkowski [1].
A summary written by Immanuel Zachhuber

Abstract

We give a brief introduction of the theory of paracontrolled distribu-
tions, which combines the study of the paraproduct, a way of defining
multiplication between functions and distributions, and rough path
theory(more precisely, the theory of controlled paths), which provides
the concept of path-wise defined stochastic integrals and solutions to
S(P)DEs.

15.1 Introduction

We want to analyse Stochastic Differential Equations like

du = F (u)dB

u(0) = u0,

where B is a standard Brownian Motion and u0 is an initial datum. The
usual way to approach this kind of problem would be via the Ito integral.
Alternatively, one can define a pathwise solution via the theory of Rough
Paths if one controls some higher order terms (see [2]). However, we follow
a different approach, we reformulate the SDE in a “classical”sense

∂tu = F (u)ξ

u(0) = u0,

except that ξ, which is called white noise, is only a distribution. More
precisely, almost every path of the Brownian Motion has regularity Cα for
α < 1/2, the paths of the white noise have regularity Cα−1. The Besov-Hölder
spaces, Cα, which coincide with the usual Hölder spaces for α > 0, will be
introduced below. Since one can in general not multiply distributions, we
introduce the paraproduct, which allows us to multiply distributions with
certain Besov-regularity. The standard result for the paraproduct is that one
can multiply two distributions µ ∈ Cα and ν ∈ Cβ if α+ β > 1. Some further
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analysis is required, since if we assume ξ to be white noise, we can only ex-
pect the solution u to have regularity α < 1/2, so the sum of the regularities
is 2α− 1 < 0. To overcome this we will need some further mild assumptions.
The theory of paracontrolled distributions is an extension of the theory of
Rough Paths(more precisely Controlled Paths) in the sense that it allows us
to define and analyse path-wise solutions to Stochastic PDEs, for which Ito-
Calculus and Rough Path theory are insufficient. An alternative approach to
pathwise solutions to (singular) SPDEs is the theory of Regularity Structures,
see [4].

15.2 Preliminaries

We begin by introducing the concept of the paraproduct, as well as the low-
regularity spaces we are interested in, which are a type of Besov space. We
briefly introduce some concepts from Littlewood-Paley theory.

Definition 1. Let χ, ρ ∈ C∞c (Rd) be nonnegative radial functions such that

(i) The support of χ is contained in a ball and the support of ρ is contained
in an annulus.

(ii) χ(z) +
∑∞

j=0 ρ(2−jz) = 1 for every z ∈ Rd.

(iii) supp(χ) ∩ supp(ρ(2−j·)) = ∅ for every j ≥ 1 and supp(ρ(2−i·)) ∩
supp(ρ(2−j·)) = ∅ for |i− j| > 1

We call this a dyadic partition of unity. Furthermore we set

ρ−1 := χ and ρj := ρ(2−j·) for j ≥ 0.

We now define the Littlewood-Paley as

∆−1 := F−1χF and ∆j := F−1ρjF for j ≥ 0.

Then, for any tempered distribution u ∈ S ′, we get ∆ju = Kj ∗u where Kj =
F−1ρj for all j ≥ −1,

∑∞
j=−1 ∆ju = u in S ′ and in particular ∆ju is a

smooth function for every j ≥ −1.
Lastly we introduce the Besov spaces

Bα
p,q(Rd;Rn) :=

u ∈ S ′(Rd;Rn) : ||u||Bαp,q :=

(
∞∑

j=−1

(2jα||∆ju||Lp)q
)1/q

<∞


95



for α ∈ R, p, q ∈ [1,∞] with the obvious modification for q = ∞. We call
Cα := Bα

∞,∞ the Besov-Hölder spaces. Analogously we can define everything
on the d−dimensional torus, Td.

The proof of existence of a dyadic partition of unity can for example be
found in [3]. Next we state a simple but useful regularity result.

Lemma 2. (i) Let A be an annulus, let α ∈ R and let uj be a sequence of
smooth functions, such that Fuj have support in 2jA and which satisfy
||uj||∞ . 2−jα for all j. Then

u =
∑
j≥−1

uj ∈ Cα and ||u||α . sup
j≥−1
{2jα||uj||∞}.

(ii) Let B be a ball, let α > 0 and let uj be a sequence of smooth functions,
such that Fuj have support in 2jB and which satisfy ||uj||∞ . 2−jα for
all j. Then

u =
∑
j≥−1

uj ∈ Cα and ||u||α . sup
j≥−1
{2jα||uj||∞}.

15.3 Paracontrolled calculus

15.3.1 The paraproduct

In terms of our Littlewood-Paley decomposition we can (formally) decompose
the product of two distributions f and g

fg =
∑
j≥−1

∑
i≥−1

∆if∆jg =: f ≺ g + f � g + f ◦ g,

where we define

f ≺ g = g � f :=
∑
j≥−1

j−2∑
i=−1

∆if∆jg and f ◦ g :=
∑
|i−j|≤1

∆if∆jg

and we call f ≺ g and f � g paraproducts, which are the off-diagonal sum-
mands, and f ◦ g, which are the diagonal terms in the sum, the resonant
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part.
Furthermore we introduce the notations

f 4 g := f ≺ g + f ◦ g and Sjf :=

j−1∑
i=−1

∆if.

A crucial observation is that the Fourier transform of each summand in the
paraproduct f ≺ g has support in a suitable annulus and the Fourier trans-
form of each summand in f ◦ g has support in a suitable ball.
We state some simple bilinear estimates for the paraproducts, which are es-
sentially applications of Lemma 2.

Lemma 3. For any β ∈ R the following holds

(i) ||f ≺ g||β .β ||f ||∞||g||β

(ii) if in addition α < 0,
||f ≺ g||α+β .α,β ||f ||α||g||β.

(iii) For α + β > 0 we have
||f ◦ g||α+β .α,β ||f ||α||g||β

15.3.2 Paracontrolled distributions and RDEs

Consider a Rough Differential Equation(RDE) of the form

∂tu = F (u)ξ u(0) = u0, (1)

where u0 ∈ Rd, u : R → Rd is a continuous vector-valued function, ξ : R →
Rn is a vector-valued distribution with values in Cα−1 for some α ∈ (1/3, 1)
and F : Rd → L(Rn;Rd) is a family of vector fields. A natural approach is
to see this as the limit of classical ODEs

∂tu
ε = F (uε)ξε uε(0) = u0, (2)

where the ξε denotes some smooth approximation such that ξε → ξ in Cα−1.
In order to pass to the limit, we need some a priori estimates for the solution,
which only depend on the α−1 norm of ξε. For ease of notation we will drop
the ε even though we will work with the regularised solutions.
We expect u to have Cα regularity, since it should gain one derivative com-
pared with F (u)ξ, which can not be more regular than ξ, so Cα−1. Moreover,
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assuming F is sufficiently smooth, F (u) will also have regularity Cα. Thus we
can decompose the right hand side of (1) in three terms with the folllowing
regularities(using Lemma 3)

F (u) ≺ ξ︸ ︷︷ ︸
α−1

+F (u) ◦ ξ︸ ︷︷ ︸
2α−1

+F (u) � ξ︸ ︷︷ ︸
2α−1

. (3)

Note, however, that unless 2α− 1 > 0, we can not bound the resonant term
F (u) ◦ ξ by the α norm of u and the α− 1 norm of ξ. If F ∈ C2 we can use
a paralinearisation result(Lemma 5) to rewrite this term as

F (u) ◦ ξ = F ′(u)(u ◦ ξ) + ΠF (u, ξ), (4)

where the remainder term ΠF (u, ξ) is well-defined as long as 3α > 1, u ∈ Cα
and ξ ∈ Cα−1. In this case it belongs to C3α−1. The problem now is to make
sense of the resonant term u ◦ ξ. As a next step, we want to use the fact that
the solution u has a specific structure, thus we postulate that u is given by
the following paracontrolled ansatz :

u = uϑ ≺ ϑ+ u],

where uϑ, θ ∈ Cα and the remainder u] is in C2α. Note the similarity to the
theory of Controlled Paths, see [2]. Inserting this ansatz, we obtain

u ◦ ξ = (uϑ ≺ ϑ) ◦ ξ + u] ◦ ξ = uϑ(ϑ ◦ ξ) + C(uϑ, ϑ, ξ) + u] ◦ ξ, (5)

where the commutator is defined as C(uϑ, ϑ, ξ) := (uϑ ≺ ϑ) ◦ ξ − uϑ(ϑ ◦ ξ)
and has C3α−1 regularity under the above assumptions, see Lemma 4 below.
Note that the term u] ◦ ξ causes no further problems, since it is bounded in
C3α−1. The only remaining problematic term is ϑ ◦ ξ. For this term we have
to assume that it has regularity C2α−1. Note again the parallel to the theory
of Controlled Paths, where we need control of the second order “iterated
integrals”, see [2]; see section 3.4 of [1] to see the equivalence of the two.
With all this in hand, we find that the right-hand side of (1) is well-defined
and a continuous function of (u, uϑ, u], ϑ, ξ, ϑ ◦ ξ).
If we now insert the paracontrolled ansatz into (1) we obtain

∂tu = ∂t(u
ϑ ≺ ϑ+ u]) = ∂tu

ϑ ≺ ϑ+ uϑ ≺ ∂tϑ+ ∂tu
] (6)

98



if we moreover choose ϑ s.t. ∂tϑ = ξ and set uϑ = F (u) we get the following
equation for the remainder u]

∂tu
] =F ′(u)F (u)(ϑ ◦ ξ) + F (u) � ξ − (∂tF (u) ≺ ϑ)+ (7)

+ F ′(u)F ′(u)C(F (u), ϑ, ξ) + F ′(u)(u] ◦ ξ) + ΠF (u, ξ). (8)

This, together with the equation u = F (u) ≺ ϑ+u], allows us to establish an a
priori estimate for the solution u in terms of the data (u0, ||ξ||α−1, ||ϑ◦ξ||2α−1).
We state the full result below in Theorem 6.

15.3.3 Commutator estimates and paralinearisation

Lemma 4. Let α ∈ (0, 1), β, γ ∈ R s.t. α + β + γ > 0 but β + γ < 0. Then
for smooth f, g, h the trilinear operator

C(f, g, h) = ((f ≺ g) ◦ h)− f(g ◦ h)

is bounded in the following sense

||C(f, g, h)||α+β+γ . ||f ||α||g||β||h||γ

Thus C can be uniquely extended to a bounded trilinear operator in L3(Cα ×
Cβ × Cγ; Cα+β+γ).

Lemma 5. Let α ∈ (0, 1), β ∈ (0, α], and γ ∈ R s.t. α + β + γ > 0

but α + γ < 0. Let F ∈ C
1+β/α
b . There exists a locally bounded map ΠF :

Cα × Cγ → Cα+β+γ such that

F (f) ◦ g = F ′(u)(f ◦ g) + ΠF (f, g)

for all f ∈ Cα and smooth g.

15.4 Rough Differential equations

We state the final result for RDEs. Strictly speaking we need some slightly
technical localisation results, but we will gloss over them here.

Theorem 6. Let α > 1/3. Assume (ξε)ε is a family of smooth functions
with values in Rn, (uε0)ε is a family of initial conditions in Rd and F is a
family of C3

b vector fields. Suppose there exist limits (u0, ξ, ϑ, η) such that
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(uε0, ξ
ε, ϑε, (ϑε ◦ ξε)) → (u0, ξ, ϑ, η) in R × Cα−1 × Cα × C2α−1, where ϑε and

ϑ are solutions to ∂tϑ
ε = ξε and ∂tϑ = ξ respectively. Let for ε > 0, the

function uε be the unique global solution to

∂tu
ε = F (uε)ξε uε(0) = uε0. (9)

Then there exists u ∈ Cαloc s.t. uε → u in Cαloc as ε→ 0. The limit depends on
the data (u0, ξ, ϑ, η) but not on the approximation family.
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16 The Nash-Moser theorem and paradiffer-

ential operators

after L. Hörmander [2]
A summary written by Polona Durcik

Abstract

The theorems of Nash-Moser type play an important role in the
theory of non-linear PDEs. The paper in question discusses a related
approach for proving existence theorems for some non-linear PDEs. It
replaces the Nash-Moser technique by non-linear functional analysis
combined with the paradifferential calculus.

16.1 Introduction

The paper [2] consists of two parts. In the first part, paradifferential operators
in the spirit of Bony [1] are used to prove a version of the isometric embedding
theorem. The isometric embedding theorem is due to Nash [3]. In the second
part of the paper, this approach is put into an abstract setting of the same
generality as the first versions of Nash-Moser techniques.

16.2 The isometric embedding problem

Let M be a compact smooth Riemannian manifold of dimension n. The
question is to find for some large N an isometric embedding

u : M → RN .

This problem was first solved by Nash [3], who reduced it to the following
perturbation problem.

By a suitable embedding of M into a torus we may assume that M is
the torus (R/Z)n, which allows us to use global coordinates on M . Let u0

be a smooth embedding of M into RN which is free, that is, such that the
derivatives

∂u0/∂xj, ∂2u0/∂xj∂xk 1 ≤ j ≤ k ≤ n,

are linearly independent. Such an embedding exists provided N is large
enough. The problem of finding an isometric embedding of M is then reduced
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to showing that if % is large enough and g ∈ C%+1
∗ is given, periodic with values

in R(n+1
2 ), one finds u ∈ C%+1

∗ periodic with values in Rn such that

Φ(u+ u0) = Φ(u0) + g, (1)

where Φ(v) is the pullback |dv|2 of the Euclidean metric in RN by v. We say
that u belongs to C%

∗ = C%
∗ (Rn), % > 0, if

sup
k≥−1

2k%‖uk‖L∞ <∞, (2)

where uk are defined on the Fourier side by û−1 := ϕû, ûk := ψ(2−k·)û if
k ≥ 0, and ϕ ∈ C∞0 (Rn) is supported in the unit ball and is equal to 1 in the
concentric ball with radius 1/2, ψ(ξ) = ϕ(2−1ξ)−ϕ(ξ). We use (2) to define
the C%

∗ -norm. If % is not an integer, C%
∗ is the Hölder class C% (the class of

b%c-times continuously differentiable functions u which are bounded and their
derivatives up to order b%c are bounded, and for |σ| = b%c, Dσu is Hölder
continuous with exponent % − b%c). If % is an integer, C%

∗ is strictly larger
than the class of %-times continuously differentiable functions, bounded with
bounded derivatives.

We return to the equation (1). Let ϕ, ψ be as above. Define the function

χ(ξ, η) :=
∞∑
k=1

ϕ(ξ22−k)ψ(η2−k)

and write aχ(x, η) for the inverse Fourier transfor of â(ξ)χ(ξ, η) with respect
to ξ. For a ∈ C%

∗ define the following paramultiplication by a:

Tau(x) =

ˆ
e−2πix·ηaχ(x, η)û(η)dη, u ∈ S.

Then Ta is continuous from Cσ
∗ to Cσ

∗ for every σ and depends linearly on
a. Note that Ta depends on the choice of χ. However, the difference be-
tween operators with different choices of χ improves differentiability and it
is negligible in applications.

Now, since u0 is free, one can easily find a right inverse of the Frechet
differential Φ′(u), which we denote by Ψ(u). It is a multiplication by a matrix
with non-linear second order differential operators as coefficients. Then we
consider the equation

u−Ψ(u0)h− TΨ(u+u0)−Ψ(u0)h = 0, (3)
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where h ∈ C%+1
∗ is given with values in R(n+1

2 ), % > 1. The equation has a
unique solution u = U(h) which is a C∞ function from C%+1

∗ to C%+1
∗ in a

neighbourhood of 0, with U(0) = 0 and differential Ψ(u0)h at 0.
There are two main reasons for introducing the operator Ta. The first

one is that one can ”paralinearize” the equation (1). That is, one can write

Φ(u+ u0) = Φ(u0) + TΦ′(u+u0)u+R(u), (4)

where R(u) is given by

R(u) = Φ(u+ u0)− Φ(u0)− TΦ′(u+u0)u.

The map u 7→ R(u) is infinitely Frechet differentiable. More precisely, for
% > 0 the map u 7→ R(u) belongs to C∞(V,C2%

∗ ) where V is a neighbourhood
of 0 in C%+1

∗ (Rn,RN).
Second, the fact that

Φ′(u+ u0)Ψ(u+ u0) = identity

leads to the fact that

TΦ′(u+u0)TΨ(u+u0) − identity (5)

is an infinitely differentiable function of u ∈ C%+1
∗ , which takes values in

L(Cσ+1
∗ , Cσ+%−1

∗ ) for arbitrary σ if % > 2. (For the precise definition of
TΦ′(u+u0) see [2]). One can ”parainvert” TΦ′(u+u0) by the operator TΨ(u+u0).

Combining (3), (4) and (5) allows us to solve (1) locally using the implicit
function theorem, provided % > 2. This in turn yields that for the torus M
one has

Theorem 1. If % > 3 and g ∈ C%
∗ (M,R(n+1

2 )) is sufficiently small, then one
can find u ∈ C%

∗ (M,RN) so small that the map u + u0 : M → RN is an
isometric embedding for the metric g + g0.

Remark: Nash [3] obtained an embedding theorem for the classical C%

spaces where % ≥ 3 is an integer.

16.3 An abstract Nash-Moser theorem

In this section we put the method from Section 16.2 into a more general
setting. The method is applicable to general non-linear differential equations
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for which there exists a non-linear differential operator which is a right inverse
of the differential (such as Ψ(u) in the previous section).

The first step is to define an abstract version of the spaces C%
∗ . Let Ea,

a ≥ 0 be a decreasing family of Banach spaces with injections Eb ↪→ Ea of
norm ≤ 1 when b ≥ a. Assume that we are given continuous linear operators

S(θ) : E0 → E∞ =
∞⋂
1

Ea, θ ≥ 1,

such that with constants bounded when a and b are bounded one has

‖S(θ)u‖b ≤ C‖u‖a, b ≤ a

‖S ′(θ)u‖b ≤ Cθb−a−1‖u‖a
if u ∈ E0 and S(θ)u→ v in E0 as θ →∞, then u = v.

For a > 0 we define Ea
∗ to be the set of all u ∈ E0 such that for some M

‖u‖0 ≤M ; ‖S ′(θ)u‖0 ≤Mθ−a−1, ‖S ′(θ)u‖a+1 ≤M, θ ≥ 1, (6)

and we define ‖u‖∗a as the smallest M which can be used in (6).
Now we consider two scales of Banach spaces {Ea} and {F b} with these

properties and write SE(θ) and SF (θ) for the corresponding smoothing oper-
ators S(θ). Let V be a neighbourhood of 0 in some Eµ

∗ and let Φ : E∞∩V →
F∞. For a continuous extension of Φ and some α > µ we want to find a
solution u ∈ Eα

∗ of

Φ(u) = f. (7)

We assume that Φ has a differential Φ′(u) when u ∈ E∞ ∩ V and that Φ′(u)
has a right inverse Ψ(u) such that for certain a1, a2 with 0 ≤ a1 < α < a2

‖Ψ(u)g‖a ≤ C
∑

(1 + ‖u‖Aj(a))‖g‖Bj(a), (8)

whenever a1 ≤ a ≤ a2, u ∈ E∞ ∩ V, g ∈ F∞, the sum is finite, and Aj(a),
Bj(a) are increasing linear functions. We also assume that (E∞∩V )×F∞ 3
(u, g) 7→ Ψ(u)g ∈ Ea2 is continuous.

For instance, with Ψ as in the previous section and with Hölder norms
and µ > 2, one has for a > µ

‖Ψ(u)g‖a ≤ C((1 + ‖u‖a+2)‖g‖0 + ‖g‖a).
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The first step in finding solutions to (7) is to defined a ”parainverse”
corresponding to Ψ(u). Let V1 be a neighbourhood of 0 in Eµ

∗ such that
SE(θ)V1 ⊂ V if θ ≥ 1. Let α > µ and W ⊂ V1 a neighbourhood of 0 in Eα

∗ .
Assume that for some β > 0

max(a1, µ) < α < a2, Bj(a) ≤ β − α + a, Aj(a) +Bj(a) < a+ β, (9)

where a1 ≤ a ≤ a2. If u ∈ W , g ∈ F β
∗ , then

TΨ(u)g :=

ˆ ∞
1

Ψ(SE(t)u)S ′F (t)g dt ∈ Eα
∗ . (10)

The next step is to consider the equation analogous to (3)

u−Ψ(0)g − (TΨ(u)− TΨ(0))g = 0, (11)

where g ∈ F β
∗ , and we look for u ∈ Eα

∗ .

Theorem 2. Assume that Ψ(u) satisfies (8) for a neighbourhood V of 0 ∈ Eµ
∗

and that (9) holds. Assume also that E∞ × F∞ 3 (u, g) 7→ Ψ(u)g ∈ Ea2

is continuous when u ∈ V and that the scale {Ea} is compact, i.e. that
Ea ↪→ Eb is compact for all a > b. Then TΨ(u) can be defined and (10) holds
for some neighbourhood if W of 0 in Eα

∗ . The equation (11) has a solution
u ∈ W for all g ∈ F β

∗ , with sufficiently small norm.

The proof Theorem 2 is via the Leray-Schauder fixed point theorem. For
g ∈ F β

∗ we now set

ũ(t) := Ψ(0)SF (1)g +

ˆ t

1

Ψ(SE(s)u)S ′F (s)g ds. (12)

Now we are ready to state the main result of [2].

Theorem 3. Let V be a neighbourhood of 0 in Eµ
∗ and assume that Φ is

differentiable from V ∩ Ea2 to F β, Φ(0) = 0. Assume that the differential
satisfies a Lipschitz condition

‖(Φ′(u)− Φ′(v))w‖β ≤ C
∑

(1 + ‖u‖m′j + ‖v‖m′j)‖u− v‖m′′j ‖w‖m′′′j
for all u, v ∈ Ea ∩ V , w ∈ E∞, where m′j, m

′′
j , m

′′′
j ∈ [a1, a2], and that

α > max(m′′j + m′′j )/2 and α > max(m′′j + m′′j + m′′′j )/3 for some α > 0.
Assume also that the differential has an inverse Ψ(u) satisfying the hypotheses
of Theorem 2. Let the scale {Ea} of Banach spaces be compact. Then one can
for every f ∈ F β

∗ with sufficiently small norm find u ∈ Eα
∗ with small norm

such that ũ(t) defined by (12) converges to u and Φ(ũ(t)) → f as t → ∞.
The convergence is strong in Ea resp. F b when a < α and b < β respectively.
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17 Geometric vs non-geometric rough paths

after Martin Hairer and David Kelly [1]
A summary written by Nikolay Barashkov

17.1 Introduction

Recall the definition of a geometric rough path: A geometric rough path
takes values in T (V )∗ where

T (V ) =
∞⊕
n=0

n⊗
i=1

V

The interpretation is that we assign the values of the iterated integrals by

〈Xt, ei1...in〉 =

ˆ t

0

. . .

ˆ r2

0

dX i1
r1
. . . dX in

rn ,

For geometric rough paths we assume that we can integrate by parts
which yields the identity

〈Xt, ei1...in〉〈Xt, ej1...jm〉 = 〈Xt, ei1...in ttej1...jm〉

Where tt denotes the shuffle product. Using this we can express Integrals
like

ˆ t

s

(ˆ v3

s

dXk
v1

)(ˆ v3

s

dXj
v2

)
dX i

v3
=

ˆ t

s

〈 Xst, ek〉〈Xst, ej〉dX i
v3

=

ˆ t

s

〈Xst, ei ttej〉dX i
v3

= 〈Xst, ekji〉+ 〈Xst, ejki〉

But what happens if we do not have partial integration at our disposal, like
in Ito calculus? Then we must define objects like the above separately. To do
this we must replace T(V) by a bigger space and give it a structure similar to
that of the tensor algebra. That structure will be the one of a Hopf algebra.
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17.2 Hopf Algebras

A Hopf algebra is a special kind of bialgebra, so we will first define the latter.
A bialgebra arises naturally when one algebra is in some sense acting on
another. To this end, let H be a vector space and let H∗ be another vector
space, acting linearly on h via the pairing 〈·, ·〉 : H∗ ⊗ H → R. Suppose
moreover that H is actually an algebra, with some product · : H ⊗H → H
and unit element 1. In many natural situations, the space H∗ is also an
algebra, with some other product ? : H∗⊗H∗ → H∗ and a 1∗, which acts as
the dual element of 1.

It is often advantageous to superimpose the structure from H∗ onto H, so
that we simply have a vector space H∗ acting on a more structured space H.
To be precise, the product ? can be encoded into H by a map ∆ : H → H⊗H
called a coproduct. The coproduct is the dual of ? in the sense that

〈f ? g, h〉 = 〈f ⊗ g,∆h〉 ,

for every f, g ∈ H∗ and h ∈ H. The triple (H, ·,∆) is then called a bialgebra
, provided certain consistency relations between the product and coproduct
are satisfied.
Suppose that some f ∈ H∗ has an inverse f−1 ∈ H∗, satisfying f ? f−1 =
f−1 ? f = 1∗ Since we want all the structure of H∗ to be contained in H, we
must encode an inverse map into H. In fact, we introduce a map S : H → H
such that S∗ : H∗ → H∗ is the inverse map, satisfying S∗f ?f = f ?S∗f = 1∗.
The map S is called the antipode. But since we only want to work on H and
not H∗, the dual requirement for S is that

(Id⊗ S)∆h = (S ⊗ Id)∆h = 〈1∗, h〉1

An important example of Hopf Algebras is the tensor algebra: let ea =
ea1⊗· · ·⊗ean and eb = eb1⊗· · ·⊗ebm . T(V) can be made into a Hopf algebra
by with the shuffle product defined as

ea tteb =
∑

c∈shuf(a,b)

ec

where c ∈ shuf(a, b) iff c is a permutation of the index sequence (a, b) =
(a1, . . . , an, b1, . . . , bm) which preserves the original ordering of the index se-
quences a and b respectively. For example shuf(ij, k) = {kij, ijk, ikj} but
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jik is not int the set as the original ordering of i and j is not preserved. The
coproduct is given as

∆ec =
∑

(a,b)=c

ea ⊗ eb

This gives a bialgebra structure and one can prove that an antipode can be
found to make this into an Hopf Algebra.
For branched rough paths we will replace T(V) by the following object: Let
T be the set of rooted labeled trees. The Connes-Kreimer Hopf Algebra H
is the commutative polynomial algebra generated by T . The product is the
usual polynomial product and the coproduct will be given as follows: We
will say that the pair (τ1 . . . τm)⊗ τ0 is an admissible cut of τ ∈ T , if one can
obtain τ by attaching the trees τ1, . . . , τm to the nodes of τ0. Then

∆τ =
∑
(τ)

τ (1) ⊗ τ (2)

where we sum over all admissible cuts. Then we extend the coproduct to the
whole of H by requiring it to multiplicative, namely

∆(τ1 . . . τn) = ∆τ1 . . .∆τn

the product on the right hand side is the tensor product of the polynomial
multiplication with itself. Again it can be proven that we can find an antipode
to turn H into a Hopf Algebra. For g ∈ H∗ we say g ∈ G(H) if

〈g, h1h2〉 = 〈g, h1〉〈g, h2〉

Proposition 1. The pair (G(H), ?) is a group with inverses given by g−1 =
S∗g, where S∗ is the adjoint of the antipode

We define the truncated group-like elements GN(H), obtained from G(H)
by quotienting out the ideal

∞⊕
k=N+1

H∗(k)

Where h ∈ H(k) if h = τ1 . . . τn with |τ1|+· · ·+|τn| = k if |τ | = number of vertices in τ
Now we are finally ready to define branched rough paths.
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17.3 Branched Rough Paths

Definition 2. A map X : [0, T ] → GN(H) is called a γ-Hölder branched
rough path if it satisfies

sup
s 6=t

|〈Xst, τ〉|
|t− s|γ|τ |

<∞ ,

for every τ ∈ H and where Xst = X−1
s ? Xt. If 〈Xst, •i〉 = δX i

st for each
i = 1 . . . d, then we call X a branched rough path above X.

It is a perhaps surprising result that we can ”embed” branched rough
paths into geometric rough paths, more precisely, let BN be the vectorspace
generated by TN , the set of trees with at most N vertices.

Theorem 3. Let X = (X i)i=1...d be a path in Rd and X a γ-Hölder branched
rough path in H such that 〈Xst, •i〉 = δX i

st. Then there exists

1. a path X̄ = (X̄τ )τ∈TN taking values in BN , with πB1(X̄) = X ,

2. a γ-Hölder geometric rough path X̄ in T (N)(BN) satisfying 〈X̄st, τ〉 =
δx̄τst for each τ ∈ T and

3. a graded morphism of Hopf algebras ψ : H → T (BN) ,

such that
〈Xst, h〉 = 〈X̄st, ψ(h)〉,

for every h ∈ H.

The geometric path provided by 3 is highly non canonical and has a great
deal of redundancy . We will now provide a rough outline of the proof of 3.
First we construct ψ with the following lemma:

Lemma 4. There exists a graded morphism of Hopf algebras ψ : (H, ·,∆)→
(T (B),tt, ∆̄) satisfying

ψ(τ) = τ + ψn−1(τ) ,

for any τ ∈ Tn, where ψn−1 denotes the projection of ψ onto T (Bn−1).
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The proof of the lemma is by induction and computation. After having
found ψ we construct our path. This happens step by step. First we define

X̂(1)
t = exp

(
d∑
i=1

〈Xt, •i〉 •i

)
.

Where exp is the usual exponential function which exists since G(B1) is
nilpotent. This path is not necessarily γ Hölder continuous in G(B1) however
it is in the quotient group G(B1)/K1 where

K1 = exp ([B1,B1]⊗)

With
[B1,B1]⊗ = span{•i ⊗ •j − •j ⊗ •i : i, j = 1 . . . d}

Now we will apply the following extension theorem :

Theorem 5. Let γ ∈ (0, 1) such that γ−1 /∈ N \ {0, 1}. Suppose K is a
normal subgroup of G(N)(V ). If X is a γ-Hölder continuous path in the
quotient G(N)(V )/K, then there exists a γ-Hölder continuous path X̄ taking
values in G(N)(V ) and satisfying

πG(N)(V )/K

(
X̄
)

= X ,

where π denotes the projection map.

and obtain a path in G(N)(B1). Now let T(2) be the set of trees with
two vertices. Let τ be the tree with two vertices labeled a and b. We set
X̄τ
st = 〈Xst, τ〉 − 〈X̄1

st, •a ⊗ •b〉 Then we can define

Xt = exp

logX̄1
t +

∑
τ∈T(2)

Xτ
t τ


To make this Hölder continuous we again divide out a subgroup and then
apply the extension theorem . We iterate this step for bigger trees until we
are done.
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18 Quasilinear SPDEs via rough paths

after F. Otto and H. Weber [1]
A summary written by Pavel Zorin-Kranich

Abstract

18.1 Introduction

The stated purpose of the article [1] it to treat the quasilinear (that is, with
the leading order coefficient a depending on u) PDE

∂2u− a(u)∂2
1u = Pσ(u)f, (1)

under weak regularity hypotheses on f . Here, the given f and the unknown
u are 1-periodic functions on R2 and Pζ = ζ −

´
[0,1)2

ζ is the projection

on the space of functions with vanishing average. The functions a, σ are
assumed to be C2 and a is assumed to be uniformly elliptic in the sense
0 < λ ≤ a ≤ 1. The function f is thought of as coming from a stochastic
process, but the stochastic process enters the picture only through a number
of assumptions on f that are almost surely satisfied if f is a Gaussian random
field with suitable covariance. We will not address the stochastic aspects of
this problem in this summary, and for notational convenience the function
f will stay fixed throughout. We make the qualitative assumption that f is
smooth and for notational convenience we also assume that it has vanishing
average.

In order to even formulate the main result we have to consider first the
constant coefficient linear PDE

(∂2 − a0∂
2
1)v(·, a0) = f, λ ≤ a0 ≤ 1. (2)

For smooth f it has a unique solution with vanishing average for every a0

that can be obtained by applying a suitable Fourier multiplier to f .
The Hölder seminorm [·]α will be defined with respect to an anisotropic

metric:

[u]α := sup
x 6=y

|u(x)− u(y)|
dα(x, y)

, d(x, y) = |x1 − y1|+
√
|x2 − y2|.

The supremum norm is denoted by ‖ · ‖. Also, we will use the semigroup of
mollifications fT = exp(−T (∂4

1 − ∂2
2))f .
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Proposition 1 ([1, Proposition 1]). Let 2
3
< α < 1 and suppose

sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N0 � 1. (3)

Suppose also

‖[v(·, a′0), (·)T ]F‖, ‖[ ∂v
∂a0

(·, a′0), (·)T ]F‖ ≤ N2
0 (T

1
4 )2α−2

for all T ≤ 1, a′0 ∈ [λ, 1] (4)

for all F = f, ∂2
1v(·, a0), ∂2

1
∂v
∂a0

(·, a0) with a0 ∈ [λ, 1].
Then there exists a 1-periodic solution u of (1) with

[u]α . N0.

The main step of the proof is in a sense Lemma 5, because this is the place
where the PDE is used. In line with the usual approach to quasilinear PDEs
that Lemma treats the functions a(u) and σ(u) as some given measurable
functions. However, the hypothesis (3) is only a sort of negative exponent
Hölder continuity, so the function f is too irregular for standard theory to
apply Instead, one deals with a mollified version of the PDE, which introduces
a number of commutators that have to be controlled externally. This is the
purpose of Lemma 6 and Lemma 7. The proofs of these results are too long
for this summary, and we will only indicate how they can be bootstrapped
to yield Proposition 1.

18.2 Tools

18.2.1 Controlled solutions

The outermost bootstrapping step in the proof of Proposition 1 goes over
the constant N in the following definition of “modeling”.

Definition 2 ([1, Definition 1]). Let 1
2
< α < 1. We say that u is modeled

after (v, x1) according to (µ, a, ν) with constant N provided we have for all
points x, y ∈ R2

|(u(y)− u(x))− µ(x)(v(y, a(x))− v(x, a(x)))− ν(x)(y − x)1| ≤ Nd2α(y, x).

This “modeling” is well-behaved under C2 deformations:
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Lemma 3 ([1, Lemma 1]). Suppose that u is modeled after (v, x1) according
to (µ, a, ν) with constant N . Let also σ : R→ R be a function with ‖σ‖C2 ≤
1/λ. Then σ(u) is modeled after (v, x1) according to (σ′(u)µ, a, σ′(u)ν) with
constant

Nσ . N + [u]2α.

Moreover, it controls the Hölder norm.

Lemma 4 ([1, Corollary 1]). In the setting of Definition 2, assuming (3),
we have

[u]α . N +N0‖µ‖.

18.2.2 PDE ingredient

Lemma 5 ([1, Lemma 4]). Let 0 < λ ≤ 1 and 1
2
< α < 1. Suppose that the

1-periodic functions a ∈ [λ, 1], σ, f , and u are related by

∂2u− a∂2
1u = Pσf.

Suppose furthermore (3) and that we control the commutators

‖[a, (·)T ]∂2
1u‖, ‖[σ, (·)T ]f‖ ≤ N(T

1
4 )2α−2 for T ≤ 1 (5)

for some constant N . Then u is modeled after (v, x1) according to (σ, a, ν)
for some 1-periodic ν with constant

.α,λ N + [a]α[u]α +N0([σ]α + ‖σ‖[a]α).

18.2.3 Commutator estimates

Lemma 6 ([1, Corollary 2]). Suppose α > 2
3
. Let u be modeled after (v, x1)

according to (µ, a, ν) with constant N . Suppose that for some function b, we
control the commutators

‖[b, (·)T ]∂2
1v(·, a0)‖ ≤ N2

0 (T
1
4 )2α−2, (6)

‖[b, (·)T ]∂2
1

∂v

∂a0

(·, a0)‖ ≤ N2
0 (T

1
4 )2α−2 (7)

for all 0 < T ≤ 1 and a0 ∈ [λ, 1] for some constant N0. Then

sup
T≤1

(T
1
4 )2−2α‖[b, (·)T ]∂2

1u‖ . N [b]α +N2
0 (‖µ‖[a]α + [µ]α + ‖µ‖).
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Lemma 7 ([1, Corollary 3]). Suppose α > 2
3
. Let b be modeled after (v, x1)

according to (µ, a, ν) with constant N . Suppose

sup
T≤1

(T
1
4 )2−α‖FT‖ ≤ N0 (8)

and (4). Then

sup
T≤1

(T
1
4 )2−2α‖[b, (·)T ]F‖ . N0

(
N +N0([µ]α + ‖µ‖[a]α + ‖µ‖)

)
.

18.2.4 Estimates for the constant coefficient PDE

It follows from [1, Lemma 8] and some auxiliary arguments that (3) con-
tinues to hold (up to an absolute constant) with f replaced by ∂2

1v(·, a0) or
∂2

1
∂v
∂a0

(·, a0) with any a0 ∈ [λ, 1]. Moreover,

[v(·, a0)]α, [
∂v

∂a0

(·, a0)]α . N0, λ ≤ a0 ≤ 1.

18.3 Main bootstrapping loop

It is claimed that for smooth f the equation (1) has a solution u that depends
continuously on f . Let N be (nearly) the best constant for which there exists
ν such that this solution is modeled after (v, x1) according to (σ, a, ν) with
the constant N , where a = a(u) and σ = σ(u) are 1-periodic functions of two
variables and should not be confused with the functions of one variable a, σ
in (1). In order to prove Proposition 1 we will prove an a priori estimate on
N in terms of N0.

By Lemma 4 the α-Hölder seminorm of u, and hence also of any of the
related quantities a, σ, a′(u)σ, σ′(u)a is . N +N0.

By Lemma 3 the functions a, σ are also modeled after (v, x1) according to
(a′(u)σ, a, a′(u)ν) and (σ′(u)σ, a, σ′(u)ν), respectively, with certain constants
Na, Nσ.

First we apply Lemma 7 with b = σ, F = f . This gives the second
hypothesis in (5) with a constant

. N0(Nσ +N0(1 +N0 +N))

. N0(N + (N +N0)2 +N0(1 +N0 +N))

. N0(N +N0 +N2),
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where we have used the hypothesis N0 . 1 in the last step.
Next, we apply Lemma 7 with b = a and both F = ∂2

1v(·, a0) and F =
∂2

1
∂v
∂a0

(·, a0). This gives the hypotheses (6) and (7), respectively, of Lemma 6
with a constant

.
√
N0(N +N0 +N2)

That lemma in turn yields the first hypothesis in (5) with a constant

. N(N +N0) +N0(N +N0 +N2)(1 +N +N0).

Applying now Lemma 5 and using again N0 . 1 we obtain

N . N(N +N0) +N0(N +N0 +N2)(1 +N) + (N +N0)2 +N0(N +N0)

. N0N
3 + (N +N0)2.

Since N0 � 1 is assumed to be very small, the linear term in N on the
right-hand side can be absorbed into the left-hand side, so

N . N0N
3 +N2 +N2

0 ,

or in other words

A . N3
0A

3 +N0A
2 +N0, A = N/N0.

This shows that A must be either . N0 or & 1/N0 (in fact the article [1]
states a different bootstrapping inequality [1, (84)], but the two seem to lead
to the same results). If the function f vanishes identically, then u = 0 solves
the equation (1), and in this case A = 0. Replacing f by θf , θ ∈ [0, 1] it
is then claimed that there is a continuous θ-dependent family of solutions
for which A also depends continuously on θ, so in fact there is a solution
for which the first alternative (A . N0, hence N . N2

0 , and consequently
[u]α . N0 by Lemma 4) holds.
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19 The continuous Anderson hamiltonian in

dimension two

after R. Allez and K. Chouk [1]
A summary written by Irina Holmes

Abstract

We define the Anderson hamiltonian on the two dimensional torus
R2/Z2. This operator is formally defined as H := −∆ + ξ where ∆
is the Laplacian operator and where ξ belongs to a general class of
singular potential which includes the Gaussian white noise distribu-
tion. We use the notion of paracontrolled distribution as introduced
by Gubinelli, Imkeller and Perkowski in [2]. We are able to define
the Schrödinger operator H as an unbounded self-adjoint operator on
L2(T2) and we prove that its real spectrum is discrete with no accu-
mulation points for a general class of singular potential ξ. We also
establish that the spectrum is a continuous function of a sort of en-
hancement Ξ(ξ) of the potential ξ. As an application, we prove that
a correctly renormalized smooth approximation Hε := −∆ + ξε + cε
(where ξε is a smooth mollification of the Gaussian white noise ξ and cε
an explicit diverging renormalization constant) converge in the sense
of the resolvent towards the singular operator H. In the case of a
Gaussian white noise ξ, we obtain exponential tail bounds for the
minimal eigenvalue (sometimes called ground state) of the operator H
as well as its order of magnitude logL when the operator is considered
on a large box TL := R2/(LZ2) with L→∞.

19.1 Introduction: The parabolic Anderson model (PAM)

The PAM on Rd can be formulated as

∂

∂t
u(t, x)−∆u(t, x) = u(t, x)V (x), (1)

for (t, x) ∈ (0,∞)× Rd, subject to

u(0, x) = u0(x), for x ∈ Rd,

where V is a random field on Rd. One of the most important questions
about solutions to the PAM is describing their long-term behavior. This
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is determined by the spectral properties of the Anderson hamiltonian, the
operator defined as H := −∆ + V .

Most instances of the random potential V studied in the literature are
highly regular, with a large and even infinite correlation length. The case of
entirely uncorrelated potentials poses many challenges, and its study, while
still in its early stages, is now a highly active research area. The paper [1]
summarized here is a recent development in this area.

The most natural such rough potential is V = ξ, where ξ(x), x ∈ Rd is a
centered Gaussian process with covariance

E[ξ(x)ξ(y)] = δ(x− y).

Solving the PAM in this setting is very difficult for dimensions d ≥ 2, because
of the high degree of irregularity of the random potential – for one, this
requires renormalization procedures. So the standard techniques of stochastic
PDE theory do not really apply to this outlier case. However, this problem
has recently found a framework that can work with it, in the development of
rough paths and paracontrolled distributions. The satisfactory construction
(almost surely on the whole state space Rd) of solutions to (1) occurred in
[3] for d = 2 and in [4] for d = 3.

19.2 Main results

The paper [1] continues the study of PAM with white noise potential by
answering some spectral theoretic questions about the Anderson hamiltonian

H = −∆ + ξ,

with ξ Gaussian white noise. However, the setting here is only the torus
T2 := R2/Z2 in R2 rather than the whole space. Specifically, consider

∂tu(t, x)−∆u(t, x) = u(t, x)ξ(x), u(0, x) = u0(x), (2)

where x ∈ T2, the function u0 ∈ L2(T2), and ∆ denotes the Laplacian opera-
tor with periodic boundary conditions and ξ is a real white noise distribution
on T2. The solution to (2) may be expressed in terms of the operator H as

u(t, x) = exp(−tH)u0(x) :=
∞∑
n=0

exp(−tΛn) 〈en, u0〉L2(T2) en(x), (3)
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for x ∈ T2, with two big assumptions: first, that one can define the operator
H in the first place, and, second, prove that its spectrum Λn is real and
discrete, with associated orthonormal eigenvectors en ∈ L2(T2). These facts
are far from trivial to establish in dimension d = 2, where the high irregularity
of ξ makes H ill-defined, and they are the main subject of [1].

The main aspects of the results in [1] are:

1. Construction of the Anderson hamiltonian H in the continuous setting,
with Gaussian white noise (in a finite volume though, restricted to the
2-dimensional torus);

2. Spectral theoretic aspects of H: establish that its spectrum is real and
discrete, with an orthonormal family of eigenvectors in L2(T2);

3. Partial results on the limiting statistics of its ground state (the minimal
eigenvalue) of H in a large torus of side length L→∞.

19.2.1 Analytical results

The first stage of constructing H is purely analytic. The following result
constructs the Schrödinger operatorH for a general class of rough potentials ξ
living in a space of Hölder distributions. Here ξ is a general rough distribution
living in a Sobolev space with index α < −1 defined as

Hα(T2
L,R) := {f ∈ S ′(TL,R) :

∑
k∈Z2

L

(1 + |k|2)α|f̂(k)|2 < +∞},

where T2
L := R2/(L−1Z2) is the torus of size L, S ′ is the Schwartz space of

tempered distributions, and f̂(k) is the kth Fourier coefficient. Since the
interest later shifts to the limiting spectral properties of H when considered
on a large volume, the result is stated on T2

L:

Theorem 1. Let α ∈
(
−4

3
,−1

)
. Then there exists a Banach space X α(T2

L) ⊂
Cα(T2

L)×C2α+2(T2
L) such that for all Ξ = (ε,Ξ2) ∈ X α, there exists a Hilbert

space DΞ ⊂ L2(T2
L) (which is dense in L2(T2

L)) and a unique self-adjoint
operator H(Ξ) : DΞ → L2(T2

L) with the following properties:

1. If ξ is a smooth function, then we can choose Ξ2 such that:

D(ξ,Ξ2+c) = H2(T2
L), H(Ξ)f = −∆f + f(ξ + c)

for all f ∈ H2(T2
L) and c ∈ R.
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2. The spectrum (Λn(Ξ))n∈N∗ of H(Ξ) is real, discrete without any accu-
mulation point and satisfy Λn(Ξ)→ +∞ when n→∞,

Λ1(Ξ) ≤ Λ2(Ξ) ≤ . . . ≤ Λn(Ξ)

and dim(Λn(Ξ)−H(Ξ)) < +∞. Moreover, L2(T2
L) = ⊕nker(Λn(Ξ)−

H(Ξ)).

3. The eigenvalues (Λn)n∈N are the solution of a min-max principle.

4. For each n ∈ N, the map Ξ → Λn(Ξ) is locally-Lipschitz. More pre-
cisely, there exist two positive constants C and M which do not depend
on L such that, for all α ∈ (−4/3,−1), γ < α + 2, n ∈ N, Ξ, Ξ̃ ∈ X α,

|Λn(Ξ)− Λn(Ξ̃)| ≤

≤ Cn
(

1 + n
2γ−α
α+2 + (1 + Λn(0))2γ

)2

‖Ξ− Ξ̃‖Xα(1 + ‖Ξ̃‖Xα + ‖Ξ‖Xα)M ,

where Λn(0) is the n-lowest eigenvalue of the Laplacian operator −∆.

5. For all a ∈ R \ {Λn(Ξ), n ≥ 1}, the resolvent map Ξ → Ga(Ξ) =
(a+H(Ξ))−1 is locally Lipschitz.

Remarks about this theorem:

• The important point is that knowledge of ξ alone is not enough to define
H as an unbounded operator on L2(T2) - this is where the quantity Ξ2

comes in. Roughly speaking, this is the ill-defined part of the product
ξ(1 − ∆)−1ξ, living in C2α+2(T2), where Cα denotes the Hölder-Besov
space.

• Then Ξ := (ξ,Ξ2), an enhancement of the rough distribution ξ con-
taining the additional information Ξ2, can be used to make sense of the
ill-defined product ξf of two distributions, and define H on an explicit
domain DΞ ⊂ L2(T2,R).

19.2.2 Stochastic results

The focus is now to show that the Gaussian white noise fits in the analytical
framework developed above. The authors use classical stochastic analysis
techniques to prove that one can construct Ξ2 in this setting in a robust
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way through smooth approximations. Note that the Gaussian white noise
ξ fits the description in Theorem 1 since ξ ∈ Cα a.s. for all α < −1. In
this case, Theorem 1 shows that H as a discrete real spectrum continuous
with respect to the enhanced Gaussian noise (ξ,Ξ2). The next result is a
smooth approximation result for the operator H associated with ξ. Below,
θ̂ε = ε−2θ̂(·/ε) is an approximation of the identity:

Theorem 2. Let α < −1, ξ be a Gaussian white noise, ξε := ξ ? θ̂ε be
a smooth mollification of ξ ∈ Cα and Ξε

2 as given in Theorem 1 such that
H(ξε,Ξ

ε
2) = Hε, where

Hε := −∆ + ξε.

Then, there exists Ξwn = (ξ,Ξwn
2 ) ∈ X α(T2

L) and a constant cε := cε(θ) →
+∞ as ε→ 0 such that the following convergence holds

(ξε,Ξ
ε
2 + cε)→ε→0 (ξ,Ξwn

2 )

in Lp(Ω, Cα×C2α+2) for all p > 0 and almost surely in Cα×C2α+2. Moreover,
the limiting distribution Ξ does not depend on the mollification function θ and
the normalizing constant cε has the following asymptotic expansion

cε =
1

2π
log

(
1

ε

)
+O(1),

where O(1) refers to any fixed constant, independent of ε.

Theorems 1 and 2 now allow one to define the Schrödinger operator H
associated with the Gaussian noise potential ξ by setting

H := H(Ξwn).

To make sense of this definition, the next result establishes convergence in
the sense of the resolvent (convergence of the spectrum) of the smooth ap-
proximations Hε + cε as defined in Theorem 2 towards the operator H:

Theorem 3. With the same notations as in Theorem 2, we denote by

Λε
1 ≤ Λε

2 ≤ . . .

the eigenvalues of the operator Hε. Then, for any n ∈ N, almost surely,

Λε
n + cε →ε→0 Λn(Ξwn),

where (Λn(Ξwn))n∈N denotes the discrete set of the eigenvalues of H(Ξwn).
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Finally, the authors obtain partial results about the limiting spectral
statistics of the operator H(Ξwn) when the volume of the torus tends to ∞.
Specifically, the next result provides an upper bound on the asymptotic order
of the ground state in the limit of large volume L→∞.

Theorem 4. For any n ∈ N and p ≥ 1,

sup
L>0

E
[∣∣∣∣Λn(Ξwn)

logL

∣∣∣∣p] < +∞.

Besides, there exist two positive constants C1 and C2 such that for any x < 0,
we have

eC2x ≤ P(Λ1(Ξwn) ≤ x) ≤ eC1x.
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